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Abstract 
Data used for safety analyses have characteristics that are not found in other 
disciplines. In this research, we examine three characteristics that can negatively 
influence the outcome of safety analyses: (1) crash data with many zero observations; 
(2) the rare occurrence of crash events (not necessarily related to many zero 
observations); and (3) big datasets. These characteristics can lead to biased results if 
inappropriate analysis tools are used. The objectives of this study are to simplify the 
analysis of highway safety data and develop guidelines and analysis tools for handling 
these unique characteristics. The research provides guidelines on when to aggregate 
data over time and space to reduce the number of zero observations; uses heuristics for 
selecting statistical models; proposes a bias adjustment method for improving the 
estimation of risk factors; develops a decision-adjusted modeling framework in 
predicting risk; and shows how cluster analyses can be used to extract relevant 
information from big data. The guidelines and tools were developed using simulation 
and observed datasets. Examples are provided to illustrate the guidelines and tools. 
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Introduction 

Data used for safety analyses have characteristics that are not typically found in other disciplines. 
In this research, we examine three characteristics of transportation safety data that pose challenges 
for analysis. 

The first important characteristic is related to datasets that include a large amount of zero 
responses. Modeling crash data with many zero observations requires two critical precautions:  

Assembling and formatting data. As documented in Lord and Geedipally (1), excess zero 
observations are often attributed to how data are assembled or formatted in spatial or temporal 
scales. For example, more zero observations are expected in data that are aggregated weekly rather 
than monthly or yearly. Finding a balance in aggregation is a critical task in data preparation. On 
the one hand, using disaggregated data may result in having excessive zero observations, in which 
the traditional negative binomial (NB) model may not be appropriate for the safety analysis (1). 
On the other hand, too much aggregation may result in loss of information (2), although it may 
make the NB model a better alternative. Although several researchers have encountered this issue, 
there is no proper guidance on whether an aggregated data model is better than a disaggregated 
data model or vice-versa (3, 4). In this study, we address this issue by conducting a simulation 
study and measuring the information loss as a function of the precision or accuracy in estimation 
of the coefficients. 

Selection of an appropriate distribution or model. Various distributions and models have been 
proposed to model crash data (5, 6). Selecting the most appropriate distribution plays a crucial role 
in safety analyses. Often, the comparison of distributions (or models) is accomplished during the 
post-modeling phase, using measures such as the goodness-of-fit (GoF) statistics. However, these 
metrics are neither easy to compute nor practically attainable in some instances when many 
alternatives exist and/or the analyst deals with big data or excess zero observations. In addition, 
and most importantly, these metrics do not provide any intuition into why one distribution may be 
preferred over another or the logic behind the model selection (goodness-of-logic or GoL, as 
illustrated by 7). For example, what is a more appropriate distribution to model a skewed dataset 
or one with excess zero responses? In this research, we address this issue by seeking a model 
selection method based on the characteristics of the data. 

The second important characteristic is the rare occurrence of crash events, which is related to the 
first characteristic (although this does not necessarily mean that the dataset contains a large 
percentage of zero responses). The NB regression is a fundamental statistical analysis tool for 
traffic safety modeling. As crashes are rare events, a limited number of crashes and/or imbalanced 
data could lead to finite sample bias (i.e., a biased regression parameter estimation). In this study, 
we propose a bias-correction procedure for more accurate estimation when evaluating the impacts 
of crash risk factors based on the approximated bias derived by McCullagh and Nelder (8) for 
generalized linear models. We evaluated the finite sample bias issue through a simulation study 
and infrastructure safety evaluation case study. Furthermore, we developed a decision-adjusted 
framework to develop risk prediction models tailored for a specific goal, such as rare event 
prediction.   
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The third important characteristic is related to big datasets, which are now becoming more 
prevalent with the use of naturalistic data. There are many methodologies for handling large 
datasets, such as distributed cloud computing, parallel algorithms, machine learning techniques, 
and data mining methods (9, 10). The present report focuses on cluster analysis methods, which 
are often categorized under data mining approaches. With crash data analysis, the challenge is that 
the data have become so large and complex (e.g., naturalistic data) that data storing, processing, 
and modeling are cumbersome. When many variables are involved, cluster analysis as a sampling 
strategy can be applied to select a representative subset of data to deal with this challenge. More 
variables can be used in cluster analysis compared to traditional sampling methods, such as 
stratified sampling, without having to increase the sample size. This makes cluster analysis a 
suitable alternative when the population is too large (11). Hence, in this study, we show how cluster 
analysis can be used for extracting information from big datasets. 

Research Objectives  
The objectives of this study are to provide guidelines and tools for the analysis of highway safety 
data characterized by excess zero responses, rare events, and big data. The objectives are divided 
into three categories: (1) analyzing data with many zero observations, (2) the rare event issue 
inherent in transportation safety analyses, and (3) handling big datasets. For the first objective, we 
develop guidelines for aggregating data over time and space, as well as heuristics to determine 
when the Poisson-lognormal (PLN) is preferred to the NB model and when the negative binomial 
Lindley (NB-L) is preferred to the NB model. For the second objective, we propose bias 
adjustment for more accurate estimation of the safety impact of a risk factor and develop a 
decision-adjusted modeling framework to consider the study objective in predicting crash risk. For 
the third objective, we utilize cluster analysis methods to classify data into groups with similar 
characteristics and create predictors using cluster analysis to potentially produce insights or reduce 
the number of random variables. 

Research Outline 
The research report is divided into eight sections. The first section provides the background 
information related to the data and safety modeling issues. The second section describes the 
analyses related to the spatial and temporal aggregation of the data. The third section covers the 
results related to the heuristics methods for selecting models. The fourth section presents the results 
for the finite sample bias adjustment method. The fifth section shows the characteristics of the 
decision-adjusted modeling framework. The sixth section presents the results of the cluster 
analysis. The seventh section documents the proposed guidelines. The final section provides the 
summary and conclusions.  

Background 

This section briefly summarizes the key literature on (1) models that have been proposed for excess 
zero responses; (2) spatial and temporal aggregation; (3) issues associated with the bias caused by 
sparse data; and (4) cluster analysis methods.  
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Models for Excess Zero Responses 
Several mixture models have been proposed to address data with excess zero observations, for 
example the NB-L (12, 13), NB generalized exponential (14) and NB-Dirichlet process (15). Here, 
we introduce the NB-L model, which has been used in several recent research studies and is a 
preferred model for dealing with excess zero responses and/or high dispersion. The probability 
density function of the Lindley distribution (16) is defined as: 

   Lindley(v|θ) = θ2

θ+1
(1 + v)e−θv       θ > 0, v > 0  (1) 

The random variable y is distributed by the NB-L (ϕ, θ) distribution (12, 17): 
   y~NB(ϕ, p = 1 − e−λ) and λ~Lindley(θ)  (2) 
The Lindley distribution, in fact, is a mixture of two gamma distributions as follows: 

  λ~ 1
1+θ

amma (2, θ) + θ
1+θ

amma (1, θ) (3) 

Therefore, the NB-L distribution can be written in the following hierarchical representation: 
  y~NB�y�ϕ, p = 1 − e−λ� (4a) 
  λ~amma (1 + z, θ) (4b) 

 z~Bernoulli( 1
1+θ

) (4c) 

The mean of the NB-L distribution is equal to (17): 

  µ = ϕ� θ3

(θ+1)(θ−1)2
− 1� (5) 

Lord and Geedipally (12) showed that using the NB-L distribution to fit the data performs better 
than the NB distribution when the dataset has many zeros or is characterized by a heavy (or long) 
tail. However, it is not clear at what point the NB-L distribution should be used instead of the NB 
distribution (18). In this research, we design model selection heuristics to select the distribution 
closest to the true one for modeling crash data between these two distributions. 

