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Abstract 
Vulnerable road users, such as bicyclists, experience road noise directly. This study 

explored the relationship between bicycle crash risk and street-level road noise as 

measured in Austin, Texas and the Washington, D.C. metropolitan area, in addition to 

other factors. Construction and validation of a method to measure noise directly using 

consumer-accessible tools supports additional studies as well as potential public 

crowdsourcing applications for urban planning. Results from the two case sites were 

mixed. Street noise, as measured on our chosen routes, was not a consistent predictor 

of bicycle crash risk. However, our model explained over 87% of the variation in crash 

risk in the Washington, D.C. metropolitan area route, considering infrastructure, nearby 

bicycle commute mode share, and street noise. Findings from the two routes using our 

modeling approaches are not exhaustive, but rather an initial exploration of these 

relationships to support further work on the role of street noise in planning for safety. 
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Introduction 

Street noise can have significant impacts on transportation system users, with the impacts varying 

by location and transportation mode. In 2017, the U.S. Department of Transportation released the 

National Transportation Noise Map, finding that 97% of the U.S. population experiences 

transportation-related noise of 50 decibels, and “less than one-tenth of a percent of the population 

could potentially experience noise levels of 80 decibels or more, equivalent to the noise level of a 

garbage disposal” (1). However, the role of noise experienced on the street and its relationship to 

transportation system safety is not well understood, particularly from the perspectives of 

vulnerable road users. 

This study is the first known exploration of street noise as experienced by bicyclists, relating noise 

levels to bicycle-automobile collision rates and other factors. The project team developed an 

approach using consumer grade, handlebar-mounted smartphones with an app that consistently 

recorded noise levels and GPS locations spanning suburban to downtown routes in Austin, TX, 

and the Washington, D.C. metropolitan (metro) area. Initial results from the cities were mixed, and 

methods are documented to support related studies in other contexts. This study is exploratory 

rather than exhaustive—additional route sites, changes to data collection protocol, and additional 

statistical analysis may reveal different findings. This report includes a brief review of previous 

work, detailed documentation of methods, review of results in the two locations, including 

limitations, and potential implications for research and practice. 

Background 

The application of street noise data for assessing safety may be a useful way to build on well-

developed research topics, such as characterizing street-level noise, crowdsourcing of bicycle 

safety, and crowdsourcing of noise data. The research team searched for literature on these topics, 

focusing on academic papers published between 2013 and 2017, using the Transport Research 

International Documentation (TRID) database. Then, key papers were reviewed for cited prior 

research, and Google Scholar was queried to identify later related works. This section generally 

follows review advice specific to transportation research (2), and the following sections describe 

the findings of each topic pertinent to the present study. A list of applicable literature is provided 

in Appendix A: Related Research. 

Street-Level Noise 
Transportation’s impact on noise levels is well-documented, particularly through assessment of 

impacts from proximity to airports (3). However, the role of motorized vehicles in street-level 

noise has only received a large number of empirical studies in the last decade. Recognizing the 

potential for physical and psychological harm due to road noise, acoustic researchers have 

deployed various noise sensing technologies to assess impacts. Though reference-quality noise 

sensors are too expensive to deploy in a large urban configuration, researchers have found that 
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high-quality sensors can be designed for urban environments (4), and personal smartphones may 

also help increase the scale of data in urban areas (5).  

Crowdsourcing Bicycle Safety 
Transportation agencies at all levels generally lack the data to support safety analysis specific to 

bicycling. Crash data are often reported as raw counts, and cannot be evaluated as risks related to 

exposure in a manner similar to motorized modes due to a lack of traffic volume data (6). Further, 

minor crashes and near misses often go un-reported, and do not show up in police and 

transportation agency databases (7, 8). Researchers, private developers, and transportation 

agencies now use crowdsourcing approaches to mitigate these problems. 

Early approaches to use smartphones with GPS to record bicycle trips functioned similarly to 

purpose-made traffic surveys—they required users to download a specific app, and necessitated 

starting the app before every ride in addition to answering questions about trips (9, 10). Phone-

based tools proved crowdsourcing of high-quality bicycle data was feasible, but as they did not 

have a built-in method to promote use, they subsequently had difficulty recruiting more than a few 

hundred users even in large cities. Subsequent phone-based tools leveraged design simplicity and 

user-focused information to encourage broad participation. Currently, the most widely-known 

crowdsourced bicycle volume data product is Strava Metro, which anonymizes and aggregates 

bicycle trips recorded using the Strava smartphone application (11). Researchers have found 

moderate to good correlations between Strava data and actual bicycle volumes in different contexts 

(12–14). However, the app is designed to serve fitness-oriented bicyclists, who might only choose 

to post select rides that they wish to record or share online, further biasing traffic volume results 

(15, 16). Ride Report is a new approach to automatic sensing of bicycle trips with smartphones, 

which it does by running in the background, using accelerometer data to detect bicycle trips (17). 

Following a detected ride, Ride Report prompts riders to provide a one-button rating of the route. 

These ratings are aggregated to provide an additional bicycle comfort rating for transportation 

planning. Several pilot projects to use crowdsourced bicycle volume data to improve safety 

planning are underway, but do not yet have conclusive answers as to how useful the results are in 

practice. 

Unreported bicycle collisions and near-misses also are a blind-spot for transportation safety. 

