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Abstract 
This project included four distinct but related exploratory studies of data sources that 
could improve roadway safety analysis. The first effort evaluated passively gathered 
crowdsourced bicyclist activity data from StreetLight Data and found promising 
correlations (R2 of 62% and 69% for monthly weekday and weekend daily averages) when 
the StreetLight data were compared to bicyclist counts from 32 locations in eight Texas 
cities, and even better correlation (R2 of 94%) when compared with countywide Strava 
data expanded to represent total bicycling activity. The second effort evaluated the 
pedestrian counting accuracy of the Miovision system and found 15% error for daytime 
and 24% error for nighttime conditions. The third effort used INRIX trip trace data to 
determine origin-destination patterns and developed 40 decision rules to define the origin-
destination patterns. The fourth effort analyzed crowdsourced Waze data (i.e., traffic 
incidents) and found it to be a reliable alternative to observed and predicted crashes, with 
the ability to identify high-risk locations: 77% of high-risk locations identified from police-
reported crashes were also identified as high-risk in Waze data. The researchers propose 
a method to treat the redundant Waze reports and to match the unique Waze incidents 
with police crash reports. 
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Introduction 
The “Exploring Crowdsourced Monitoring Data for Safety” project included four distinct but 
related exploratory studies of emerging data sources that could possibly improve roadway safety 
and exposure analysis: 

1. Crowdsourced mobile device data to better quantify citywide bicycling activity. 

2. Traffic signal system data to quantify pedestrian street crossings. 

3. Crowdsourced GPS waypoint data to better quantify motor vehicle travel patterns. 

4. Crowdsourced traffic incident data to better quantify overall motor vehicle crash risk. 

This report summarizes the results of these four unique exploratory studies, each separately 
documented in the following sections. 

Citywide Bicycling Activity from Crowdsourced Data 
Some U.S. cities are spending millions of dollars to make bicycling a safe, convenient, and realistic 
transportation option for everyday trips. Yet, it is still a challenge to measure the impacts of these 
bicycling improvements at a citywide level. In particular, it is very difficult to accurately measure 
bicyclist trips and travel for large geographic areas. Comprehensive analyses of bicyclist safety 
rely on bicyclist exposure (i.e., trips and travel) to determine if the risk to bicyclists has been 
reduced. 

Various sensor technologies (e.g., inductance loops, video machine vision) can be used to monitor 
bicyclist activity at specific locations, but it is not realistic or cost-feasible to install these sensors 
everywhere in a city. Some agencies use results from the American Community Survey (ACS) and 
National Household Travel Survey (NHTS) to quantify citywide bicycling activity, but both of 
these national surveys have major limitations. The ACS captures bicycling only when it is the 
primary mode of commuting, whereas the NHTS is intended for national statistics and has 
insufficient travel samples at a citywide level. 

Some researchers and practitioners are exploring crowdsourced data to quantify bicycling activity. 
For example, Strava is a fitness tracking app and Web platform that sells aggregate activity data 
to government agencies via its Strava Metro division. However, several research efforts [1-5] have 
identified a recreational bias in the Strava Metro data. Also, bicyclists must initiate Strava tracking 
when a ride begins (called active sensing, as it requires an action by the user to begin tracking). 

This subtask of the research project explored the use of passively gathered crowdsourced data as 
a possible means to quantify citywide bicycling activity. The bicycling activity data were obtained 
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for evaluation from StreetLight Data, a Big Data analytics company that processes trillions of 
geospatial data points to measure how pedestrians, bikes, and motor vehicles travel.   

Evaluation Methods 
Researchers obtained estimates of bicycling activity from StreetLight Data and compared them to 
two other existing estimates of bicycling activity: 

1. Permanent bicycle counters installed at 32 locations 

2. Expanded/adjusted estimates of total bicycling activity derived from Strava Metro [6]. 

For the 32 bicycle counter locations, the count data had been reviewed for quality and consistency 
in a previous project [7]. Therefore, the permanent count data were considered to be a suitable 
comparison benchmark. The expanded estimates of total bicycling activity derived from Strava 
Metro data do have error, but these comparisons were made at an aggregate (i.e., county) level. 
Even at a countywide level, the expanded Strava estimates are considered to be status quo 
measurements with known limitations and not a ground truth or authoritative benchmark. The 
estimates of bicycling activity obtained from StreetLight Data, called StreetLight Index values, 
represent a sample of bicycle trips starting in, passing through, or ending in defined zones. 

Results 
Comparisons to Permanent Counter Data 
Permanent bicycle counts from 32 locations in eight cities across Texas were used to calculate the 
monthly weekday and weekend average bicycles per count location. A complete, uninterrupted set 
of 15-minute counts per day (96 total) for each month was required. If a particular month was 
missing 15-minute count data from any time period, then it was deemed incomplete and excluded 
from the analysis. Due to data availability, counts from April, May, and June were compared with 
StreetLight Index values. Table 1 provides the breakdown of counts by city and month. StreetLight 
Data provided unexpanded Index values based on location-based services (LBS) passive data for 
an average weekday (Monday–Thursday) and weekend broken out by month. 

Table 1. Number of Bicycle Count Locations per City and Month 

City April  May June 
Allen 0 1 1 

Austin 6 6 0 
Dallas 10 11 0 

Fort Worth 2 3 1 
Houston 3 3 1 

North Richland Hills 1 0 0 
Plano 2 2 1 

San Antonio 2 2 0 
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Figure 1 provides a comparison of the permanent bicycle counts to unexpanded StreetLight Index 
values. The correlations for both weekdays and weekends are moderately high, with R2 values of 
62% and 69%, respectively. This indicates that expanded StreetLight Index values are capable of 
estimating bicycle activity at specific locations with moderate accuracy despite the variance in the 
underlying LBS data sample sizes used to create the Index values. 

 

Figure 1. Graph. Comparison of permanent bicycle counts to StreetLight Index values for May. 