Spatial and Temporal Aggregation 
Excess zero observations in data can be attributed to four major factors (19): (1) using spatial or 
time scales that are too small; (2) under-reporting or misreporting of the number or severity of 
crashes; (3) sites characterized by low exposure and high risk; and (4) bias caused by omitting 
important variables in the crash data process. The first factor can potentially be overcome by 
adjusting the time and scale while compiling the datasets (1). On the other hand, the second, third, 
and fourth factors should be addressed by applying appropriate statistical models (19). Often, 
researchers use statistical tests or GoF statistics to decide on the level of aggregation (see 20 as an 
example). However, these comparison criteria are not appropriate since the nature of the data, as 
well as the sample size, will change as the data are aggregated. In this research, we examine the 
influence of the level of aggregation using an extensive simulation study by accounting for the 
accuracy in the coefficient estimation. In the end, guidelines that are based on characteristics of 
the data are provided.  

Bias Correction for Poisson and NB Regression 
The Poisson and NB models are generally estimated using the maximum likelihood method. When 
the sample size is small and/or when the number of events is limited (e.g., small number of 
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crashes), the maximum likelihood estimators (MLEs) are biased and the bias could be substantial. 
This finite sample bias could lead to incorrect estimation of the impacts of risk factors and 
jeopardize traffic safety improvement efforts. Generally, there are two approaches to reduce MLE 
bias. One approach is based on applying the Jefferys invariant prior to the likelihood function to 
directly generate an improved estimator (21, 22, 23). The other approach reduces the bias by 
subtracting the approximated bias from the regular MLE (8, 24, 25). Both approaches can reduce 
the bias from 𝒪𝒪(𝑛𝑛−1) to 𝒪𝒪(𝑛𝑛−2). While the method based on the Jefferys invariant prior does not 
have a closed-form expression, McCullagh and Nelder (8) provide a specific correction formula 
for the coefficient estimation.  

The finite sample bias of Poisson and NB regression models has been sporadically investigated 
(26, 27). Saha and Paul (27) studied the bias-corrected dispersion parameter estimation of the NB 
regression, which showed less bias and superior efficiency compared to regular MLE, the method 
of moments estimator, and the maximum extended quasi-likelihood estimators in most instances. 
Giles and Feng (26) derived a bias-correction formula for the parameter estimation of a Poisson 
regression from the general definition of residuals by Cox and Snell (28). However, research has 
been limited on identifying the situations where the bias correction is necessary and what factors 
affect the magnitude of bias. This study addresses this gap by studying the finite sample bias for 
the parameter estimation of Poisson and NB regression models in the context of traffic safety 
modeling. 

Decision-adjusted Crash Risk Prediction 
Predicting crash risk and identifying high-risk drivers are critical for developing appropriate safety 
countermeasures, driver education programs, and user-based insurance. However, predicting 
driver risk is a challenging task because crashes are rare events and many factors contribute to 
individual crash risk. As in-vehicle data collection becomes more prevalent and cost-effective, it 
has become more feasible to improve risk prediction by utilizing kinematics information. 
Currently, there are several challenges to implementing kinematics-based driver risk prediction 
models. We focus on two primary issues: (1) the decision rule and (2) the optimal threshold values 
for kinematics predictors.  

One approach is to choose the thresholds that can maximize the area under the curve (AUC) for 
the receiver operating characteristic (ROC) curve (29, 30). However, maximizing the AUC of an 
ROC curve is derived with respect to the entire range of risk and is not necessarily optimized with 
a specific objective, such as predicting a small percentage of high-risk drivers. In this study, we 
propose a decision-adjusted modeling approach, where the thresholds are chosen to optimize the 
particular decision. The Second Strategic Highway Research Plan (SHRP 2) naturalistic driving 
data were used for model development and calibration. 

Cluster Analysis Methods 
Cluster analysis, also known as data clustering, segmentation analysis, and taxonomy analysis, is 
a classification problem in which all observations are classified into distinct categories. The aim 
is to place observations in different clusters in a way that observations in the same cluster are as 
similar to each other as possible while observations in different clusters are as dissimilar as 
possible. It is important to note that in cluster analyses when the categories are unknown a priori, 
an unsupervised classification approach should be applied. On the other hand, if the categories are 
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known, a supervised classification approach would be appropriate (11). There are several 
categories of clustering methods, such as partitional, hierarchical, density-based, grid-based, and 
model-based (31, 32). The present study focuses on the first three categories: partitional algorithms 
identify all data clusters simultaneously in an iterative process. Each cluster usually has a centroid 
or an actual observation that is the most representative member of the cluster. Hierarchical 
algorithms either start with the entire data as one large cluster and recursively partition this big 
cluster into smaller ones (i.e., divisive), or start with many small clusters each having only one 
observation and recursively merge these small clusters to create larger ones (i.e., agglomerative). 
In contrast to the partitional algorithms that produce data clusters in a single level, hierarchical 
algorithms produce a dendrogram structure with each leaf representing a data cluster (33, 11). 
Density-based algorithms identify clusters by finding regions with high object density in the data 
space (34). This makes these algorithms capable of identifying arbitrary shaped clusters and 
handling outliers.  

Methods and Results 

Spatial and Temporal Aggregation  
Crash data at a site are usually defined as a count number over the space and time scales. Therefore, 
the number of zero observations in the compiled dataset is directly correlated with the selected 
spatial and/or temporal scales. By adjusting the time and spatial scales, the number of zero 
responses observed in the dataset can increase or decrease. For example, by changing the segment 
length of a site from 0.1 mile to 1 mile, the number of zero observations in the complied dataset 
will be reduced since the new segment will include all of the crashes on the segments now 
aggregated. Similarly, changing the time scale from monthly durations to yearly periods will result 
in a reduction of the number of zero responses in the dataset.  

Simulation Protocol 
The simulation protocol in this part of the study used three main steps. The detailed steps are 
described in Appendix A, but they are briefly summarized as follows: 

Step 1: The mean number of crashes at each site i and time period m is estimated using the 
following functional form: 𝜇𝜇𝑖𝑖𝑚𝑚 = 𝑒𝑒∑ 𝛽𝛽𝑗𝑗𝑥𝑥𝑖𝑖𝑗𝑗

𝑚𝑚𝑑𝑑
𝑗𝑗=1 . Here, the index j=1 to d represents the independent 

variables. 𝛽𝛽𝛽𝛽, the “true” parameters, are taken from a previous study. 

Step 2: Crash counts are simulated using an NB distribution. First, a disaggregated dataset is 
created for each site and time period. Then, datasets are combined into one dataset for all time 
periods. Second, an aggregated dataset is created for each site i. Step 2 is repeated for n times (500 
simulation runs for this study). 

Step 3: For each simulation run, an NB regression is estimated for the disaggregated and 
aggregated datasets, and the standard deviations of the coefficients between the two models are 
compared.  

Simulation Analysis 
An existing dataset was considered and two variables, ADT and skid number, from it were used 
for the simulation analysis. Variables were collected for 5 years, in one-year duration (i.e., each 
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year is a unique observation). The data for skid number are recorded for at least 3 years out of the 
5. Consequently, for some sites the data for skid number are not complete. The inverse dispersion 
parameter (φm) was directly calculated from observed crash data for each year. The average value 
over the 5 years is around 0.2, which means the data are highly dispersed. Two major scenarios 
for highly dispersed data were created: (1) data that involve around 90% zero observations and (2) 
data with 50% zero observations. Each major scenario was divided into seven sub-scenarios, based 
on year-to-year variation of the skid number. The sub-scenario (1-1) only includes records in which 
the skid number variation from year to year is always less than 20%. Recursively, sub-scenario (1-
2) assumes 30% variation. Sub-scenario (1-3) assumes 40% variation, etc. The last sub-scenario 
(sub-scenario 1-7) includes the full data.  

Table 1 and Table 2 indicate the results of the simulation for different scenarios. Note that even 
though the ADT variable is used in the analysis, those results are not presented here because the 
primary focus is on the skid number variable only. As shown in these tables, as the change in 
variation of the skid number when data are aggregated (CVSkid change) increases, the standard 
deviation of the estimated parameter in the aggregated data becomes larger than in the 
disaggregated data. Therefore, aggregation of data becomes less reliable. The decision point can 
be quantified by the change in coefficient of variation (CV) of the variable in the dataset. For 
example, in Scenario 1-3, the change in CV of the skid number when data are aggregated is equal 
to 6.8%. In that regard, it seems that a change in CV by 7% in a variable is a decision point to stop 
the aggregation, when the data have a high percentage of zero observations. On the other hand, 
when the percentage of zero observations is small, the aggregation can be stopped when the change 
in CV of a variable is greater than 4%. 