Researchers have developed a platform called BikeMaps, which encourages users to input these 

missing data through either a smartphone app or an online platform (8). Initial studies of 

deployments of several applications in Canada and the United States show promise for detailed 

evaluation of bicycling routes, such as off-street, shared-use paths, which often lack traditional 

collision data collected by transportation agencies (18–20). Crowdsourcing transportation system 

data offers potential for improving transportation safety processes and outcomes. 

Crowdsourcing Noise Data 
Transportation systems’ vast geographies and challenging outdoor environments pose a challenge 

for noise data collection. Researchers and app developers are taking advantage of existing sensors 

on personal smartphones, with the advantage of tremendous scalability combined with mobile use 
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spanning geographic contexts (21). However, the accuracy of measurements can vary according 

to the make and model of the mobile device. Additionally, apps’ algorithms interpret sensed noise 

in varying ways (21–24). App developers have since calibrated sound level measurement for 

common smartphones and have provided guidance for community sensing, contributing to the 

level of precision possible for crowdsourced noise data (22, 25, 26). Studies have shown the 

usefulness of crowdsourcing for mapping noise levels in urban environments, leading to the 

development of urban noise as a performance measure provided by engaged citizens (27, 28). 

Environmental noise levels are typically measured as sound pressure levels expressed using 

equivalent continuous sound level, denoted as LeqT, taken over a time interval (T). The frequency 

of sound matters, as do time and pressure, since human hearing responds differently based on 

frequency. Sound regulations “almost universally call for A-weighting of sound frequencies to be 

used…[as] expressed in dB(A)” (29), which sums sound levels from a range of frequencies, 

emphasizing human-audible frequencies (30). “Typically absolute noise levels found along 

highways range from 60–80 dB(A),” which interferes with normal conversation, and can cause 

annoyance and discomfort (30, 31). Though professional sound equipment provides the most 

accurate and consistent measurements, this study emphasizes the potential for leveraging existing 

smartphone technology, which might be used on a large scale for monitoring noise levels. 

The sheer act of engaging the public with crowdsourcing can lead to other benefits, such as 

increasing awareness about the impact of environmental noise, fostering social learning, and 

potential political engagement to improve conditions (32, 33). 

This brief summary of research shows the importance of urban noise to health, the value of 

crowdsourced data for safety planning, and approaches to leveraging the public as noise sensors. 

To date, no research has combined these issues to determine the relationship between street-level 

noise levels and bicycle crash rates. 

Bicycle Safety Factors 
Research shows strong relationships between bicycle safety and infrastructure in addition to mode 

share levels of bicycling. Several studies show improved safety odds on smaller streets and 

bicycle-specific infrastructure, such as low-traffic roads (34), protected bike lanes (35), and 

separated paths (36). Additionally, evidence for the safety-in-numbers hypothesis suggests the 

sheer volume of bicyclists may reduce risk, perhaps because motorists expect to see bicyclists on 

routes with many bikers (37, 38). National-level studies align with these factors, suggesting design 

conditions can improve the safety and total volume of bicycling (39). However, no research that 

we are aware of associates bicycle safety risk with street-level noise. 

Research Questions 
Recent research has identified population-level relationships between the built environment and 

bicycle crashes as well as methods to estimate bicycle volumes from limited counts. Despite these 

advancements, few studies have connected these methods to analyze safety at a sub-block level, 

and none have considered the role of noise as a variable that may be related to bicyclist safety. 
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This leads to two questions, which we evaluated through fieldwork in Austin, Texas, and the 

Washington, D.C. metro area: 

1. What is the relationship between street-level noise and crash rates for bicyclists? 

2. What street and land use variables are associated with high and low street-level noise rates? 

For the first research question, we hypothesized the following: 

H1.1 – Street level noise increase is positively associated with crash risk. 

H1.2 – Street network classification (trunk highway = 1, off-street path = 4) is negatively 

related to crash risk. 

H1.3 – Bicycle mode share is negatively related to crash risk. 

For the second research question, we hypothesized the following: 

H2.1 – Street network classification (trunk highway = 1, off-street path = 4) is negatively 

related to street noise. 

H2.2 – Motorized traffic volume is positively associated with street noise. 

H2.3 – Nearby employment densities are positively associated with street noise. 

 

Method 

This study method included 1) preliminary testing that established feasibility of the study; 2) 

development of a process to validate the noise data collection process; 3) collection and preparation 

of geographic information system (GIS) data; and 4) analysis of street noise and environmental 

variables. 

Preliminary Testing 
Preliminary testing was performed in Austin, Texas, during February, 2017. The lead author 

collected over 13,000 street-level noise data points using a tested smartphone app (22, 25) running 

on a bicycle-mounted iPhone. Results from this preliminary test showed a moderate, positive 

relationship of noise to nearby bicycle crashes over the period 2007–2015. Spatially weighted 

ordinary least squares regression Lagrange Multiplier (LM) diagnostics were significant (Robust 

LM error 36.8, p < 0.001), suggesting use of a spatial error regression model. Spatial error 

regression modeling showed a possible link between street-level noise as experienced on a bicycle 

and proximity to serious bicycle crash locations (R2 = 0.53). This preliminary analysis suggested 

a relationship, but standardization of crash data by bicycle volume and inclusion of other 

explanatory variables were needed to further describe and evaluate the relationship between street 

noise and vulnerable road user safety. 