To determine the accuracy, average weekday and weekend expansion factors were developed 
using April data and applied to the StreetLight Index values for May. Accuracy is measured in 
terms of the mean absolute percentage error (MAPE) and mean absolute error (MAE). The 
percentage error in the expanded StreetLight Index values ranged from 21% to 76% for weekdays 
and 23% to 53% for weekends between cities, as shown in Table 2. The MAE shows that although 
the relative percentage values (i.e., MAPE) may be high in some cases, the absolute error in low-
magnitude counts can be relatively small. The results illustrate again that StreetLight Index values 
have the potential to be expanded to estimate bicycle activity with moderate levels of accuracy. 
However, more count locations and a stratified expansion process could improve the error results 
by controlling for functional class and area type. 
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Table 2. Average Weekday and Weekend StreetLight Index Expansion Error Estimates by City 

Average 
Type City Expanded StreetLight 

Index MAPE 
Expanded StreetLight 

Index MAE 
Weekday Austin 76% 277 
Weekday Dallas 70% 410 
Weekday Fort Worth 21% 18 
Weekday Houston 55% 43 
Weekday Plano 38% 84 
Weekday San Antonio 47% 41 
Weekend Austin 26% 104 
Weekend Dallas 33% 311 
Weekend Fort Worth 57% 91 
Weekend Houston 553% 344 
Weekend Plano 23% 82 
Weekend San Antonio 69% 59 

Comparisons to Expanded Strava Data 
In this comparison, the Strava 2017 average daily bike-miles of travel (BMT) was calculated by 
multiplying the expanded Strava 2017 average annual daily bicyclist traffic by the corresponding 
link length, and then summed for each of the 254 counties in Texas. (“Expanded” means total 
bicyclist estimates derived from Strava bicyclist samples.) This countywide BMT value was 
compared to the StreetLight Index (which represents unexpanded bicyclist activity) for each of the 
254 counties. In this case, the researchers did not expand the StreetLight Index because we wanted 
to test the relative correlations in the absence of any expansion process. 

Figure 2 shows the comparison of countywide expanded Strava bicycling estimates to StreetLight 
Index values. The 25 counties with the most bicycling activity are shown here, since many of the 
less-populated counties in Texas have negligible bicycling activity. The correlation between the 
two measures of bicycling activity is quite high, with an R2 value of 94%. The high level of 
correlation means that both methods of estimating bicycling activity are numerically similar, and 
that a simplified expansion process for the StreetLight Index value may be sufficient at aggregate 
levels (such as countywide or citywide).  
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Figure 2. Graph. Comparison of county-level bicycling activity: top 25 counties in Texas. 

As part of the data exploration, the researchers also compared several other bicycling exposure 
indicators to the StreetLight Index values. For example, population estimates are often used as a 
bicycling exposure indicator for aggregate (e.g., citywide, statewide, national) safety comparisons. 
Figure 3 shows a comparison of countywide population to countywide StreetLight Index values. 
The resulting correlation (R2 = 99%) is even stronger than the previous countywide estimate of 
bicycling activity from expanded Strava estimates.  
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Figure 3. Graph. Comparison of county-level population to bicycling activity. 

Conclusions 
Overall, StreetLight Index values correlate well with permanent bicycle counts and very well with 
other bicycle activity estimates, like Strava and total population. StreetLight Index values appear 
to be affected by the variance in the underlying passive data samples over time and by location. 
This suggests that more detailed expansion methods that accommodate different functional classes 
and area types should be developed to more accurately estimate point location and areawide 
bicycle activity.  

Pedestrian Volumes from Traffic Signal Systems 

Evaluation Methods 
The Texas A & M Transportation Institute (TTI) evaluated the accuracy of Miovision’s 
TrafficLink Multimodal Detection and Counts by directly comparing their pedestrian crossing 
counts to benchmark (i.e., ground truth) counts established by TTI in a range of pedestrian traffic 
and lighting conditions. TTI established benchmark counts by using a double-blind manual 
counting process of source video collected by the Miovision detection system. The double-blind 
process worked as follows: two TTI employees manually and independently counted crossing 
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pedestrians in 15-minute intervals, each without the knowledge of the other’s count result (i.e., 
double-blind). A TTI supervisor aggregated each 15-minute interval to 60-minute intervals and 
compared the TTI employees’ independent counts. If the counts agreed within (i.e., less than or 
equal to) 3 and 10% tolerance, then the average of these two independent counts was considered 
the benchmark count against which the Miovision count was compared. If the two independent 
counts were not within (i.e., greater than) 3 and 10% tolerance of each other, then a recount was 
conducted until the two independent counts agreed within the acceptable tolerance. This ensured 
that the manual counts were a true and authoritative benchmark to compare to the Miovision 
counts. These thresholds were chosen because of the relative low pedestrian activity and the 
limited views of the source video (discussed next). Therefore, when the Miovision error is low 
(e.g., 10%–15%), that is approaching the error of the benchmark (10%), and in those cases, it is 
difficult to say with certainty that all error can be attributed to Miovision. 

The source video used in the benchmark manual counts was from the Miovision video system, and 
therefore the exact times of the benchmark counts (derived from source video) were synchronized 
precisely with the times associated with the Miovision pedestrian counts. The source video was 
derived from Miovision’s SmartView 360 “fisheye” camera. For example, Appendix A, Figure 8, 
shows five “split views” of the Martin Luther King Jr. Boulevard (MLK) at Guadalupe 
intersection. Some views were not as clear or as easy to reduce as others, such as the “Guadalupe 
South Leg” view. 

Miovision and the City of Austin selected two intersection locations in Austin, Texas, for the 
evaluation. TTI only focused on the six defined pedestrian detection zones at the intersections: 
four intersection approaches (legs) at MLK and Guadalupe (Appendix A, Figure 9) and two 
intersection legs at Cameron and Cross Park (Appendix A, Figure 10). For example, the short 
crosswalk portion at the far west end of the North leg of the MLK and Guadalupe intersection was 
not counted by the Miovision system; therefore, this portion was not included in the evaluation. 

TTI gathered 80 hours of benchmark source video at each intersection between June 18 and July 
14, 2019. However, only 40 hours at each intersection were reduced and evaluated. Multiple hours 
at each intersection were evaluated during overnight periods (i.e., in dark periods with illumination 
only from streetlights). 

TTI combined both crossing directions when making comparisons to the Miovision counts. TTI 
concluded that a count of total crossing pedestrians, by hour, would meet the requirements for 
most uses of historical pedestrian count data. 

TTI calculated several different accuracy measures based on comparing the Miovision count 
values to the corresponding benchmark count values established by TTI.  

• MAPE (Equation 1) 

• Mean signed percent error, also known as bias (Equation 2) 
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Equation 1 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 (%) =  1
𝑛𝑛
∑ 𝑎𝑎𝑎𝑎𝑎𝑎(𝑥𝑥𝑖𝑖−𝑥̅𝑥𝑖𝑖)

𝑥̅𝑥𝑖𝑖
𝑛𝑛
𝑖𝑖=1  

  where  𝑥̅𝑥𝑖𝑖 = TTI benchmark pedestrian count for the ith comparison 
𝑥𝑥𝑖𝑖 = Miovision pedestrian count for the ith comparison 
𝑛𝑛 = number of Miovision-to-benchmark comparisons 

 
Equation 2 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒, 𝑜𝑜𝑜𝑜 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 =  1

𝑛𝑛
∑ (𝑥𝑥𝑖𝑖−𝑥̅𝑥𝑖𝑖)

𝑥̅𝑥𝑖𝑖
𝑛𝑛
𝑖𝑖=1  

  where  𝑥̅𝑥𝑖𝑖 = TTI benchmark pedestrian count for the ith comparison 
𝑥𝑥𝑖𝑖 = Miovision pedestrian count for the ith comparison 
𝑛𝑛 = number of Miovision-to-benchmark comparisons 

Results 
TTI summarized the accuracy measures across multiple dimensions to determine those factors that 
most influenced Miovision’s accuracy, including intersection leg, ambient light (day or night), and 
level of pedestrian flow (low < 5 peds./hr., medium 6–31 peds./hr., and high >31 peds./hr.). 