Table 1. Simulation Results for Scenario with About 90% Zeros 

Scenario True Value 
Skid Number  
Year-to-Year 
Variation 

𝐂𝐂𝐂𝐂𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 Chan
ge 

Disaggregated 
Data 
Mean  

Disaggregated 
Data Std. 

Aggregated 
Data Mean 

Aggregated 
Data Std. 

1-1 -0.005914 
< = 20% 
(n1=1570; 
n2=6270) 

0.1% -0.005590 0.004308 -0.005649 0.003838 

1-2 -0.005914 
< = 30% 
(n1=2410; 
n2=9602) 

3.6% -0.005939 0.003162 -0.005963 0.002878 

1-3 -0.005914 
< = 40% 
(n1=3112; 
n2=12368) 

6.8% -0.005854 0.002601 -0.005965 0.002510 

1-4 -0.005914 
< = 50% 
(n1=3664; 
n2=14528) 

10.5% -0.006039 0.002219 -0.006011 0.002278 

1-5 -0.005914 
< = 60% 
(n1=4042; 
n2=16047) 

14.0% -0.005944 0.002213 -0.005886 0.002257 

1-6 -0.005914 
< = 80% 
(n1=4295; 
n2=17083) 

17.1% -0.005827 0.002050 -0.005960 0.002153 

1-7 -0.005914 
Full Data 
(n1=4402; 
n2=17504) 

18.7% -0.005945 0.001913 -0.005898 0.002291 

Note: n1 = sample size of the aggregated data, n2 = sample size of the disaggregated data; Bold numbers represent 
the preferred values. For the disaggregated data, zeros = 90.07% and crash mean = 0.163. For the aggregated data, 
zeros = 61.30% and crash mean = 1.933. 
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Table 2. Simulation Results for Scenario with About 50% Zeros 

Scenario True Value 
Skid Number 
Year-to-Year 
Variation 

CVSkid 
Change 

Disaggregated 
Data Mean 

Disaggregated 
Data Std. 

Aggregated 
Data Mean 

Aggregated Data 
Std. 

2-1 -0.005914 
< = 20% 
(n1=1570; 
n2=6270) 

0.1% -0.005939 0.002983 -0.005950 0.0027644 

2-2 -0.005914 
< = 30% 
(n1=2410; 
n2=9602) 

3.6% -0.005789 0.002152 -0.006018 0.001996 

2-3 -0.005914 
< = 40% 
(n1=3112; 
n2=12368) 

6.8% -0.005843 0.001639 -0.005996 0.001662 

2-4 -0.005914 
< = 50% 
(n1=3664; 
n2=14528) 

10.5% -0.005882 0.001586 -0.006043 0.001644 

2-5 -0.005914 
< = 60% 
(n1=4042; 
n2=16047) 

14.0% -0.005899 0.001422 -0.006045 0.001484 

2-6 -0.005914 
< = 80% 
(n1=4295; 
n2=17083) 

17.1% -0.005925 0.001401 -0.005987 0.001503 

2-7 -0.005914 
Full Data 
(n1=4402; 
n2=17504) 

18.7% -0.005884 0.001275 -0.005982 0.0014620 

Note: n1 = sample size of the aggregated data, n2 = sample size of the disaggregated data; Bold numbers represent 
the preferred values. For disaggregated data, zeros = 50.04% and crash mean = 9.82. For aggregated data, zeros = 
3.81% and crash mean = 49.15. 

Case Studies 
To identify high-risk segments based on fatal (K) and incapacitating injury (A) crashes, Geedipally 
et al. (35) conducted spatial aggregation because there were many segments with zero crashes. 
They aggregated adjacent segments when the change in the ADT was less than a certain threshold. 
Although the number of zero observations in the data decreased after aggregation, it was not clear 
to the them when to optimally stop the aggregation. Since the disaggregated data had about 50% 
zeros, the simulation results suggest stopping the aggregation when the change in CV is above 4%. 
Table 3 shows the spatial aggregation of adjacent interstate segments in Texas. The adjacent 
segments were aggregated if they were on the same highway and all other variables remained the 
same. As per the simulation results, it is recommended to stop the aggregation when the change in 
ADT is 25% or less between adjacent segments.  

Table 3. Spatial Aggregation of Interstate Segments  

Aggregation Criteria Number of segments % sites with no crashes 𝐂𝐂𝐂𝐂𝐀𝐀𝐀𝐀𝐀𝐀 Change in 𝐂𝐂𝐂𝐂𝐀𝐀𝐀𝐀𝐀𝐀 

Existing 2321 54% 0.58 -- 
ADT within +10% 519 25% 0.57 2% 
ADT within +15% 483 23% 0.56 3% 
ADT within +20% 463 23% 0.56 3% 
ADT within +25% 451 22% 0.56 3% 
ADT within +50% 426 22% 0.55 5% 

 
Pratt et al. (3) developed statistical models with both the disaggregated and temporally aggregated 
data to evaluate the effect of skid resistance on traffic crashes using data from about 40,000 
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horizontal curves for a 5-year period in Texas. Two datasets yielded different results for the skid 
number variable, and it is unknown which one represents the true value. In the disaggregated data, 
each year is considered as a separate observation. However, in the aggregated data, the dependent 
variable is the sum of crashes over a 5-year period and the skid number is the average over the 
time period. For this analysis, two scenarios were considered, as shown in Table 4. First, we 
considered all sites even if the skid number variable is missing for some years. Second, we 
considered only those sites where the skid number variable is available in all years. Since this 
dataset had more than 90% zeros, for the first scenario, using the aggregated data is recommended 
because the change in CV is 6.2%, which is the less than the 7% threshold calculated above. 
However, for the second scenario, disaggregated data are recommended because the change in CV 
is 15.6%. 

Table 4. Temporal Aggregation of Crashes on Horizontal Curves 

Scenario Data type 𝐂𝐂𝐂𝐂𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 Change in 𝐂𝐂𝐂𝐂𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 

I Disaggregated 0.318 -- 
Aggregated 0.299 6.2% 

II Disaggregated 0.306 -- 
Aggregated 0.258 15.6% 

Heuristics 
This section is divided into two parts. First, the methodology used to design heuristics (18) is 
briefly described. Second, this methodology is used to design heuristics to select a model between 
the NB and PLN, as well as between the NB and NB-L. 

Methodology 
At the heart of the proposed methodology lies a paradigm shift in how model selection is both 
viewed and treated. We view model selection as a classification problem (see 36). To clarify the 
strategy, let us assume the analyst is interested in choosing between the Poisson and NB 
distributions based on the population mean and variance. The mean and variance of the population 
would create a two-dimensional predictor space (Ω). Now, the analyst’s task is to partition the 
predictor space and assign a label to each partition. We know that if the population variance-to-
mean ratio (VMR) is greater than 1.0 (VMR > 1), we may choose the NB distribution, and if it is 
equal to 1.0 (VMR = 1), the Poisson distribution will be the preferred sampling distribution to use. 
Hence, the predictor space (Ω) can be classified between the Poisson and NB distributions in a 
way that is shown in Figure 1.  