Noise Data Collection 
This project includes data from two study sites: Austin, Texas and the Washington, D.C. metro 

area. These two sites were chosen based on three factors: 1) proximity to researchers and 
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anticipated students for bicycle route data collection, 2) availability of crash data of sufficient 

quality and quantity for statistical testing, and 3) available explanatory GIS data. 

The Noisetube platform was developed to crowdsource decibel ratings for many different places 

and specific purposes, but there are no consistency or quality assurances for the crowdsourced 

data. Smartphones could be carried in a pocket or recording measurements could be made from 

inside a building or vehicle without this information being recorded. Existing noise data quantities 

are also insufficient for statistical testing for this purpose, even if their collection method was 

consistent. This study collected data using the same protocol, with a smartphone mounted on a 

bicycle handlebar, and the bike ridden as though on a normal bicycling trip. 

Data collection routes were planned to balance a broad representation of urban and suburban 

contexts in each city, a variety of transportation functional classes, and practicality and safety for 

the riders. Figure 1 shows the routes in Austin (TX) and the Washington, D.C. metro area, 

including parts of Alexandria and Arlington (VA). 

 

Figure 1. Noise data collection routes in Austin (TX) at left, and the Washington, D.C. metro area at right. 

Data were downloaded from the Noisetube platform in JSON format and converted to CSV format 

for analysis in statistical and GIS software. Datasets from multiple rides were merged together, 

retaining a time stamp, GPS location, and decibel rating for each measurement. 
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Validation of Noise Data Collection 
We used two methods to validate the process for collecting street-level noise levels. First, we 

compared collected data to the U.S. National Road Noise Inventory (1). Next, we compared 

smartphone-collected noise levels with a reference-quality noise meter. 

The U.S. National Road Noise Inventory is a GIS dataset that uses Average Annual Daily Traffic 

(AADT) values from the Federal Highway Administration’s Highway Performance Monitoring 

System (HPMS) with acoustical algorithms from the Traffic Noise Model (TNM). Typical noise 

levels on arterial streets range between 50 and 70 dB(A), slightly lower than the levels we recorded 

using smartphones, as shown in Figure 2. The variance meets expectations, since the National 

Road Noise Inventory only includes noise created by surface transportation, while local 

measurements include other ambient noise sources. 

 

Figure 2. Noise collected via bicycle and from the U.S. National Road Noise Inventory in downtown Austin 

(TX) and the Washington, D.C. metro area. 

A total of 27 photos were examined, with each photo containing a pair of street noise 

measurements. In each photo, one measurement was made with a handheld noise meter, and one 

measurement was made with a smartphone app. Figure 3 presents a typical example. 
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Figure 3. Street noise measurement with reference noise meter and bicycle-mounted smartphone. 

Of the 27 photos, 11 (approximately 41%) yielded legible results. The remaining 59% were 

illegible due to sun glare on the screen, shadow on the screen, or the photo being out of focus.  

The 11 legible photos yielded handheld noise meter readings and smartphone app readings. Data 

was imported into SPSS Statistics software and descriptive statistics are presented in Table 1. The 

smartphone reading was consistently higher at each location, resulting in higher mean and median 

values estimated by the smartphone app.  

Table 1. Noise Data Validation Readings, db(A) 

Statistic 

Handheld Noise 

Meter Smartphone App 

Mean 63.00 69.80 

Standard Error 2.27 2.15 

Median  64.80 72.00 

Minimum Value 50.60 58.00 

Maximum Value 72.50 77.00 

Standard Deviation 7.52 7.14 

Range 21.90 19.00 

Figure 4 presents a scatter plot of noise value intercepts for each of the 11 sites. The plot suggests 

a high degree of collinearity, confirmed by the significant correlation test (Kendall rank correlation 

= 0.881, α = 0.01). 
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Figure 4. Scatter plot of cell reading/meter reading intercepts for each of the 11 sites. 

Because 1) both noise readings essentially acted as “matched pairs,” 2) both were estimated using 

a continuous scale (A-weighted decibels), 3) neither of the estimates being compared followed a 

normal distribution, and 4) the distribution of the differences between the two estimates was 

approximately symmetrical, a decision was made to use the Wilcoxon signed-rank test. The 

median smartphone reading was 7.2 dB(A) higher, a statistically significant amount (Z = -2.937, 

p = 0.003). 

The difference may be at least partially explained by the foam wind muffler on the reference sound 

meter. It is plausible that the unprotected smartphone microphone may record noise levels more 

similarly to how a human ear experiences road noises, including wind, but this study did not 

explore the issue further. The overall consistency between meters suggests smartphones may be 

useful for evaluating relative ranges of noise levels in studies like this one, but may require further 

controls for other research needs. 

GIS Data Collection and Preparation 
The following explanatory GIS data was obtained from local transportation agencies for both the 

Austin, TX and the Washington, D.C. metro area regions: bicycle crashes, street volumes, speed 

limits, number of lanes, and bicycle infrastructure. In addition, the Environmental Protection 

Agency’s Smart Location Database provided comparable factors between the regions (41). 