Table 3 shows the MAPE values for daytime conditions. The accuracy results are good with 11% 
error or less for the Cameron at Cross East leg and the MLK at Guadalupe South and North legs. 
However, the Cameron at Cross South leg and the MLK at Guadalupe East and West legs had 
14% error or more. 

Table 3. MAPE  and Sample Size for Daytime Conditions 

Intersection Leg 
Low Pedestrian 

Flow: MAPE 
(sample size)  

Medium 
Pedestrian Flow: 
MAPE (sample 

size) 

High Pedestrian 
Flow: MAPE 
(sample size) 

Cameron at Cross East 11% (22) No data No data 
Cameron at Cross South 18% (21) No data No data 
MLK at Guadalupe East No data 37% (1) 34% (9) 
MLK at Guadalupe South 0% (1) 8% (5) 11% (7) 
MLK at Guadalupe North No data 7% (9) 7% (5) 
MLK at Guadalupe West No data 28% (6) 14% (8) 

 
Table 4 shows the MAPE values for nighttime conditions. The accuracy results were good with 
3% error or less for the MLK at Guadalupe South leg (low pedestrian flow) and the North leg 
(high pedestrian flow) but those may be exceptions as they only had 2 and 1 samples, 
respectively. However, accuracy results were fair with 13%–17% error for the Cameron at Cross 
East leg and the MLK at Guadalupe East (medium and high pedestrian flow) and South leg 
(medium pedestrian flow). The remaining intersection legs had poor accuracy results of 21% or 
more. The poor accuracy may indicate a detection zone configuration and/or calibration issue. 
Note that the Cameron at Cross South (low pedestrian flow) was not reported because there were 
no pedestrians observed during the 14 hours evaluated. 
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Table 4. MAPE and Sample Size for Nighttime Conditions 

Intersection Leg 
Low Pedestrian 

Flow: MAPE 
(sample size) 

Medium Pedestrian 
Flow: MAPE 
(sample size) 

High Pedestrian 
Flow: MAPE 
(sample size) 

Cameron at Cross 
East 14% (14) No data No data 

Cameron at Cross 
South NA* No data No data 

MLK at 
Guadalupe East 33% (3) 17% (1) 13% (2) 

MLK at 
Guadalupe South 0% (2) 13% (3) No data 

MLK at 
Guadalupe North 33% (3) 46% (3) 3% (1) 

MLK at 
Guadalupe West 67% (3) 21% (4) 35% (1) 

*Zero pedestrians observed on south leg (n = 14) 

TTI summarized the accuracy results for daytime and nighttime, by intersection, as shown in Table 
5. It shows 14% error for Cameron at Cross for both lighting conditions after removing the South 
leg nighttime hours as discussed previously. The accuracy for MLK at Guadalupe was 16% error 
for daytime and 28% for nighttime.  

Table 5. Summary Accuracy Results and Sample Size for Miovision by Intersection 

Intersection MAPE (Daytime) MAPE (Nighttime) 

Cameron at Cross 14% (43) 14% (14)* 
MLK at Guadalupe 16% (51) 28% (26) 

*Does not include Cameron at Cross South leg (n = 14) 

Table 6 shows that the accuracy for the combined intersection legs was 15% error for daytime and 
24% for nighttime. 

Table 6. Overall Accuracy Results and Sample Size for Miovision 

Intersection MAPE (Daytime) MAPE (Nighttime) 

Combined (All legs) 15% (94) 24% (40)* 
*Does not include Cameron at Cross south leg (n = 14) 

TTI also calculated the mean signed error to determine whether the Miovision counts were biased 
(consistently undercounting or overcounting pedestrians). Table 7 shows there was essentially no 
bias with 5% error for daytime and 2% for nighttime.  
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Table 7. Overall Accuracy Results and Sample Size for Miovision 

Intersection MAPE (Daytime) MAPE (Nighttime) 

Combined (All legs) 5% (94) 2% (40)* 
*Does not include Cameron at Cross south leg (n=14) 

Figure 4 is a correlation chart that shows each individual hourly comparison for all six intersection 
legs for the hours evaluated (minus nighttime hours at the Cameron at Cross South leg). This figure 
provides visual confirmation the mean error results of Miovision were basically random. 

 
Figure 4. Graph. Visual comparison of hourly Miovision and TTI benchmark pedestrian counts. 

Conclusions 
The Miovision system for counting crossing pedestrians at intersections is accurate enough to be 
used by practitioners, even during hours of low light. The use of automated counting systems like 
the Miovision system has the potential to dramatically improve the quantity and quality of 
pedestrian exposure data available for safety analyses. 

Travel Patterns using GPS Waypoint Data 
Roadside Interview Survey (RSI) is a common method to determine roadway origin-destinations 
(O-D). Crowdsourced data from private companies can assist in developing new algorithms to 
understand O-D measures. Although these data sources suffer from limitations, they offer valuable 
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insight into many traffic operational exposure measures. The current study acquired four months 
(February, June, July, and October of 2015) of INRIX waypoint data that include vehicle trips 
from various data aggregator sources. To determine the relationship between O-D patterns and 
other area-specific variables, the research team acquired Census block-group-level data from the 
ACS and block-level economic data from the Longitudinal Employer-Household Dynamics 
(LEHD) program. This component of the project analyzed the relationship between demographic 
information and O-D patterns by Census spatial unit block group. The research team applied 
classification-based association rules mining to determine significant rules. 

Literature Review 
Many recent studies have aimed at determining O-D patterns using crowdsourced data. Some key 
studies in this area are briefly described in this section.  

Sana et al. [8] used information from the Google Aggregated and Anonymized Trips (AAT) to 
develop a machine learning model and generate San Francisco Bay area hourly O-D demand 
matrices. They found that the developed model could effectively predict dynamic O-D person trip 
matrices by using both existing and future versions of AAT information. Ma et al. [9] developed 
a data-driven structure to estimate daily dynamic O-D using high-granular traffic frequency and 
speed data spanning many years. The developed framework employed t-Distributed Stochastic 
Neighbor Embedding (t-SNE) and k-means techniques to statistically cluster regular traffic data 
into typical traffic models. Fan et al. [10] conducted a study in Guangzhou City, China; they 
developed an O-D assessment methodology for systematic transit travelers. The researchers used 
smart card bus transportation data to improve the trip-chain O-D estimation algorithms. The results 
of the study are useful for real-world work associated with the O-D estimation. Ge et al. [11] used 
aggregated data of mobile phone traces to estimate work-related trips and develop a method to 
estimate O-D matrices based on the maximum entropy principle. The researchers calculated the 
trip production and attraction by using a nonlinear programming problem; they then used a matrix 
fitting problem to distribute trips to each O-D pair. Furthermore, two recent studies used Maryland 
INRIX waypoint data; one study estimated vehicle miles traveled [12] and the other determined 
the reliability of truck drivers’ routing decisions [13].  