 
Figure 1. Classifying the NB and Poisson distributions based on the mean and variance of the population. 
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The decision based on the VMR statistic, in this case, serves as a heuristic to select the most-likely-
true sampling distribution between the Poisson and NB distributions. It does not require fitting the 
models, estimating the model parameters, computing test statistics, etc. It simply uses the 
descriptive statistics to arrive at a model recommendation. In the case of Poisson versus NB, we 
know, theoretically, how the two-dimensional predictor space should be partitioned between the 
Poisson and NB distributions; however, what if such insight was not available to us? In the absence 
of readily available analytical insights to guide the model selection, we resort to computational 
approaches (18). It will be assumed that the distributions under consideration can be classified by 
m summary statistics. These summary statistics would create an m-dimensional predictor space; 
then, the analyst can benefit from two analytic tools, (1) Monte-Carlo simulations, and (2) machine 
learning classifiers, to partition the assumed m-dimensional predictor space between the 
competitive distributions. Using Monte-Carlo simulations, it is possible to simulate numerous 
datasets (say 100,000 datasets) from each of these distributions (or models) indexed by a label and 
record the assumed m summary statistics for each. Next, a machine learning classifier can be 
trained to classify each simulated dataset to predict a model label. Interested readers are referred 
to the work of Shirazi et al. (18) for the detailed steps of the methodology.  

Results 
This section is divided into two subsections. First, heuristics for model selection between the NB 
and PLN are presented. Then, heuristics for model selection between NB and NB-L are 
documented. 

NB versus PLN Heuristics 
Simulation is a key step in designing model selection heuristics (18). It is essential to first make 
sure that the simulated datasets represent the characteristics of the target population, and then 
ensure that the alternative distributions have fair representations among the simulated data. The 
first concern can be addressed by simulating data given the most common range observed in the 
context population, in our case, the crash data population. The second concern can be addressed 
by ensuring that some summary statistics (referred to as control factors) are distributed similarly 
among the simulated datasets from alternative distributions. In other words, the analyst seeks to 
discriminate the distributions based on factors such as the kurtosis and/or skewness, while the 
control factors such as the mean or VMR are distributed similarly among simulated datasets. 

In our problem design, we ensure that the mean and VMR of the data are uniformly distributed 
among the generated datasets from both of these distributions, simply, by simulating the mean and 
the VMR from a uniform distribution with a range that is the most commonly observed range in 
crash data, as shown in Eq. (6):  

  𝐦𝐦~𝐮𝐮𝐮𝐮𝐒𝐒𝐮𝐮𝐮𝐮𝐮𝐮𝐦𝐦(𝟎𝟎.𝟏𝟏,𝟐𝟐𝟎𝟎) ;  𝐂𝐂𝐕𝐕𝐕𝐕~𝐮𝐮𝐮𝐮𝐒𝐒𝐮𝐮𝐮𝐮𝐮𝐮𝐦𝐦(𝟏𝟏,𝟐𝟐𝟐𝟐) (6) 

Next, the parameters of the NB (µ,ϕ) distribution can be estimated as:  

  𝛍𝛍 = 𝐦𝐦     ;    𝛟𝛟 = 𝛍𝛍
𝐂𝐂𝐕𝐕𝐕𝐕−𝟏𝟏

 (7) 

Similarly, we have: 

  𝛍𝛍 𝛌𝛌 = 𝐦𝐦    ;     𝐂𝐂 𝛌𝛌 = (𝐂𝐂𝐕𝐕𝐕𝐕− 𝟏𝟏) × 𝛍𝛍 𝛌𝛌 (8) 
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Then, the parameters of the PLN (ν,σ2)  distribution can be derived as: 

  𝛎𝛎 = 𝐥𝐥𝐮𝐮𝐥𝐥� 𝛍𝛍𝛌𝛌
𝟐𝟐

�𝐂𝐂 𝛌𝛌+𝛍𝛍𝛌𝛌
𝟐𝟐
�   ;  𝛔𝛔 =  �𝐥𝐥𝐮𝐮𝐥𝐥 �𝐂𝐂 𝛌𝛌

𝛍𝛍𝛌𝛌
𝟐𝟐 + 𝟏𝟏� (9) 

It is possible to simulate a dataset with a size of n = 5,000 from both the NB (µ,ϕ), and PLN (ν,σ2)  
distributions. The above procedure can be repeated for N = 100,000 iterations. For each one of 
these distributions, 22 types of summary statistics are recorded. These summary statistics include 
the mean (µ), variance (𝜎𝜎2), standard deviation (𝜎𝜎), VMR, CV, skewness (skew), kurtosis (K), 
percentage of zeros (zeros), quantiles (or percentiles) in 10% increments, the 10th, 20th, 30th, and 
40th inter-quantiles (or inter-percentiles), and the range (R). A decision tree classifier (37, 38) was 
used to partition the 22-dimensional predictor space that is created by the summary statistics and 
assign a label—either NB or PLN—to each partition. Figure 2 shows the outcome of the decision 
tree classifier. Note that the tree can be used only for data with the characteristics of 0.1 < mean < 
20 and 1 < VMR < 25. Also, it is assumed that the sample size is large. 

 
Figure 2. Heuristic to select a model between the NB and PLN distributions. 

As shown in Figure 2, the population kurtosis and the percentage of zeros play a substantial role 
in deciding between the NB and PLN distributions. Overall, the PLN is recommended for 
situations when data are more skewed but have fewer zero responses, while the NB distribution is 
a better option otherwise; these results confirm the trends observed and/or reported in previous 
studies in the literature (5, 39, 40). Unlike previous studies, Figure 2 provides a more perspicuous 
characteristics-based guidance on selecting a sampling distribution between these two alternatives. 
The output of a binary classifier can be either true (T) when it correctly classifies the label of the 
distribution, or false (F) when it misclassifies the label of the correct distribution. Let the PLN and 
NB distributions, respectively, be labelled as the positive (P) and negative (N) outputs of the binary 
classification. Such definitions represent a test when the analyst assumes the NB distribution as a 
base model, while he or she seeks to know when a shift to the PLN distribution is recommended. 
Table 5 shows the confusion matrix of the binary classification given such assumptions. 
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Table 5. NB vs. PLN: Confusion Matrix Based on the Results of the Decision Tree Classifier 

Predicted PLN True NB True 
PLN 41.50% (TP) 1.18% (FN) 
NB 8.50% (FP) 48.82% (TN) 

 
The overall misclassification error is equal to 9.68% and the sensitivity [Note: 
Sensitivity=TP/(TP+FN)] and specificity [Note: Specificity=TN/(TN+FP)] of the classification 
are equal to 97.24% and 85.12%, respectively. The sensitivity of the classification is very high, 
indicating that when the outcome of the binary classifier is the PLN distribution, there is a very 
high chance that the classifier has correctly detected the label of the distribution. However, the 
specificity of the classification is not as high as its sensitivity, meaning that when the outcome of 
the classifier is the NB distribution, there are still some chances that the output label was detected 
incorrectly. When the output of the classifier is the NB distribution, the analyst may consider other 
tests as well to decide between these two distributions and/or can decide to choose an alternative 
tolerance threshold to decide between the NB and PLN.  

NB versus NB-L Heuristics 
For this comparison, the experiment was designed for datasets with the following range for the 
mean and VMR of the population that is the most common range observed in crash data: 

  0.1 < mean < 20    ;     1 < VMR < 100  

In total, 100,000 datasets (N = 100,000), each with 5,000 data points (n = 5,000), were simulated 
from the NB and NB-L distributions. The following uniform distributions were used to simulate 
the NB and NB-L parameters at each iteration of the simulation: 

µ~Uniform (0.1, 20); for both NB and NB-L 
1

1+θ
~Uniform (0, 0.5); for NB-L 

ϕ~Uniform (0.1, 10); for NB 

By simulating the mean of the NB and NB-L distributions from a uniform distribution, we make 
the distribution of the mean of the simulated datasets generated from both these distributions 
uniformly distributed. For each simulated dataset, the 22 summary statistics described in the 
previous section are recorded. A decision-tree classifier is used to partition the predictor space into 
regions that are most likely to be covered by either the NB or NB-L distributions. As described 
above, the decision-tree classifier is used for a simple and easy-to-interpret classification (although 
it is less accurate than other classification methods). Figure 3 shows the results of applying the 
decision-tree method to partition the 22-dimensional predictor space between the NB and NB-L 
distributions. Out of the 22 summary statistics used for the analysis, only the skewness of the 
population was used by the classifier in the decision tree to separate the NB-L distribution from 
the NB. As shown in Figure 3, the tree involves only one splitting rule. Starting at the top of the 
tree, it is divided into two sections based on the value of the skewness. The observations that have 
a skewness of less than 1.92 are assigned to the left branch and the “NB” label is assigned to them. 
On the other hand, when the value of the skewness is greater than 1.92, the NB-L distribution is 
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recommended. Note that the tree can only be used for data with 0.1 < mean < 20 and 1 < VMR < 
100. Also, it is assumed that the sample size is large. 