We cleaned the route network layer so that it only included road and path segments where 

bicyclists collected noise data for each city. We removed parallel network lines on arterial streets 

and freeways that had separate linework for different directions, or main lanes versus frontage 

roads. We found no research evaluating the spatial accuracy of crash data, but we expect accuracy 
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similar to consumer-grade GPS or address geolocators—likely between 10 and 20 meters (33–66 

ft.) from the actual location. This variability could result in mis-attributing crashes to a nearby link, 

including intersecting streets. However, our choices of bicycle routes for data collection may 

moderate this potential effect, since the routes could be more often aligned with the population’s 

choices, and therefore the crash locations. We selected only crashes within 20 meters (66 ft.) of 

the centerline of our route network, which prevented mis-attribution of crashes from further 

distances to the routes. Using a spatial join, we summed the number of crashes based on which 

route segment they were closest to. Calculating actual risk requires consideration of the length of 

a route segment in addition to the volume of bicycling at each location. 

Data on transportation infrastructure specific to bicycling is inconsistent between jurisdictions. 

However, Open Street Map does include a functional system variable ranging in this dataset from 

the largest highway: “trunk,” to “primary,” “secondary,” and “tertiary,” then off-street “path.” We 

converted these to ordinal number variables 1–5, respectively, for analysis. 

Modeling Bicycle Volume to Control for Crash Risk 
Direct modeling of noise levels with collision frequency would not control for overall bicycle 

volumes. Since on-street counts of bicycle traffic are not available for every segment, a direct-

demand model provides a reasonable estimate to normalize crash frequencies. We used a national 

database of bicycle traffic counts (including data from ~20 metropolitan areas) to generate 

predictions for bicycle traffic at every street segment in Washington, D.C., Arlington, VA, 

Alexandria, VA, and Austin, TX. 

The methods of processing count data, tabulating independent variables, and building the base-

case models were documented in detail in the following report: Multi-City, National Scale Direct-

Demand Models of Peak-Period Bicycle and Pedestrian Traffic (42).  

We estimated spatial predictions of bicycle and pedestrian traffic volumes in the Washington, D.C. 

metro area and Austin, TX for every street segment. We used ArcGIS to create midpoints of all 

road segments for Washington, D.C., Arlington, VA, Alexandria, VA, and Austin, TX. We then 

applied models from the systematic hold-out cross validation models to predict traffic volumes at 

these locations. To illustrate this, Figure 5 shows predictions for one afternoon of peak-period 

counts in 2016 (the last year of count data) on a typical fall day (77 degrees Fahrenheit and no 

rain).  
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Figure 5. Bicycle traffic prediction (2-hr. afternoon peak) maps of the Washington, D.C. metro area (left) and 

Austin, TX (right). 

Conversion of the predictions for one 2-hour period of peak afternoon bicycle traffic to annual 

traffic predictions required applying adjustment factors to estimate traffic for a full day, and then 

a year. Adjustment factors for bicycle trail traffic in Austin for afternoon peak hour traffic (7% of 

daily traffic) were similar to national averages recorded in the National Bicycle and Pedestrian 

Documentation Project documentation (13), so this factor was used for both cities (7% of daily 

traffic multiplied by 2 hours = 14% of daily traffic). 

𝐴𝐷𝐵, 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐷𝑎𝑖𝑙𝑦 𝐵𝑖𝑐𝑦𝑐𝑙𝑖𝑠𝑡𝑠 =  
2−ℎ𝑟 𝑃𝑀 𝑝𝑒𝑎𝑘 𝑉𝑜𝑙𝑢𝑚𝑒

2ℎ𝑟 𝑎𝑑𝑢𝑠𝑡𝑚𝑒𝑛𝑡 𝑓𝑎𝑐𝑡𝑜𝑟 (0.14)
   (1) 

To estimate annual bicycle traffic, the number of average daily bicyclists was multiplied by 30.5 

for a monthly volume, then we assumed a monthly volume would be 8% of annual trips, based 

again on National Bicycle and Pedestrian Documentation Project documentation (43).  

𝐴𝐴𝐵, 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐴𝑛𝑛𝑢𝑎𝑙 𝐵𝑖𝑐𝑦𝑐𝑙𝑖𝑠𝑡𝑠 =  
𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐷𝑎𝑖𝑙𝑦 𝐵𝑖𝑐𝑦𝑐𝑙𝑖𝑠𝑡𝑠 × 30.5

𝑚𝑜𝑛𝑡ℎ𝑙𝑦 𝑎𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡 𝑓𝑎𝑐𝑡𝑜𝑟 (0.08)
  (2) 

Next, we calculated the number of kilometers bicycled in a year per network segment by dividing 

the length of each segment in meters by 1,000 then multiplying by the number of average daily 

bicyclists. 

𝐴𝐵𝐾𝑇, 𝐴𝑛𝑛𝑢𝑎𝑙 𝐵𝑖𝑐𝑦𝑐𝑙𝑒 𝐾𝑖𝑙𝑜𝑚𝑒𝑡𝑒𝑟𝑠 𝑇𝑟𝑎𝑣𝑒𝑙𝑒𝑑 =  
𝑠𝑒𝑔𝑚𝑒𝑛𝑡 𝑙𝑒𝑛𝑔𝑡ℎ 𝑖𝑛 𝑚𝑒𝑡𝑒𝑟𝑠

1,000
 × 𝐴𝐴𝐵 (3) 

Crash risk was calculated as the number of crashes per year divided by 100,000 annual bicycle 

kilometers traveled. 