Evaluation Methods 
The primary objective of this study was to perform exploratory data analysis on the INRIX 
waypoint data as a part of Big Data analysis and to determine potential areas for future exploration. 

Data Sources 
The research team used three separate databases to perform the analysis: 

- Maryland INRIX waypoint trip data (a waypoint is a geospatial point recorded by GPS 
devices that represents the location of the recorded vehicle)  

- Census block-group-level ACS 2013–2017 data 
- Census block-level LEHD 2015 data 
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Maryland INRIX Trip Data 
The research team members collected Maryland INRIX trip data to perform the analysis. The data, 
covering four months in 2015 (February, June, July, and October) contain three types of monthly 
files in comma-separated values (CSV) format: 

• TripRecordsReport (trip data) 
• TripRecordsReportWaypoints (waypoint data) 
• TripsRecordsReportProviderDetails (information on trip data providers) 

 
The acquired dataset contains: 

• 19,690,402 trips 
• 1,376,720,203 waypoints 
• 5,451,095 unique device identifications 
• 148 data providers (45 providers) 

o 3 providers account for 52% of trips 
o 18 providers account for 99% of trips 

• Four types of vehicle driving profiles: (1) consumer vehicles, (2) taxi/shuttle/town car 
service fleets, (3) local delivery fleets, and (4) for-hire/private trucking fleets 

• Three vehicle weight classes: (1) light duty truck/passenger vehicle (0–14000 lbs.), (2) 
medium duty truck/vans (14001–26000 lbs.), and (3) heavy-duty truck (> 26000 lbs.) 

ACS Data 
The ACS data, acquired from the U.S. Census Bureau’s Decennial Census Program, provide 
demographic, social, housing, and economic estimates for different spatial area units, including 
Census tract and block groups. The research team used ACS five-year (2013–2017) estimates for 
Maryland. The Maryland dataset contains 3,926 block groups. The research team collected a wider 
list of variables in the preliminary analysis.   

LEHD Data 
The research team also used the Census block data from the LEHD Origin-Destination 
Employment Statistics (LODES) 2015 data. The LODES files contain data for Residential Area 
Characteristics (RAC) and Work Area Characteristics (WAC). The block-level data were merged 
into the block group level to perform the analysis. 

Data Integration 
The data integration work included several steps: 

- The team members acquired 2013–2017 ACS five-year estimates  for Maryland from the 
U.S. Census to represent calendar year 2015 (i.e., for maximum ACS sample size). ACS 
data contain different tables such as age, gender, income, and household. The research 
team compiled the data for the key demographic and relevant data.  
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- The team members collected block-level 2015 LEHD data for Maryland. The block-level 
RAC and WAC data were merged into the block group level.  

- The research team used the QGIS tool to spatially merge O-D data with census block 
groups. Later, several separate databases were developed based on the following: 

o Monthly O-D data by block group 
o Daily O-D data by block group 
o Hourly O-D data by block group 
o O-D data by vehicle type 

Methodology 
This study applied two methods to extract insights from O-D data: (1) a random forest algorithm 
to perform variable selection, and (2) rules mining to extract significant rules. The significant 
variables (block group level) selected by the random forest algorithm for model development 
include average O-D measure, total population (Popu), households (HH), households with family 
(HH_F), total WAC jobs (Total_Jobs_WAC), and household median income (HH_MedInc). This 
study used classification-based association rules to develop the rules associated with O-D patterns. 
The association rule can be represented as Antecedent (A) → Consequent (B), where both of them 
are disjoint itemsets. 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑜𝑜𝑜𝑜 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑆𝑆(𝐴𝐴) = 𝜎𝜎(𝐴𝐴)
𝑁𝑁

; 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, 𝑆𝑆(𝐵𝐵) = 𝜎𝜎(𝐵𝐵)
𝑁𝑁

; and 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑜𝑜𝑜𝑜 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑜𝑜𝑜𝑜 𝑆𝑆(𝐴𝐴 → 𝐵𝐵) = 𝜎𝜎(𝐴𝐴∩𝐵𝐵)
𝑁𝑁

. 

The measure of reliability for a generated rule is known as confidence: 𝐶𝐶(𝐴𝐴 → 𝐵𝐵) = 𝑆𝑆(𝐴𝐴→𝐵𝐵)
𝑆𝑆(𝐴𝐴)

.  

The lift, 𝐿𝐿(𝐴𝐴 → 𝐵𝐵) = 𝑆𝑆(𝐴𝐴→𝐵𝐵)
𝑆𝑆(𝐴𝐴).𝑆𝑆(𝐵𝐵)

, is a measure that represents the ratio of confidence and expected 

confidence. A lift value greater than one shows positive interdependence between A and B, while 
a value smaller than one indicates a negative interdependence. A value of one signifies 
independence. 

Results 
Descriptive Statistics 
The research team developed several data visualization plots from the O-D patterns. Figure 5 
illustrates the O-D trips by block groups. A lighter color in a certain area indicates a lower number 
of trips, while darker colors indicate a higher number of trips per block group.  
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Figure 5. Maps. Number of trips by block groups based on origin and destination. 

It is important to determine the key O-D matrices for different scenarios. Three different temporal 
patterns were used for analysis: all 24 hours, morning peak (6–10 a.m., Monday–Friday), and 
evening peak (4–8 p.m., Monday–Friday). In Appendix B, Figure 11 through Figure 14 show the 
O-D pairs for four vehicle types: consumer vehicles, delivery fleets, trucking fleets, and taxi fleets. 
Tables 9-12 list the top 20 O-D pairs with the number of trips in each pair for 24 hours.  

Figure 15 provides a visualization of the number of trips by hour for different fleet types. In Figure 
16, the top eight O-D generator block groups are plotted by hour for each day of the four months.  

It is also important to show the trends of the O-D distribution for the top O-D generator block 
groups, and a chord diagram is an excellent tool to show these patterns. The research team 
developed four chord diagrams (by month) as shown in Figure 17 through Figure 20.  