 
Figure 3. Heuristic to select a model between the NB and NB-L distributions.  

The classification between the NB and NB-L distributions can be seen in a binary-classification 
fashion. The confusion matrix for the results of the classification problem can be structured as 
shown in Table 6. The overall misclassification error (FP + FN) is equal to 5.90%. The sensitivity 
and specificity of the classification are equal to 89.96% and 99.21%, respectively.  

Table 6. NB vs. NB-L: Confusion Matrix Based on the Results of the Decision Tree Classifier 

Predicted NB-L True NB True 
NB-L 49.64% (TP) 5.54% (FN) 
NB 0.36% (FP) 44.46% (TN) 

Finite Sample Bias Adjustment 
This section presents the bias-correction procedure based on the approximated bias correction 
formulation provided by McCullagh and Nelder (8), and a case study on infrastructure safety 
evaluation. 

Methodology 
The Poisson regression assumes that the frequency of events 𝑌𝑌𝑖𝑖 (e.g., the crash count) follows a 
Poisson distribution, 
  𝑌𝑌𝑖𝑖 ~ Poisson(𝜆𝜆𝑖𝑖 ∙ 𝐸𝐸𝑖𝑖), 𝑖𝑖 = 1,2,⋯ ,𝑛𝑛, (10) 

where 𝜆𝜆𝑖𝑖  is the expected crash rate for the 𝑖𝑖𝑡𝑡ℎ  road segment or the 𝑖𝑖𝑡𝑡ℎ  driver, and 𝐸𝐸𝑖𝑖  is its 
corresponding exposure, which could be the length of the observation period or the total vehicle 
miles traveled. A log link function is used to link the expected event rate 𝜆𝜆𝑖𝑖 with a linear 
transformation of 𝑝𝑝 explanatory variables, 𝑋𝑋𝑖𝑖1,𝑋𝑋𝑖𝑖2,⋯ ,𝑋𝑋𝑖𝑖𝑖𝑖, 

  log(𝜆𝜆𝑖𝑖) = 𝑋𝑋𝑖𝑖′𝛽𝛽, (11) 

where 𝛽𝛽 is a vector of regression coefficients, 𝛽𝛽 = �𝛽𝛽0,𝛽𝛽1,⋯ ,𝛽𝛽𝑖𝑖�
′
; 𝑋𝑋𝑖𝑖 is the covariates vector for 

entity 𝑖𝑖, 𝑋𝑋𝑖𝑖 = (1,𝑋𝑋𝑖𝑖1,⋯ ,𝑋𝑋𝑖𝑖𝑖𝑖). The coefficient 𝛽𝛽𝑗𝑗 indicates the impact of the 𝑗𝑗𝑡𝑡ℎ variable on crash 
risk, 𝑗𝑗 = 1,⋯ ,𝑝𝑝. The estimation of 𝛽𝛽 is the focus of safety evaluation.  

Denote the MLE as �̂�𝛽. Based on the approximated bias provided by McCullagh and Nelder (8), 
the bias-corrected coefficient estimate 𝛽𝛽� can be calculated as 

  𝛽𝛽� = �̂�𝛽 − bıas(�̂�𝛽� ) = �̂�𝛽 − �X′W� X�
−1
X′W� 𝜉𝜉, (12) 
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where X = (𝑋𝑋1,𝑋𝑋2,⋯ ,𝑋𝑋𝑛𝑛)′,  W = cov(Y), and 𝜉𝜉 is an 𝑛𝑛-dimensonal vector with the 𝑖𝑖𝑡𝑡ℎ element 
being 𝜉𝜉𝑖𝑖 = −1

2
𝑄𝑄𝑖𝑖𝑖𝑖. 𝑄𝑄𝑖𝑖𝑖𝑖 is the 𝑖𝑖𝑡𝑡ℎdiagonal element of the matrix Q = X(X′WX)−1X.  

The bias-correction procedure is applicable to both the Poisson and NB regressions. The only 
difference is that the W�  of an NB model involves the estimated dispersion parameter. 

Results 
We applied the bias correction to a case study of infrastructure safety evaluation. The dataset 
includes information from 5,238 short road segments collected from 2012 to 2015. The total 
number of crashes was 32,298 for a total of 10,894,920 passing vehicles, resulting in the average 
crash rate being 2.96 × 10−3  crashes/passing vehicle. There are 59.9% zero responses in the 
dataset. Table B-1, in Appendix B, lists the seven covariates used in the analysis, along with the 
number of observations and percentage in each stratum (the second column). The crash frequencies 
of all strata for one covariate add up to the total of 32,298 crashes.  

The NB regression was implemented because of the existence of overdispersion. The estimated 
dispersion parameter is 2.17. Table B1 also provides the difference between bias-corrected 
coefficient estimates 𝛽𝛽� and the regular MLE �̂�𝛽, as well as the percentage change  𝛽𝛽

�−𝛽𝛽�

𝛽𝛽�
× 100%. 

The results indicate that the bias correction is generally larger for a stratum having a smaller 
number of events.  

To test if the number of crashes affects the magnitude of bias, we also conducted a bias correction 
for two hypothetical pavement datasets: a “half-year” dataset and a “quarter-year” dataset. The 
crash count for each road segment is reduced to only 1/6 and 1/12, respectively, of the original 
pavement dataset. The exposure (vehicle-miles traveled) is also reduced by the corresponding 
fraction in the two hypothetical pavement datasets, while the covariates are the same as the original 
dataset. After reducing the number of crashes, the percentage of zero responses is 76.7% and 
82.5% in the “half-year” dataset and the “quarter-year” dataset, respectively.  

By comparing the results from the original dataset and two hypothetical datasets, the results show 
that the magnitude of the correction increases with the decrease in crash frequency. This testifies 
that the number of crashes is the factor that influences the magnitude of bias rather than the number 
of observations. The balance of event counts in one stratum compared to the reference stratum also 
impacts the magnitude of bias correction. 

Decision-Adjusted Modeling Framework 
Traditional statistical model selection methods are typically based on an overall generic statistical 
metric, such as likelihood ratio test or the AUC value of the ROC. The resulting model is optimized 
according to the generic metric, which might not be optimal for the specific goal of a study. For 
example, in predicting high-risk drivers based on logistic regression, a model selected by AUC 
might perform poorly when the goal is to identify a very small percentage of the riskiest drivers. 
While the AUC criterion selects a model with respect to the entire spectrum of possible decision 
points, the prespecified small percentage of riskiest drivers concerns only that particular decision 
point. In this study, we propose a decision-adjusted modeling framework that directly links the 
study goal with a decision-based objective function in the model selection/optimization process. 



14 
 

This framework will ensure that the output model is optimized with respect to the specific study 
objective. The framework is illustrated in Figure 4. 

 
Figure 4. Decision-adjusted modeling framework. 

Based on the objective function, the model selection/optimization process includes model form 
determination, variable selection, and parameter tuning. For binary response data, the model form 
could be a logistic regression, prediction tree, neural network, or so forth. Variable selection 
determines which covariates set should be incorporated into the optimal model. As to the parameter 
tuning, it refers not only to the hyperparameter tuning for the selected model form but also to the 
critical value adjustment in building certain predictor variables. We demonstrated this framework 
using the SHRP 2 NDS data to identify optimal prediction models for high-risk drivers by 
kinematic signatures. 