𝐴𝑛𝑛𝑢𝑎𝑙 𝐶𝑟𝑎𝑠ℎ𝑒𝑠 𝑝𝑒𝑟 100,000 𝐵𝐾𝑇 =  
𝑐𝑟𝑎𝑠ℎ𝑒𝑠

𝑦𝑒𝑎𝑟𝑠 𝑜𝑓 𝑐𝑟𝑎𝑠ℎ 𝑑𝑎𝑡𝑎

𝐴𝐵𝐾𝑇

100,000
⁄    (4) 



11 

 

To summarize, we estimated the number of average annual bicyclists by starting with modeled 2-

hour afternoon peak volumes in the fall, divided by 0.14 to get average daily bicyclists; multiplying 

by 30.5 to approximate a monthly volume; and dividing by a monthly adjustment factor of 0.08. 

Next, we estimated bicycle kilometers traveled on each network segment by multiplying the length 

of each segment by average annual bicyclists (AAB). Finally, we calculated crash risk by dividing 

crashes per year by bicycle 100,000 kilometers (62,137 mi.) traveled for each segment, as shown 

in Figure 6. On the Austin noise data collection route, the average risk was 19.7 (st. dev. 33.1) 

bicycle crashes per 100,000 bicycle kilometers traveled. On the Washington, D.C. metro area 

route, crash risk was 11.4 (st. dev. 36.2) bicycle crashes per 100,000 bicycle kilometers traveled. 

 

Figure 6. Bicycle crash risk (annual crashes per 100,000 bicycle kilometers, or 62,137 mi., traveled) along 

noise data collection routes in Austin, TX at left, and the Washington, D.C. metro area at right. 

Analysis of Street Noise and Environmental Variables 
Descriptive statistics of collected crash and noise data were computed to support comparison of 

the data collection effort and data characteristics of each site, including mean and standard 

deviations. Histograms of crash and noise data at both sites were graphed. 

Inferential statistics were used to evaluate the extent of the relationship between street noise and 

bicycles. An independent sample t-test between the two cities provided a broad characterization of 

differences between sampled noise and crash data at each site. Ordinary least squares regression 
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using spatial interaction diagnostics determined models for understanding the relationship between 

noise data and crashes at each testing site. 

Results 

Noise 
Street-level noise results from both regions showed variation between and along the routes. We 

measured the overall differences with a two-tailed t-test assuming unequal variances. On average, 

the Austin route was louder, as measured in db(A) (M = 79.1), than the Washington, D.C. metro 

area (M = 78.5), t(587) = 3.74, p < 0.001. However, the maps of street-level noise in Figure 7 show 

the loudest areas in red in Austin along state highway 290 at the northern stretch of the route, and 

in the Washington, D.C. metro area crossing the Potomac River on the path paralleling I-395.  

 

Figure 7. Average noise recorded by bicyclists along routes in Austin, TX (SH 290) at left, and the 

Washington, D.C. (I-395) metro area at right. 

Descriptive results in Table 2 show that the Austin route included a wider range of noise levels 

along its 425 segments, with a minimum of 68 db(A), but low-range noise levels were more 

widespread in the Washington, D.C. metro area.  



13 

 

Table 2. Noise Data Descriptive Statistics, Averaged by Network Segment, db(A) 

Statistic 

Austin (TX) 

N segments = 425 

Capitol Area (DC) 

N segments = 280 

Mean 79.10 78.55 

Standard Error 0.09 0.11 

Median  79.72 79.26 

Minimum Value 68.04 71.41 

Maximum Value 81.82 81.02 

Standard Deviation 1.88 1.92 

Range 13.77 9.61 

Histograms in Figures 8 and 9 show similar skewness in the cities’ street-level noise levels. Both 

distributions are skewed to the right, which reflects the fact that the scale is logarithmic—halving 

the sound power results in a 3-decibel drop. Accordingly, very few measurement areas in this study 

were consistently louder than 80 dB(A).  

 

Figure 8. Histogram of average noise recorded by bicyclists along route in Austin, TX. 
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Figure 9. Histogram of average noise recorded by bicyclists along route in the Washington, D.C. metro area. 

Crashes 
Based on bicycle collision data from 2010–2017 (data in Alexandria, VA is from 2011–2016), we 

found relatively similar risks in Figure 6, normalized by modeled bicycle traffic volumes. When 

viewed on a per-kilometer basis, however, as in Table 3, the Washington, D.C. metro area had 

over three times as many crashes (M = 46.9) as Austin (M = 13.9), t(328) = -3.7, p <0.001. Both 

regions had some intersections with very high crash rates, with a maximum of over 600 and 1,200 

bicycle crashes per kilometer in Austin and the Washington, D.C. metro area, respectively. 

Both areas had long stretches of noise data collection routes with zero bicycle crashes in recent 

years—this could be because the areas are relatively safe or because these routes were largely 

avoided by bicyclists. This shows the importance of considering crash risk in terms of absolute 

numbers, per network distance, and per bicycle distance traveled. 