Rules Mining 
The top 10 rules with high lift values are listed in Table 8 (a list of 40 rules is shown in Table 13). 
Average O-D measures per block group are divided into five classes based on the quantile 
percentages: TQ = 1 [1%–20%], TQ = 2 [21%–40%], TQ = 3 [41%–60%], TQ = 4 [61%–80%], 
and TQ = 5 [81%–100%]. For example, TQ = 5 indicates the block groups with the top 20% of the 
O-D trips. The findings show that higher population, WAC, and number of households are 
associated with a higher number of O-D trips. The rules provide several breakpoints of the variable 
clusters to determine the top rules.  

Table 8. Top 10 Rules  

Antece. Conse. S C L Counts 
Total_Jobs_WAC=(> 3778.5], HH_F=(386.5; 659.5] TQ=5 0.0

 
1.0

 
5.0

 
35 

Total_Jobs_WAC=(> 3778.5], Popu=(1366.5; 1978.5] TQ=5 0.0
 

1.0
 

5.0
 

34 
Total_Jobs_WAC=(> 3778.5], Popu=(1978.5; 3311.5] TQ=5 0.0

 
1.0

 
5.0

 
31 

Total_Jobs_WAC=(> 3778.5], HH_MedInc=(> 98467] TQ=5 0.0
 

1.0
 

5.0
 

28 
Total_Jobs_WAC=(> 3778.5], HH_MedInc=(53774; 

 
TQ=5 0.0

 
0.9

 
4.9

 
61 

Total_Jobs_WAC=(> 3778.5] TQ=5 0.0
 

0.9
 

4.8
 

109 
Popu=(> 3311.5], HH=(> 1252.5], HH_F=(> 934.5] TQ=5 0.0

 
0.9

 
4.5

 
29 
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Antece. Conse. S C L Counts 
Total_Jobs_WAC=[< 21.5], HH=[< 264.5] TQ=1 0.0

 
0.9

 
4.5

 
75 

Total_Jobs_WAC=[< 21.5], HH_F=[< 230.5] TQ=1 0.0
 

0.8
 

4.4
 

157 
Total_Jobs_WAC=(833; 3778.5], HH=(> 1252.5] TQ=5 0.0

 
0.8

 
4.4

 
22 

Notes: Antece.= Antecedent, Conse.= Consequent, S = Support, C = Confidence, and L = Lift 

Conclusions 
The current study framework was applied to 19.8 million raw GPS vehicle trajectories collected 
in 2015 in Maryland. The results showed that the distribution of O-D measures for different vehicle 
types varies by hour and by month. The top 20 block groups with high average O-D measures 
contribute approximately 8.5% of trips. The generated top 40 rules provide several breakpoints of 
the key variables for appropriate rule development. The generated rules can be used for developing 
appropriate strategies in a way to improve the travel experiences of the roadway users. 

The current study is not without limitations. The rules mining is limited to monthly O-D data. 
Future studies should explore the rules at more granular levels of data (e.g., daily or hourly). Also, 
this study is limited to only four months of data from 2015. A more comprehensive dataset is 
required to develop a robust framework of O-D measures.  

Real-Time Crash Risk Prediction Using Waze Data 
Identifying traffic crash hot spots is important for improving roadway safety. Traditionally, police 
crash reports (PCRs) have been the primary source of crash data in safety studies. However, using 
PCRs as the sole source of information has several drawbacks. For example, crashes that do not 
cause extensive property damage are mostly underreported. Underreporting can significantly 
influence the effectiveness of data-driven safety analysis and prevent safety analysts from reaching 
statistically meaningful results. Crowdsourced traffic incident data, such as Waze, can add a new 
dimension to the traditional safety analysis by providing real-time crash and traffic incident data. 
However, using these data sources also has some challenges. One of the major problems is data 
redundancy; many people may report the same event. This project investigated the potential of 
using crowdsourced Waze incident reports (WIRs) to better assess traffic risks on freeways. The 
researchers analyzed four weeks of WIRs and PCRs obtained from the I-35 corridor in North 
Texas. The researchers collected a whole week of data from four different months: August, 
October, November, and December 2016. First, the authors developed a new method to reduce 
data redundancy and obtain unique Waze incidents (unique WIRs). The researchers then matched 
the unique WIRs with the observed crashes and compared their spatial and temporal distributions. 
In addition, the researchers estimated predicted crashes through safety performance functions 
(SPFs) and crash modification factors (CMFs) to assess whether the WIR data can be used as a 
reliable surrogate of these safety measures (i.e., observed crash frequency and predicted crashes) 
for identifying high-risk locations.  
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Evaluation Methods 
Figure 6 illustrates the flow chart of the research methodology used in this paper. The researchers 
utilized three data sources: PCRs, WIRs, and roadway inventory shapefiles. The researchers first 
selected freeway crashes from PCRs and WIRs by removing crashes on frontage roads and ramp 
exits and entrances. Then, the duplicate WIRs were eliminated to identify unique Waze incident 
events (unique WIRs). A similar process was performed to match the unique WIRs with PCRs to 
create a merged dataset (PCRs + WIRs). Meanwhile, the researchers calculated the predicted crash 
frequency using freeway SPFs and CMFs. Finally, the researchers created four safety datasets: 
WIRs, PCRs, the merged dataset, and predicted crashes. 

 
Figure 6. Flow chart. Research methodology. 

To better explore the potential of WIRs in road safety analysis, three analyses were conducted:  

1) Spatiotemporal comparison analysis: characterize the spatiotemporal distributions of 
PCRs and WIRs. 
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2) Correlation analysis: investigate the relationship between PCRs, WIRs, and predicted 
crashes to test further if WIRs could be used as a surrogate safety measure when PCRs 
are unavailable.  

3) Hot spot analysis:  

a. Calculate crash rates for each road segment using PCRs, unique WIRs, the 
merged dataset, and predicted crashes.  

b. Perform hot spot analysis (Getis-Ord Gi*) using different crash rates to identify 
high-risk road segments. This analysis evaluated if WIRs could capture traffic 
risks that are ignored by conventional crash datasets (e.g., PCRs). 

This study also assessed the performance of WIRs for identifying high-risk road segments. The 
researchers first calculated crash rates for each road segment using four different data sources, 
including PCRs, unique WIRs, the merged dataset, and predicted crashes. Then, Getis-Ord Gi* 
statistics were conducted based on different crash rates to identify hot spots, defined as high-valued 
road segments surrounded by high-valued neighboring segments. This study compared hot spots 
detected from different data sources in different months to investigate if the distribution of hot 
spots varied from month to month. The researchers also examined the monthly results with the hot 
spots detected from four-month datasets to identify constant hot spots. This study defines constant 
hot spot as a segment, or its neighboring segments (within ± 1 mile), that (1) was determined to be 
a hot spot in more than two different months and (2) also was identified as a hot spot in the four-
month dataset. 