Results 
We applied the decision-adjusted framework to predict a small percentage of high-risk drivers 
using the SHRP 2 NDS data. The models identify the optimal threshold values for elevated 
longitudinal acceleration (ACC), deceleration (DEC), and lateral acceleration (LAT). We 
compared the decision-adjusted model ℳ2  with two benchmark models ℳ0  and ℳ1 . These 
models are specified as:  

• ℳ0: Traditional driver assessment model, without the kinematic predictors; 
• ℳ1: Kinematic-event-based driver risk assessment model, optimized by AUC; 
• ℳ2: Kinematic-event-based driver risk assessment model, optimized by the decision rules. 

In three models, a regularized logistic regression (elastic-net) is used to assess the driver risk. In 
addition to kinematic event rates, age, gender, and crash/violation history, eight other traditional 
risk predictors are included in the model. The models’ performance was evaluated by “prediction 
precision,” the percentage of correct identifications among identified high-risk drivers. 

Generally, our proposed method ℳ2 performed the best among the three models, as shown in 
Figure 5. The decision-adjusted model improves the prediction precision by 7.8%–41.7% 
compared to baseline model ℳ0. It is also superior to ℳ1 by 6.5%–41.7%. The improvement is 
more prominent when identifying a small percentage of the riskiest drivers (e.g., <5%). ℳ1 is also 
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better than ℳ0 in the most decision spectrum. The benefit is credited to the inclusion of high g-
force event rates. The results confirm that using kinematic information can improve individual 
driver risk prediction, and the improvement is more significant when a decision-adjusted modeling 
approach is applied. Furthermore, the prominent improvement of ℳ2  when targeting a small 
percentage of high-risk drivers indicates that our decision-adjusted modeling is more desirable for 
the imbalanced data problem. 

 
Figure 5. The comparison of three models’ prediction precision, the percentage of correct identification 

among the drivers labeled by the model as high risk. 

Cluster Analysis 
The most popular method in partitional algorithms is the K-means, which is simple, efficient, and 
easy to implement (2). A similar algorithm, namely Partitioning Around Medoids (PAM) (8), can 
also be used. Unlike K-means, which creates centroids as centers of clusters, PAM identifies actual 
observations for clusters called medoids that represent different clusters. This makes PAM more 
robust to outliers compared to K-means. The Clustering Large Applications (CLARA) (8) method 
can be used to deal with larger datasets since it does not require the calculation of the entire 
distance matrix all at once, whereas PAM stores the distance matrix in central memory (9). 
Therefore, CLARA can be considered an alternative if the number of observations becomes so 
large that the memory is insufficient to store the distance matrix. Compared to CLARA and PAM, 
a more efficient algorithm, Clustering Large Applications based on RANdomized Search 
(CLARANS), was proposed in Chen and Zhang (10). Similar to CLARA, CLARANS utilizes a 
randomized search to cluster large data sets. However, unlike CLARA, CLARANS does not 
restrict the search to a localized area. Instead, it dynamically draws samples in each step to improve 
the quality of clustering. Through several experiments, it was shown that CLARANS 
outperformed both CLARA and PAM for small, medium, and large data sets (10). 

In hierarchical algorithms, Balanced Iterative Reducing and Clustering using Hierarchies (BIRCH) 
was proposed in Gan, Ma, and Wu (11) and is suitable for performing cluster analysis on very 
large numerical data sets as it considers the available memory and time constraints. BIRCH’s 
clustering decisions are not based on the entire data set and also consider the natural closeness of 
data points. BIRCH creates dendrograms, known as clustering feature trees (CF tree), that store 
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the number of data points, linear sum of the data points, and square sum of the data points in 
clusters. These CF trees are built using two parameters: a branching factor, B, and a threshold, T. 
BIRCH allows users to select a desired number of clusters or a desired threshold such as cluster 
radius or diameter. In some problems, distance-based metrics for partitioning Boolean and 
categorical data may not be suitable. A robust hierarchical clustering algorithm, ROCK, was 
proposed by Lord and Geedipally (12) that exploits a link-based approach to measure similarities 
between data points. It has also shown that ROCK has good scalability properties when dealing 
with large data sets. 

Among many approaches in different clustering algorithm categories, a few methods were selected 
to develop cluster analysis models: PAM from partitional algorithms, DIANA from hierarchical 
algorithms, and DBSCAN from density-based algorithms were examined. A sample dataset 
prepared by the Virginia Tech Transportation Institute (VTTI) was used to test these approaches. 
The sample data include 3,592 observations (rows) and 39 variables (columns). Seven variables 
(gender, age group, marital status, annual mileage, years driving, income, and site) were used to 
develop clustering models. To be consistent with the VTTI analysis, these are the same 
independent variables investigated by VTTI. Missing data were excluded, resulting in a total of 
3,237 observations.  

Results 
For several clustering algorithms, such as partitional and hierarchical approaches, it is important 
to determine the best number of clusters. The silhouette, elbow, and/or gap statistics are methods 
that are typically employed. The silhouette metric (41) shows how similar each point is to other 
points in a cluster compared to other points in the neighboring cluster. Applying the silhouette 
method, two clusters were found to be optimum for both PAM and DIANA, as shown in Figure 6 
through Figure 8. A higher silhouette value represents better clustering results. Looking at the 
silhouette plot for the DIANA method, three clusters had almost the same silhouette value as two 
clusters. Hence, the silhouette plots for three clusters are also presented. The average silhouette 
values are quite small (highest is 0.22), which suggests that there may not be a clear separation of 
the data. 

In order to implement the DBSCAN approach, two tuning parameters for Eps-neighborhood (Eps) 
and the minimum number of points (MinPts) need to be selected. The rule of thumb is to use the 
number of predictors plus one (in our case: 7 + 1 = 8) as MinPts. To select Eps, a common practice 
is to plot the k-nearest neighbor distances in the data space with k being equal to MinPts. This plot 
shows the k-distances in an ascending order. The k-distance value (i.e., Eps) that corresponds to a 
“knee” in the plot is considered as the optimal value of Eps (34). The “knee” should be detected 
as a sharp change that occurs along the k-distance plot. Looking at this plot (Figure 9), three knees 
can be detected at 8-NN values of 0.01, 0.16, and 0.29. These values resulted in an average 
silhouette width of -0.27, 0.022, and 0.088, respectively. In general, these show poor clustering 
performance as the silhouette values are very small. Even the highest value partitions the data into 
one large cluster with 3,214 data points and 23 noise points (outliers). Treating the noise points as 
a cluster, the Eps parameter was tweaked to obtain a more balanced data proportion without a 
significant decrease in the silhouette value. The Eps value of 0.28 was determined after trial and 
error, which led to one large (2,880 data points) and one small (357 outliers) cluster, with an 



17 
 

average silhouette width of 0.082. This suggests that the data space may not have varying density, 
and thus the algorithm only discovers a large cluster. 

 

 
Figure 6. Silhouette visualization (left) and best number of clusters (right) for PAM. 

 
Figure 7. Silhouette visualization (left) and best number of clusters (right) for DIANA, 2 clusters. 

 
Figure 8. Silhouette visualization (left) and best number of clusters (right) for DIANA, 3 clusters. 

DIANA showed the highest clustering performance in terms of the silhouette metric. Using the 
same metric, the DBSCAN’s clustering performance was worse than the PAM and DIANA 
algorithms. However, it may not be appropriate to favor one approach to the other solely based on 
the silhouette width value, especially when the silhouette values of different methods are close to 
each other or when they are not considerably high. In general, although a higher value of the 
silhouette width shows better clustering performance, the clustering results, serving as new 
predictors (i.e., categorical variables), can determine the actual benefit of clustering. Also, 
DBSCAN is more efficient in terms of its run time (42) compared to the other two approaches, 
and therefore is more suitable when dealing with big data. 
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Figure 9. Determining the Eps parameter for DBSCAN method. 

Discussion 

This section reviews the proposed guidelines that were produced from this research. The guidelines 
should help researchers and practitioners handle highway-safety data with different characteristics. 
When datasets have a large percentage of zero responses (50% or above), the recommendations 
are as follows: 

• When the percentage of zeros is higher than 70%, aggregate the data only if the change in 
CV of all variables when data are aggregated compared to the disaggregated data is less 
than 7%.  