Table 3. Bicycle Collision Descriptive Statistics, per Kilometer of Route Network 

Statistic 
Austin, TX 

N segments = 425 

Washington, D.C. metro area 

N segments = 280 

Mean 13.86 46.90 

Standard Error 2.54 8.58 

Median  0.00 0.00 

Minimum Value 0.00 0.00 

Maximum Value 655.74 1280.64 

Standard Deviation 52.46 143.60 

Range 655.74 1280.64 
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Multivariate Analysis 
To test interactions of street noise and other variables on crash rates, we performed ordinary least 

squares (OLS) regression with tests of spatial dependence. Starting with hypothesized interaction 

of crash rates with street noise levels (H1.1 = positive relationship), functional system class (H1.2 = 

negative relationship), and bicycle mode share (H1.3 = negative relationship), we found conflicting 

results. Similarly, further testing with street network classification (H2.1), motorized traffic volume 

(H2.2), and employment densities (H2.3) differed between the sites. 

Crash Risk in Austin, Texas 
Regression of factors to explain variation in crash risk (annual crashes per 100,000 bicycle 

kilometers, or 62,137 mi. traveled) showed limited interaction. To evaluate spatial dependence, 

we spatially weighted the dataset using a single-order Queen configuration. None of the tests for 

spatial dependence were significant, as shown in Table 4 (Moran’s I = 0.91, p = 0.36), including 

both spatial lag (LM = 0.28, p = 0.60), and spatial error (LM = 0.46, p = 0.50). Accordingly, we 

used a classic configuration of OLS, which explained very little of the variation in bicycle crash 

risk in Austin (R2 = 0.04, AIC = 828.62). In our initial Austin model, none of the factors we 

hypothesized to predict crash risk met a 95% confidence level (p < 0.05), including street noise 

(H1.1), functional system class (H1.2), or bicycle mode share (H1.3). 

Table 4. Crash Risk Factors in Austin (TX) 

Variable Coefficient Standard Error t-Statistic Probability 

Constant 194.374  103.931  1.87023  0.06470 

db(A) -2.22284  1.29899  -1.71122  0.09049 

Functional System -2.77613  2.73011  -1.01686  0.31195 

Bicycle Mode Share within 

1,000 meters (0.62 mi.) 

1442.89  2699.17  0.534569  0.59426 

 

Crash Risk in the Washington, D.C. Metro Area 
Using the same approach for spatial weighting—a single-order Queen configuration—showed that 

crash risk in the Washington, D.C. metro area dataset had significant spatial dependence (Moran’s 

I = -8.8, p < 0.001) for both lag (LM = 37.7, p < 0.001) and error (LM = 76.80, p < 0.001). 

Therefore, we relied on the spatial error model with maximum likelihood estimation, which also 

included a Lambda spatial error term as shown in Table 5. Regression with the percent bicycle 

commuting and functional system classification were positive and significant (p < 0.05), while 

average dB(A) did not meet this threshold (H1.1). This model explained most of the variation of 

bicycle crash risk in the Washington, D.C. metro area (R2 = 0.87, AIC = 323.83). 
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Table 5. Crash Risk Factors in the Washington, D.C. Metro Area 

Variable Coefficient Standard Error z-value Probability 

Constant 10.4867  5.89581  1.77868  0.07529 

db(A) -0.138902  0.0751648  -1.84797  0.06461 

Functional System 0.392085*  0.196294  1.99744  0.04578 

Bicycle Mode Share within 

1,000 meters (0.62 mi.) 

0.000841779*  3.2222e-005 26.1244  <0.00001 

Lambda -0.870142  0.0738285  -11.786  <0.00001 

Results of the street noise models did not meet a 95% probability threshold of association with 

crash risk in either city (H1.1), though the direction of association was negative, as hypothesized. 

Street functional system classification was similarly not significant in Austin (H1.2) but was 

positively associated with street noise in the Washington, D.C. metro area. Bicycle mode share, as 

an indicator of the safety-in-numbers concept (H1.3), showed no significant association in Austin, 

but a positive correlation in the Washington, D.C. metro area. 

Street Noise Factors in Austin, Texas 
Again, none of the diagnostics for spatial dependence in Austin met significance criteria, 

suggesting use of a classic OLS regression model. Table 6 shows that none of the hypothesized 

factors met a 95% confidence threshold (R2 = 0.06, AIC = 355.06), though functional system did 

have a non-significant negative association with street noise (H2.1). 

Table 6. Street Noise Factors in Austin (TX) 

Variable Coefficient Standard Error t-Statistic Probability 

Constant 79.5824  0.40509  196.456  0.00000 

Functional System -0.353532  0.214821  -1.64571  0.10331 

Speed Limit 0.0013676  0.0136468  0.100214  0.92040 

Employment within 

300 meters (984 ft.) 

7.60083e-005 7.40105e-005 1.02699  0.30718 

 

Street Noise Factors in the Washington, D.C. Metro Area 
Diagnostics for spatial dependency of street noise in the Washington, D.C. metro area route 

suggest the need for a model incorporating spatial error (Moran’s I = 4.66, p <0.001; LM lag = 

21.70, p <0.001; LM error = 18.82, p <0.001).  

Running a spatial error model with maximum likelihood estimation on the spatially weighted 

factors explained less than a quarter of the variation in street-level noise (R2 = 0.21, AIC = 

1,110.69). Table 7 shows that only employment density was a significant predictor of street noise 

in the Washington, D.C. metro area route (H2.3), though with a counter-intuitive negative 

association. 
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Table 7. Street Noise Factors in the Washington, D.C. Metro Area 

Variable Coefficient Standard Error z-value Probability 

Constant 78.7982  0.367142  214.626  0.00000 

Functional System 0.0510698  0.101366  0.503818  0.61439 

Speed Limit -0.00540134  0.0155835  -0.346607  0.72889 

Employment within 

300 meters (984 ft.) 