Results 
Result for WIR Redundancy Elimination and Matching with PCRs 
The “true” incident, the PCR, was used as the starting point. Different combinations of spatial and 
temporal thresholds were tested to remove redundant WIRs corresponding to the same PCR and 
to match unique WIRs with the PCRs. The researchers hypothesized that when spatial and 
temporal “distances” from the true, PCR incident to the surrogate, WIR, incident reach their 
optimal value, the number of matched WIRs should experience a significant increase since more 
redundant WIRs can be captured. After the optimal threshold is attained, the number of matched 
WIRs should not be significantly different from the optimal number of matched WIRs. As the 
results of these analyses, the researchers determined the optimal spatial and temporal thresholds 
for identifying the redundant WIRs as: 

• Spatial threshold: a 2,250-meter radius. 
• Temporal thresholds: 90 minutes (−20 to 70 minutes).  

By applying these thresholds, 1,807 WIRs were finally consolidated into 381 unique WIRs. A 
similar process was conducted to match unique WIRs with PCRs. In this study, only 13 out of 177 
PCRs (7.34%) were matched with the unique WIRs (13 out of 381). Finally, the researchers created 
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a merged database by combining PCRs with unmatched unique WIRs. This dataset contains 545 
traffic incidents and crashes. 

Spatiotemporal Comparison Analysis Result 
Through the spatiotemporal comparison of PCRs and WIRs, the researchers found that these two 
data sources show a very similar spatial distribution. However, the temporal comparison shows a 
significant difference between them. In this study, PCRs were reported during daytime, while 
WIRs were more intensively reported during nighttime. It is also worth noting that 60.24% of the 
road segments in the study site received more WIRs than PCRs, and 27.1% received the same 
number of WIRs and PCRs. This implies that unreported traffic incidents were more prevalent on 
most of the road segments. These traffic incidents should be considered in road safety studies.  

Correlation Analysis Result 
This approach investigated the relationship between PCRs, unique WIRs, and the estimated 
crashes through predictive models to statistically test if WIRs could be used as a surrogate data 
source or safety measures in the absence of crash data. The correlations among these three datasets 
are detailed in Figure 7. This figure illustrates that PCRs are better correlated with WIRs (0.63) 
than with predicted crashes (0.57), although this correlation is not significant enough to suggest 
multicollinearity. It also suggests that WIRs can better represent the predicted safety risk than 
PCRs (0.70 vs. 0.57). The researchers also developed an ordinary least squares (OLS) regression 
model to further investigate the relationship between the three safety measures PCR, WIR, and 
predicted crashes. Two regression models were constructed. One uses unique WIRs alone as the 
independent variable. The other uses both WIRs and predicted crashes as independent variables. 
The regression models suggest that both WIRs and predicted crashes are significant predictors for 
estimating PCRs. However, using WIRs alone may not be capable enough since the model 
performance is relatively unsatisfying with an R2 of 0.4. 

 
Figure 7. Illustration. Correlations among PCRs, unique WIRs, and predicted crashes. 
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Hot Spot Analysis Result 
The result demonstrates that the hot spots may vary in different months; however, there are still 
some constant hot spots which may be considered as true high-risk segments. By combing PCRs 
with WIRs, more high-risk road segments could be identified (14 miles) compared to the results 
generated from PCRs (8 miles), unique WIRs (13 miles), and predicted crashes (5 miles). Most of 
the hot spots detected from PCRs (75%), unique WIRs (77%), and predicted crashes (100%) could 
be identified from the merged data. Therefore, it can be concluded that integrating WIRs and PCRs 
can better capture traffic risks and discover more unidentified high-risk road segments.  

Conclusions 
This study shows that overall Waze is an invaluable source of data for safety researchers that is 
tremendously useful for capturing unreported traffic incidents. However, there are still some gaps 
that were not adequately addressed by this study. Although the findings are promising, the 
researchers used Waze data only from an interstate corridor, which is generally assumed to 
generate more Waze reports. This gap may also affect some of the findings; for example, the 
temporal and spatial thresholds for consolidating the WIRs and matching them with PCRs may 
not be applicable to other facility types. Future research will focus on these areas. 

Additional Products 
The Education and Workforce Development (EWD) and Technology Transfer (T2) products 
created as part of this project can be downloaded from the Project Page on the Safe-D website. 
The final project dataset is located on the Safe-D Collection of the VTTI Dataverse. 

Education and Workforce Development Products 
Education and workforce development products include: 

• TTI Assistant Research Scientist Lingtao Wu, Ph.D., helped in developing a replicable 
framework for the spatial join, which is available as open source code on Github: 
https://github.tamu.edu/wulingtao/Post_GIS_Spatial_Join 

o Eight students assisted with this research: Greg Griffin (graduate in Community 
and Regional Planning), Xiao Li (graduate in Geography), Dennis Mbaka 
(undergraduate in Civil Engineering), Viviana Rodriguez (undergraduate in Civil 
Engineering), Raquel De La Torre (undergraduate in Art), Ly-Na Tran 
(undergraduate), Ruihong Wang (graduate in Electrical and Computer 
Engineering), and Manya Umamahesh (graduate in Information Technology and 
Management). 

https://www.vtti.vt.edu/utc/safe-d/index.php/projects/exploring-crowdsourced-monitoring-data-for-safety/
https://dataverse.vtti.vt.edu/dataverse/safed
https://github.tamu.edu/wulingtao/Post_GIS_Spatial_Join
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Technology Transfer Products 
The following products were or will be generated: 

• Wang, R., S. Das, and A. Mudgal. “Patterns of Origin Destination Distributions: Rules 
Mining using Massive GPS Trajectory Data.” Proceedings of UDS’20: First International 
Conference on Urban Data Science, January 20-21, Madras, India. 

• Li, X., B. Dadashova, S. Turner, and D. Goldberg. “Rethinking Highway Safety Analysis 
by Leveraging Crowdsourced Waze Data.” Presented at the 99th TRB Annual Meeting, 
Washington, DC, January 12-16, 2020. 

• Turner, S. “Making Sense of Emerging Data for Nonmotorized Transportation.” Presented 
at the 99th TRB Annual Meeting, Washington, DC, January 12-16, 2020. 

• Le, M. “Video Analytics for Counting Pedestrians.” To be presented at the Texas Trails & 
Active Transportation Conference, San Antonio, TX, March 25, 2020. 

• Turner, S. “Emerging Sources of Pedestrian and Bicyclist Count Data.” To be presented at 
the National Travel Monitoring Exposition and Conference, Raleigh, NC, June 2020. 

• A research results briefing was held with Miovision (about 8 participants) and StreetLight 
Data company representatives (about 5 participants) in September 2019. 