• When the percentage of zeros is less than 70%, aggregate the data only if the change in CV 
of all variables when data are aggregated compared to the disaggregated data is less than 
4%.  

When data aggregation is not possible, the guidelines for selecting the appropriate model are as 
follows: 

• Select NB-L over NB when the skewness is greater than 1.92, independent of the number 
of zero responses. 

• The selection of PLN over NB is governed by the percentage of zeros and the kurtosis. The 
boundaries are presented in Figure 2. 

For datasets with a small number of crashes or that are imbalanced (small number of crashes in 
one category of a covariate), the bias-correction procedure is recommended for reducing errors 
with the estimation of the coefficients. Typically, bias adjustment should be performed when the 
number of crashes is less than 50 in any stratum. For rare-event prediction, a decision-adjusted 
framework is recommended, which will provide better predictive power.  

To discover hidden patterns in the data, especially when the dataset becomes large, cluster analysis 
can be applied to create new predictors to potentially produce insight or reduce data dimension 
(i.e., number of attributes). In particular, CLARANS from the partitional algorithms, BIRCH and 
ROCK from hierarchical algorithms, and DBSCAN from density-based algorithms have been 
identified in past efforts as approaches suitable for conducting cluster analysis when the dataset is 
fairly large. 
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Conclusions and Recommendations 

This report has documented issues and provided guidelines associated with the analysis of crash 
data. This kind of data has unique characteristics not found with datasets used in other types of 
research. Three characteristics were examined: (1) datasets with a large percentage of zeros; (2) 
datasets with few crashes (may not be necessarily characterized by having a large percentage of 
zeros); and (3) big data. These unique characteristics can negatively influence analyses of crash or 
other safety-related data. This report documented how these characteristics can be handled by 
either manipulating the dataset or providing statistical tools that are specifically tailored for these 
characteristics. Although the project provided useful guidelines, further research is recommended: 

• Examine if statistics other than the change in the coefficient of variation of the independent 
variables can be used to determine when aggregated data should be used over disaggregated 
data. 

• More statistical models should be compared using the heuristics method. 
• For datasets with a small number of crashes or that are imbalanced (i.e., small number of 

crashes in one category of a covariate), the bias-correction procedure should be tested to 
determine the boundary conditions when the procedure is no longer needed.  

• More cluster analysis methods should be examined. In addition, the predictors resulting 
from cluster analysis methods should be incorporated into crash-risk models to determine 
if they can enhance model performance and/or reduce the number of data dimensions. 

Additional Products 

The Education and Workforce Development (EWD) and Technology Transfer (T2) products created 
as part of this project can be downloaded from the Safe-D website here. The final project dataset is 
located on the Safe-D Dataverse. 

Education and Workforce Development Products 
Undergraduate and graduate courses 

• TTI/Texas A&M – CVEN 626 – Highway Safety (Fall 2019): The material for the Fall 
2019 graduate course CVEN 626 will be included in the slides and class notes. At the time 
this report was written, the class notes have not been yet updated. They will be made 
available on Dr. Lord’s website. 

• Virginia Tech – STAT4504 – Applied Multivariate Analysis (Fall 2019) and STAT5504G 
and STAT5594 – Statistical Epidemiology and Observation Study (Spring 2020): The 
models developed will be used in the multivariate statistics class STAT4504 (Fall 2019); 
the results will be used in the graduate course STAT5594, which will be offered in Spring 
2020. 

• Seminars – There were no specific training seminars that have been prepared from this 
project, but presentations were made for TRB, INFORMS and the University of Michigan. 
The first two (TRB and INFORMS) are listed on the Safe-D website. All three were 
presented by Dr. Ali Shirazi. A fourth one was presented by Maggie Mao and it is described 
below. 

https://www.vtti.vt.edu/utc/safe-d/index.php/projects/big-data-methods-for-simplifying-traffic-safety-analyses/
https://dataverse.vtti.vt.edu/dataverse/safed
https://ceprofs.civil.tamu.edu/dlord/
https://www.vtti.vt.edu/utc/safe-d/index.php/projects/big-data-methods-for-simplifying-traffic-safety-analyses/
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• Two UTC presentations/webinars are currently under preparation based on the results of 
this research. One will focus on VTTI’s work, while the other will describe the 
characteristics of the heuristics method. These presentations are anticipated to be 
performed in the fall of 2019 and will be available on the on the Safe-D website after 
completion. 

Educational Audience:  

• University 
• Professional 

Student Funding: 

• TTI – one graduate student – Ph.D., Mohammadali (Ali) Shirazi: “Advanced Statistical 
Methods for Analyzing Crash Datasets with Many Zero Observations and a Long Tail: 
Semiparametric Negative Binomial Dirichlet Process Mixture and Model Selection 
Heuristics” Status: Completed December 2018 

• Virginia Tech – one graduate student – Ph.D., Huiying (Maggie) Mao: "Decision-Adjusted 
Approach for Driving Risk Evaluation"  Status: Anticipated August 2019 

Student Enrichment: 

• For Ali Shirazi, the project has been very beneficial. In additional to adding knowledge to 
the science of highway safety research, this allowed Ali to find an academic position at the 
University of Maine. His work also helped find a postdoc position at the University of 
Michigan, which started in the fall 2018. The papers published from this work helped Ali 
secure these positions.  

• For Maggie Mao, the project provided the main motivation examples for her dissertation 
research.  Her work on this project help her to secure a postdoc position at the Statistical 
and Applied Mathematical Sciences Institute (SAMSI), one of the most prestigious 
statistical research institutions. 

• Ali gave a presentation of the work he performed on this project to professors and students 
at the University of Michigan (An Innovative Method towards Automation of Model 
Selection using Big Simulated Data and Machine Learning, GG Brown Laboratory – 2029, 
Thursday, December 6 2018). About 25 people attended the presentation. 

• Maggie gave a presentation of the work at the Joint Statistical Meeting (JSM) with the 
Transportation Statistics Interest Group (Joint Statistical Meeting, Vancouver, Canada, 
August 1st, 2018). JSM is one of the biggest conferences for the Statistics community. 

Technology Transfer Products 
The T2 portion of this project was met through the development of the guidelines described in this 
report and the Project Brief, providing a brief description of the project and summary results, 
available on the project page of the Safe-D website. In addition, the publications and presentations 
which have been produced from the research conducted in this project are listed on the project 
page of the Safe-D website.  

Data Products  
Descriptions of the Data Products for this project can be found in Appendix C.  

https://www.vtti.vt.edu/utc/safe-d/index.php/projects/big-data-methods-for-simplifying-traffic-safety-analyses/
https://www.vtti.vt.edu/utc/safe-d/index.php/projects/big-data-methods-for-simplifying-traffic-safety-analyses/
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Appendices 
 

Appendix A 

Appendix A provides the simulation protocol used in this report to study the aggregation of crash 
datasets. Let us, first, define the parameters and variables as follows: 

𝑥𝑥𝑖𝑖𝑗𝑗𝑚𝑚 : The value of the j-th covariate for i-th site at time period ‘𝑚𝑚’.  

𝜑𝜑𝑚𝑚 : Inverse dispersion parameter at each time period ‘𝑚𝑚’ calculated from real data. 

𝑦𝑦𝑖𝑖𝑚𝑚 : simulated observation for the i-th site at each period ‘m’. 

𝜇𝜇𝑖𝑖𝑚𝑚: mean response of the NB distribution at the i-th site at period ‘m’. 

𝛽𝛽𝑗𝑗: The true parameter for the j-th covariate (derived from a known model) 

𝛽𝛽𝑗𝑗𝑛𝑛
∗: The estimated parameter for the j-th covariate at iteration ‘n’ of simulation. 