-9.86176e-005* 2.50405e-005 -3.93833 0.00008 

Lambda 0.364174  0.0725581  5.01907  0.00000 

 

Discussion 

Limitations and Differences Between City Models 
This study involved several steps of data collection, traffic volume estimation, gathering of local 

GIS data, and analysis. Though we were able to control the final step, each of the previous tasks 

involved differences between our comparison sites. 

First, the route choices in the Washington, D.C. metro area included off-street paths, whereas the 

Austin route was all on-street. This choice prioritized the safety of our data collection team over 

comparability of sites. While this difference restricts the comparability of our two models, it 

extends the usefulness of our results for people interested in the effects of local infrastructure on 

noise and safety. Though we used the same equipment configuration in each city, and validated it 

against reference sound equipment, the chosen routes do not represent the full extent of 

environmental variation in either city. Both bicycle noise data collectors reported seeing lower 

immediate sound levels when the bicycle was at very low speeds or stopped. This suggests that 

bicycle speed may be an important factor in street noise measured with smartphones that lack a 

wind buffer device, such as a foam muffler as used on dedicated microphones. Related to this 

issue, environmental wind might increase detected street noise, and can be expected to fluctuate 

not only with hourly weather conditions, but with micro-environmental situations, such as street 

trees, open fields, or tall buildings causing urban wind tunnels. Each of the wind factors may relate 

to detected street noise, but still are part of the whole variation of noise as experienced by a 

bicyclist in actual street conditions. Continuation of this study with additional routes in the same 

cities, or additional cities, with or without noise mufflers or controlling for local wind speeds, can 

be expected to produce different results. 

Second, we used the same traffic volume estimation model in each city, but only the Washington, 

D.C. metro area was calibrated with local counts. Though local counts existed in Austin, they were 

recorded at fewer locations for longer durations. Since the direct-demand model developed in a 

previous study is specific to having short-duration counts in many locations, we decided to apply 

this model to Austin without local calibration rather than develop another model that might further 

limit the comparability of cities. This means that the Austin model may not accurately estimate 
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exposure risk, and that later refinement of the input traffic volume estimates could produce 

different results. 

Third, variations in local GIS data quality and completeness can influence analysis results. 

Incorporation of additional environmental factors may improve modeled explanation of crash risk 

and street noise. Our hypothesized factors varied in each city for each model and suggest other 

factors could be identified to improve understanding of the association between street noise and 

bicycle crash rates. 

We used the same analysis steps in each city, however. Running ordinary least squares regression 

with spatial diagnostics for each city directed us to make adjustments to the final models for this 

report, but the magnitude of relationships stayed the same between variants in our models. 

Limitations of data collection, traffic volume estimates, and local GIS data likely impact the 

comparability and generalizability of the results. 

Crash Risk Factors 
Our hypothesized relationship of street noise, network functional class, and bicycle mode share 

showed mixed results between the cities. Though not significant in Austin, functional system and 

bicycle mode share were significant in the Washington, D.C. metro area. This could be due to 

variations in the built environment and culture of the cities, in addition to our specific choice of 

sampling routes. 

Specific to the Washington, D.C. metro area, our findings provided further support for two key 

bicycle safety issues. The first is that providing infrastructure for bicycling, such as separated paths 

and connected residential streets, is associated with lower crash risk. The second is support for the 

safety-in-numbers hypothesis. Areas with a higher bicycle commuting mode share also had lower 

crash risk. Both findings from the D.C. metro area support efforts to plan and develop 

infrastructure to support bicycling, but our findings in Austin suggest that local contexts impact 

the results. 

Street Noise Factors 
In the Washington, D.C. metro area, only employment densities significantly predicted street 

noise, and the direction of association was the opposite of our hypothesis. This could result from 

reduced traffic speeds in urban areas, and/or perhaps from street trees and other landscape elements 

that influence street noise, which were not directly considered in this study. 

Route choice makes a difference in street noise experienced by bicyclists. In Austin, functional 

system—infrastructure ranging from highways to separated paths—had the predicted negative 

relationship with street noise, but was outside a 95% threshold for statistical confidence. The route 

in the D.C. metro area included separated paths that ran parallel to highways, so this context of 

relatively noisy paths may not relate to many other areas. In reality, people who bicycle choose 

routes based on a wide variety of factors, and street noise may play a secondary role to perceived 

safety. 
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Conclusions and Recommendations 

As the first known exploration of the relationship between street noise and vulnerable road user 

safety, this study provides a transferable method for further study. Evidence from the two noise 

data collection routes in this study show counter-intuitive results regarding safety—we did not find 

street noise to have a positive relationship with crash risk after controlling for other factors. 

However, given the limitations recognized and described previously in the Discussion section, we 

do not consider these results conclusive. Accordingly, we recommend the following 

recommendations and next steps: 

1. Investigate the causal factors of reduced crash risk. Evidence from the Washington, 

D.C. metro area showed infrastructure and existing bicycle mode share are strong 

predictors of reduced risk. However, causal analysis of planning and engineering 

decisions requires methods less often used in transportation, such as cross-case and 

mixed-method designs. 

2. Conduct studies of different routes in other cities and roadway conditions. 

Additional studies could extend and/or counter findings from this study.  