Data Products  
Three datasets were provided for the research described in this report. These datasets were 
uploaded to the Safe-D Collection on the VTTI Dataverse and are described below: 

• Evaluation of StreetLight Data Bicycle Count Estimates: 
https://doi.org/10.15787/VTT1/OBV82F. These data represent monthly average weekday 
and weekend bicycle counts and count index values at specific points locations across 
eight cities in Texas: Allen, Austin, Dallas, Fort Worth, Houston, North Richland Hills, 
Plano, and San Antonio. 

• Evaluation of Miovision Pedestrian Count Data: https://doi.org/10.15787/VTT1/351GZJ. 
The data represent one week of selected hourly weekday and weekend pedestrian counts 
at two intersections in Austin, Texas. 

• Travel Patterns using GPS Waypoint Data: https://doi.org/10.15787/VTT1/81SKJW. The 
dataset is a monthly sample dataset including U.S. Census Block group specific monthly 
origin-destination data with other demographic variables. 

  

https://doi.org/10.15787/VTT1/OBV82F
https://doi.org/10.15787/VTT1/351GZJ
https://doi.org/10.15787/VTT1/81SKJW
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Appendix A: Pedestrian Volumes from Traffic Signal 
Systems 

 
Figure 8. Screen captures. Example of Miovision source video used to develop benchmark counts (showing 

MLK at Guadalupe). 

 
Figure 9. Screen capture. Crosswalks evaluated at 

MLK and Guadalupe. 

 
Figure 10. Screen capture. Crosswalks Evaluated at 

Cameron & Cross Park 
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Appendix B: Travel Patterns using GPS Waypoint 
Data – Supporting Figures and Tables 

 
(a) 24 hours 

 
(b) Morning Peak (6 a.m. to 10 a.m., Mon-Fri) 

 
(c) Evening Peak (4 p.m. to 8 p.m., Monday through Friday) 
Figure 11. Maps. Top 20 O-D pairs for consumer vehicles. 
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(a) 24 hours 

 
(b) Morning Peak (6 a.m. to 10 a.m., Monday through Friday) 

 
(c) Evening Peak (4 p.m. to 8 p.m., Monday through Friday) 

Figure 12. Maps. Top 20 O-D pairs for field service/local delivery fleets. 
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(a) 24 hours 

 
(b) Morning Peak (6 a.m. to 10 a.m., Monday through Friday) 

 
(c) Evening Peak (4 p.m. to 8 p.m., Monday through Friday) 

Figure 13. Maps. Top 20 O-D pairs for hire/private trucking fleets. 
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(a) 24 Hours 

 
(b) Morning Peak (6 a.m. to 10 a.m., Monday through Friday) 

 
(c) Evening Peak (4 p.m. to 8 p.m., Monday through Friday) 

Figure 14. Maps. Top 20 O-D Pairs for taxi/shuttle/town car service fleets. 
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Table 9. O-D Pair Rank for Consumer Vehicles (Four months of 2015) 

Rank Origin GEOID Destination GEOID Total Trips 
1 US 240037401022 US 240037512003 2143 
2 US 240037024022 US 240037027011 2060 
3 US 240317009041 US 240317012183 1925 
4 US 240037027011 US 240037024022 1883 
5 US 240037512003 US 240037401022 1870 
6 US 240317012183 US 240317009041 1757 
7 US 240276067061 US 240276067071 1369 
8 US 240054085052 US 240054084001 1257 
9 US 240054084001 US 240054085052 1200 
10 US 240479501001 US 240479501002 1143 
11 US 240037024022 US 240037025001 1104 
12 US 240276067071 US 240276067063 1096 
13 US 240276067071 US 240276067061 1086 
14 US 240317012053 US 240317060123 1048 
15 US 240276067063 US 240276067071 1016 
16 US 240317008171 US 240317008173 998 
17 US 240338035141 US 240338035211 993 
18 US 240317060123 US 240317012053 972 
19 US 240037027011 US 240037024021 934 
20 US 240037024021 US 240037024022 919 
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Table 10. O-D Pair Rank for Field Service/Local Delivery Fleets (Four months of 2015) 

Rank Origin GEOID Destination GEOID Total Trips 
1 US 240037508014 US 240039800001 1482 
2 US 240037512002 US 240039800001 1447 
3 US 240037512003 US 240039800001 778 
4 US 240039800001 US 240037512002 716 
5 US 240039800001 US 240037512003 513 
6 US 240037504002 US 240039800001 442 
7 US 245100401001 US 240039800001 399 
8 US 240037512001 US 240039800001 389 
9 US 240039800001 US 240037504002 389 
10 US 240039800001 US 245100401001 361 
11 US 240039800001 US 240037512001 329 
12 US 240054301011 US 240039800001 270 
13 US 245100302002 US 240039800001 267 
14 US 240037508033 US 240039800001 261 
15 US 240039800001 US 245102201002 255 
16 US 240039800001 US 245100302002 252 
17 US 240039800001 US 240037508014 244 
18 US 245102201002 US 240039800001 242 
19 US 240037504003 US 240039800001 230 
20 US 240037503002 US 240039800001 224 
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Table 11. O-D Pair Rank for Hire/Private Trucking Fleets (Four months of 2015) 

Rank Origin GEOID Destination GEOID Total Trips 
1 US 240338004111 US 240338067121 3423 
2 US 240338067121 US 240338004111 2837 
3 US 240338074083 US 240338074042 2825 
4 US 240217510033 US 240217722002 2542 
5 US 240317001051 US 240317001033 2386 
6 US 240338074083 US 240338002122 2006 
7 US 240399301022 US 240450108003 1997 
8 US 240338022044 US 240338022012 1941 
9 US 240338022012 US 240338022044 1912 
10 US 245102505002 US 245102505001 1905 
11 US 240338074042 US 240338074083 1895 
12 US 240276069053 US 240276069012 1783 
13 US 240217722002 US 240217510033 1691 
14 US 245102606056 US 240054501003 1685 
15 US 240450101012 US 240450107026 1673 
16 US 240054501003 US 245102606056 1593 
17 US 240054501003 US 240054512001 1576 
18 US 240276069012 US 240276069013 1552 
19 US 240338014111 US 240338014112 1508 
20 US 240450101012 US 240450004001 1501 
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Table 12. O-D Pair Rank for Taxi/Shuttle/Town Car Service Fleets (Four months of 2015) 

Rank Origin GEOID Destination GEOID Total Trips 
1 US 240059802001 US 240054304003 7315 
2 US 240054304003 US 240059802001 4625 
3 US 240430108022 US 240430105004 3892 
4 US 245102505002 US 245102506001 3536 
5 US 240276069053 US 240276069012 3275 
6 US 240217530022 US 240217530024 2921 
7 US 240150305062 US 240150305033 2726 
8 US 240054211022 US 245102606056 2634 
9 US 240430009003 US 240430105004 2598 
10 US 240430105004 US 240430108022 2593 
11 US 240150312021 US 240150309063 2500 
12 US 240276069012 US 240276012032 2477 
13 US 240430103001 US 240430105004 2362 
14 US 240230003001 US 240230002001 2269 
15 US 240253024001 US 240253024002 2235 
16 US 240430107002 US 240430107001 2216 
17 US 240253024002 US 240253024001 2148 
18 US 245102606056 US 240054211022 2117 
19 US 240150309063 US 240150309064 2088 
20 US 240276069012 US 240276069053 2088 
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Figure 15. Graphs. Trip distribution by hour for different vehicle types.  
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Figure 16. Graphs. Trip distribution by hour for top eight O-D generator block groups. 
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Figure 17. Chord diagram.1 Top O-D generator block groups (February 2015). 