3. Employ different statistical methods. Different methods should be used with the 

existing dataset provided on the Dataverse1. Techniques such as combining data with 

cities coded as a binary variable may produce different results. 

4. Adapt this method for participatory transportation planning. Our review of previous 

research showed that street noise impacts communities, even if our immediate results 

were inconclusive regarding bicycle crash risk. The method could be helpful as part of 

local urban studies for different planning purposes, and validation of our off-the-shelf 

approach supports data collection by non-professionals. 

 

Additional Products 

This section provides an overview of the products from this study related to education and 

workforce development, technology transfer, and data products. Check the project website 

(https://www.vtti.vt.edu/utc/safe-d/index.php/projects/street-noise-relationship-to-vulnerable-

road-user-safety/) for updates. 

Education and Workforce Development Products 
This study included student participation in data collection and traffic modeling through Virginia 

Tech, and the research team is developing course materials at university and professional levels. 

                                                 

 

1 The Dataverse includes georeferenced noise readings for this study, available from 

https://doi.org/10.15787/VTT1/5LWJTV. 

https://www.vtti.vt.edu/utc/safe-d/index.php/projects/street-noise-relationship-to-vulnerable-road-user-safety/
https://www.vtti.vt.edu/utc/safe-d/index.php/projects/street-noise-relationship-to-vulnerable-road-user-safety/
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Dr. Buehler is developing a lecture for fall 2018, and Dr. Hankey is preparing a lecture for spring 

2019. The research team will share slides for professional audiences online as well. 

Technology Transfer Products 
Following publication of this report, the project team is developing a paper for review and potential 

presentation through the Transportation Research Board Annual Meeting and later publication 

through a peer-reviewed journal; dissemination of the report via social media in cooperation with 

TTI; and is planning plan a webinar based on study results in further cooperation with the Safe-D 

UTC. 

Safe-D has asked if we will make the noise collection platform and data public. The platform is a 

publicly available app. We are also happy to work with Safe-D to share our data. Completion date: 

as advised by Safe-D. 

Data Products  
Datasets from noise data collection and explanatory variables are available on the Safe-D 

Dataverse. The noise data collection platform itself is already public: http://www.noisetube.net.  

https://vtti.sharepoint.com/sites/safed/streetnoise/Shared%20Documents/Safe-D%20Administrative%20Documents/Deliverables/Final%20Research%20Report/are
https://dataverse.vtti.vt.edu/dataset.xhtml?persistentId=doi:10.15787/VTT1/5LWJTV
https://dataverse.vtti.vt.edu/dataset.xhtml?persistentId=doi:10.15787/VTT1/5LWJTV
http://www.noisetube.net/
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Appendix 
 

Appendix A: Related Research 

Table A-1. Related Research 

Topic Author Year Geographical Area 

Street-level noise 
Nijland & van Wee 

(44) 
2005 Europe 

Street-level noise Boogaard et al. (45) 2009 The Netherlands 

Street-level noise 
Gidlöf-Gunnarsson 

& Öhrström (46) 
2010 Sweden 

Crowdsourcing 

noise data 

Maisonneuve, 

Stevens & Ochab 

(22) 

2010 Paris, France 

Street-level noise 

Botteldooren, 

Dekoninck & Gillis 

(47) 

2011 Gent, Belgium 

Crowdsourcing 

noise data 

Dekoninck, 

Botteldooren & 

Panis (23) 

2012 Gent, Belgium 

Street-level noise Bell & Galatioto (4) 2013 Europe 

Crowdsourcing 

noise data 
D’Hondt (25) 2013 Antwerp, Belgium 

Street-level noise Zuo, et al. (48) 2013 Toronto, Canada 

Crowdsourcing 

noise data 

Kardous & Shaw 

(21) 
2014 

United States (lab 

measurements) 

Crowdsourcing 

noise data 
Drosatos et al. (27) 2014 Antwerp, Belgium 

Street-level noise 

McAlexander, 

Gershon & Neitzel 

(49) 

2015 New York City 

Street-level noise 
Dekoninck, et al. 

(50) 
2015 India & Belgium 
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Street-level noise 

Dekoninck, 

Botteldooren & 

Panis (51) 

2015 Ghent, Belgium 

Crowdsourcing 

noise data 

Radicchi, Henckel & 

Memmel (26) 
2016 Germany 

Crowdsourcing 

noise data 

Leao & Izadpahani 

(52) 
2016 Victoria, Australia 

Street-level noise Apparicio et al. (53) 2016 Montreal, Canda 

Street-level noise Alsina-Pagès (54) 2016 n/a (conceptual) 

Street-level noise Kang et al. (55) 2016 n/a (conceptual) 

Crowdsourcing 

noise data 
Park (56) 2017 New York City 

Crowdsourcing 

noise data 
Aumond et al. (24) 2017 Paris 

Street-level noise 
Mydlarz, Salamon & 

Bello (5) 
2017 New York City 

Crowdsourcing 

noise data 
Jennett et al. (57) 2017 London 

Street-level noise Seidman et al. (58) 2017 
United States (lab 

measurements) 

Crowdsourcing 

noise data 
Droumeva (32) 2017 Global 

Street-level noise Li, Feng & Wu (59) 2017 China 

Crowdsourcing 

noise data 

Li, Liu & Haklay 

(28) 
2018 Global 
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