 

 

 
 
1 A chord diagram illustrates the interrelationships between individuals (for this study, each block group is 
considered as an individual spatial unit). The associations between individuals are used in displaying commonality 
of information or interest. A chord diagram is useful in comparing the similarities and patterns within a dataset. 
Nodes are arranged in a circular form, with the associations between points connected to each other either with arcs 
or curves. The assigned values to each connection are represented proportionally by the size of each arc. The color is 
used in grouping the data into different categories that aid in making comparisons and distinguishing groups. 
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Figure 18. Chord diagram. Top O-D generator block groups (June 2015). 
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Figure 19. Chord diagram for the top O-D generator block groups (July 2015). 
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Figure 20. Chord diagram. Top O-D generator block groups (October 2015). 
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Table 13. Top 40 Rules  

Antece. Conse. S C L Counts 
Total_Jobs_WAC=(> 3778.5], HH_F=(386.5; 659.5] TQ=5 0.01 1.00 5.00 35 
Total_Jobs_WAC=(> 3778.5], Popu=(1366.5; 1978.5] TQ=5 0.01 1.00 5.00 34 
Total_Jobs_WAC=(> 3778.5], Popu=(1978.5; 3311.5] TQ=5 0.01 1.00 5.00 31 
Total_Jobs_WAC=(> 3778.5], HH_MedInc=(> 98467] TQ=5 0.01 1.00 5.00 28 
Total_Jobs_WAC=(> 3778.5], HH_MedInc=(53774; 98467] TQ=5 0.02 0.98 4.92 61 
Total_Jobs_WAC=(> 3778.5] TQ=5 0.03 0.96 4.82 109 
Popu=(> 3311.5], HH=(> 1252.5], HH_F=(> 934.5] TQ=5 0.01 0.91 4.53 29 
Total_Jobs_WAC=[< 21.5], HH=[< 264.5] TQ=1 0.02 0.90 4.52 75 
Total_Jobs_WAC=[< 21.5], HH_F=[< 230.5] TQ=1 0.04 0.88 4.41 157 
Total_Jobs_WAC=(833; 3778.5], HH=(> 1252.5] TQ=5 0.01 0.88 4.40 22 
HH=(> 1252.5], HH_MedInc=(> 98467] TQ=5 0.01 0.88 4.38 21 
Total_Jobs_WAC=[< 21.5], HH_MedInc=[< 53774] TQ=1 0.04 0.82 4.08 137 
Popu=(> 3311.5], HH_F=(> 934.5] TQ=5 0.01 0.81 4.05 34 
Total_Jobs_WAC=[< 21.5], Popu=(623.5; 1366.5] TQ=1 0.05 0.81 4.03 171 
Total_Jobs_WAC=(833; 3778.5], HH_F=(659.5; 934.5] TQ=5 0.01 0.80 4.00 52 
Total_Jobs_WAC=[< 21.5], HH=(264.5; 477.5] TQ=1 0.04 0.80 3.99 155 
Total_Jobs_WAC=(833; 3778.5], HH=(972.5; 1252.5] TQ=5 0.02 0.79 3.97 58 
Popu=(> 3311.5], HH=(> 1252.5] TQ=5 0.01 0.79 3.95 45 
Total_Jobs_WAC=(21.5; 61.5], Popu=[< 623.5] TQ=1 0.01 0.78 3.91 36 
Total_Jobs_WAC=(833; 3778.5], HH_MedInc=(> 98467] TQ=5 0.03 0.78 3.89 102 
Total_Jobs_WAC=(61.5; 120.5], Popu=[< 623.5] TQ=1 0.01 0.78 3.89 28 
Total_Jobs_WAC=(833; 3778.5], Popu=(> 3311.5] TQ=5 0.01 0.76 3.82 26 
HH_F=(> 934.5] TQ=5 0.01 0.76 3.80 35 
Total_Jobs_WAC=(833; 3778.5], Popu=(1978.5; 3311.5] TQ=5 0.03 0.76 3.80 123 
Total_Jobs_WAC=(833; 3778.5], HH_F=(386.5; 659.5] TQ=5 0.04 0.75 3.77 141 
Popu=(> 3311.5], HH_MedInc=(> 98467] TQ=5 0.01 0.73 3.66 30 
HH=(> 1252.5] TQ=5 0.02 0.72 3.59 61 
Total_Jobs_WAC=[< 21.5] TQ=1 0.07 0.72 3.58 275 
Total_Jobs_WAC=(833; 3778.5], HH_MedInc=(53774; 98467] TQ=5 0.05 0.71 3.55 179 
Total_Jobs_WAC=(833; 3778.5], HH=(609.5; 972.5] TQ=5 0.03 0.71 3.54 131 
Total_Jobs_WAC=(21.5; 61.5], HH=[< 264.5] TQ=1 0.01 0.71 3.54 46 
Total_Jobs_WAC=(833; 3778.5], Popu=(1366.5; 1978.5] TQ=5 0.03 0.71 3.54 99 
Total_Jobs_WAC=(833; 3778.5] TQ=5 0.10 0.69 3.45 362 
Total_Jobs_WAC=(61.5; 120.5], HH=[< 264.5] TQ=1 0.01 0.67 3.33 30 
Popu=[< 623.5], HH_MedInc=[< 53774] TQ=1 0.02 0.66 3.31 94 
Total_Jobs_WAC=(21.5; 61.5], HH_F=[< 230.5] TQ=1 0.02 0.64 3.18 89 
Popu=[< 623.5], HH=[< 264.5] TQ=1 0.03 0.62 3.08 122 
HH=[< 264.5], HH_MedInc=[< 53774] TQ=1 0.03 0.60 3.01 98 
Total_Jobs_WAC=(405.5; 833], HH=(972.5; 1252.5] TQ=4 0.01 0.58 2.91 25 
HH=(972.5; 1252.5], HH_MedInc=(> 98467] TQ=5 0.01 0.56 2.81 32 

Notes: Antece.= Antecedent, Conse.= Consequent, S= Support, C=Confidence, and L=Lift 
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