The steps of the simulation protocol can be summarized as follows: 

  

1. Find the mean of crashes at each site ‘i' as follows1: 

𝜇𝜇𝑖𝑖𝑚𝑚 = 𝑒𝑒∑ 𝛽𝛽𝑗𝑗𝑥𝑥𝑖𝑖𝑗𝑗
𝑚𝑚𝑑𝑑

𝑗𝑗=1  

2. Repeat the following steps for ‘N’ times: 
2.1 Simulate the observation at each site i=1 to n at the m-th period from the NB distribution 

as follows:  

𝑦𝑦𝑖𝑖𝑚𝑚~ NB(𝜇𝜇𝑖𝑖𝑚𝑚,φm) 

2.2 Creating the experiment datasets.  
2.2.1 Create the disaggregated dataset (𝐷𝐷1) 

 

 

1 For the purpose of simulation, the 𝑥𝑥𝑖𝑖𝑗𝑗𝑚𝑚 with “NA” values are replaced with min
𝑚𝑚

(𝑥𝑥𝑖𝑖𝑗𝑗𝑚𝑚) +
max
𝑚𝑚

(𝑥𝑥𝑖𝑖𝑗𝑗𝑚𝑚)−min
𝑚𝑚

(𝑥𝑥𝑖𝑖𝑗𝑗𝑚𝑚)

𝑚𝑚
 in Step 1. 

However, the records ‘NA’ values eventually are removed in Step 2.2.1.3 and Step 2.2.2.1.  
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2.2.1.1 Create the datasets 𝐷𝐷𝑚𝑚 at each period ‘m’, with (𝑦𝑦𝑖𝑖𝑚𝑚, 𝑥𝑥𝑖𝑖𝑗𝑗𝑚𝑚) elements (where the 
index ‘i' denote a row and ‘j’ a column of the dataset).  

2.2.1.2 Merge the 𝐷𝐷𝑚𝑚 datasets into a single dataset 𝐷𝐷1.  
2.2.1.3 Remove the records of 𝐷𝐷1 that include an ‘NA’ value.  
2.2.1.4 Shuffle the records in 𝐷𝐷1. 

2.2.2 Create the aggregated dataset (𝐷𝐷2): 
2.2.2.1 Find  �̅�𝑥𝑖𝑖𝑗𝑗 = mean

𝑚𝑚
𝑥𝑥𝑖𝑖𝑗𝑗𝑚𝑚  (exclude 𝑥𝑥𝑖𝑖𝑗𝑗𝑚𝑚  with the “NA” values when �̅�𝑥𝑖𝑖𝑗𝑗  is 

calculated). 
2.2.2.2 Create the 𝐷𝐷2 dataset with (∑ 𝑦𝑦𝑖𝑖𝑚𝑚𝑚𝑚 , �̅�𝑥𝑖𝑖𝑗𝑗) elements (where the index ‘i' denote a 

row and ‘j’ a column of the dataset).  
2.2.2.3 Shuffle the records in 𝐷𝐷2. 

2.3 Refitting the simulated datasets 
2.3.1 Fit an NB GLM to 𝐷𝐷1 and record the estimated coefficients in 𝛽𝛽𝑗𝑗𝑛𝑛

∗(𝐷𝐷1). 
2.3.2 Fit an NB GLM to 𝐷𝐷1 and record the estimated coefficients in 𝛽𝛽𝑗𝑗𝑛𝑛

∗(𝐷𝐷2). 
3. Comparison. 

3.1 For each j-th covariate, find the standard deviation of the estimated coefficients over ‘n’ 
iterations and denote them by 𝛽𝛽𝑗𝑗𝑠𝑠𝑡𝑡𝑠𝑠(𝐷𝐷1) and 𝛽𝛽𝑗𝑗𝑠𝑠𝑡𝑡𝑠𝑠(𝐷𝐷2). 

3.2 Compare 𝛽𝛽𝑗𝑗𝑠𝑠𝑡𝑡𝑠𝑠(𝐷𝐷1) and 𝛽𝛽𝑗𝑗𝑠𝑠𝑡𝑡𝑠𝑠(𝐷𝐷2), the one with a smaller value indicates a more reliable 
implementation. 
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Appendix B 

Appendix B presents summary statistics for the data used for the Finite Sample Bias Adjustment 
section. 
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Table B-1. Descriptive Statistics and Corresponding Bias Magnitude for the Explanatory Variables of Pavement Data 

Variables Freq (pct) Original 
Dataset: 
No. of 
Crashes 

Original Dataset: 
 𝜷𝜷� − 𝜷𝜷� (× 𝟏𝟏𝟎𝟎−𝟑𝟑) 
(pct change) 

“Half-Year” 
Dataset: 
 No. of Crashes 

“Half-Year” 
Dataset: 
𝜷𝜷� − 𝜷𝜷� (× 𝟏𝟏𝟎𝟎−𝟑𝟑) 
(pct change) 

“Quarter-Year” 
Dataset: 
No. of Crashes 

“Quarter-Year” 
Dataset: 
𝜷𝜷� − 𝜷𝜷� (× 𝟏𝟏𝟎𝟎−𝟑𝟑) 
(pct change) 

RTE type        
I 2,236 (42.7%) 29,543  4,851  2,377  
SR 1,160 (22.1%) 1,582 0.1 (0.0%) 208 6.2 (-0.7%) 82 29.6 (-1.8%) 
US RTE 1,842 (35.2%) 1,173 0.1 (0.0%) 133 6.8 (-0.6%) 43 32.6 (-1.6%) 
Entrance/Exit        
0 5,163 (98.6%) 31,740  5,098  2,460  
1 61 (1.2%) 245 0.0 (0.0%) 41 1.2 (0.4%) 15 14.7 (-4.2%) 
2 14 (0.3%) 313 0.0 (0.0%) 53 1.0 (0.1%) 27 3.6 (0.3%) 
Intersection        
0 4,906 (93.7%) 31,236  5,032  2,425  
1 233 (4.4%) 685 0.0 (0.0%) 103 0.3 (0.0%) 50 -1.4 (-0.1%) 
2 61 (1.2%) 254 0.1 (0.0%) 37 4.9 (0.4%) 18 11.5 (0.6%) 
3 14 (0.3%) 55 0.3 (0.0%) 8 9.8 (0.4%) 4 34.1 (1.3%) 
4 24 (0.5%) 68 0.9 (0.1%) 12 19.3 (0.8%) 5 52.9 (1.7%) 
Divided Highway        
0 1,883 (35.9%) 1,913  248  100  
1 3,355 (64.1%) 30,385 0.1 (0.0%) 4,944 3.8 (-0.3%) 2,402 19.8 (-1.3%) 
Rural/Urban        
Rural 3,467 (66.2%) 2,975  365  130  
Urban 1,771 (33.8%) 29,323 0.0 (0.0%) 4,827 -1.0 (-0.1%) 2,372 -3.4 (-0.3%) 
No. of Lanes        
1 1,752 (33.4%) 1,439  174  64  
2 2,481 (47.4%) 6,439 0.0 (0.0%) 962 -1.4 (0.7%) 441 -5.3 (2.8%) 
3 624 (11.9%) 12,930 0.0 (-0.1%) 2,136 -1.7 (-0.9%) 1,038 -6.0 (-5.5%) 
4 380 (7.3%) 11,387 0.0 (-0.2%) 1,903 -1.8 (4.3%) 950 -6.1 (3.0%) 
5 1 (0%) 103 0.0 (0.0%) 17 0.0 (0.0%) 9 2.1 (0.2%) 
Pavement Type        
ACP 3,846 (73.4%) 10,626  1,615  730  
ACP/PCCP 44 (0.8%) 620 0.0 (0.0%) 102 0.8 (0.2%) 52 2.9 (0.5%) 
BST 119 (2.3%) 20 16.1 (-2.5%) 0 NA 0 NA 
PCCP 1,229 (23.5%) 21,032 0.0 (0.0%) 3,475 -0.1 (0.0%) 1,720 -0.2 (0.0%) 
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Appendix C 

Appendix C describes the characteristics of the data used in this research. 
 
Data used for decision-adjusted modeling  
 
Summary Description of Analysis: 
Predicting crash risk and identifying high-risk drivers are critical for developing appropriate safety 
countermeasures, driver education programs, and user-based insurance. However, predicting 
driver risk is a challenging task because crashes are rare events and many factors contribute to 
individual crash risk. As in-vehicle data collection becomes more prevalent and cost-effective, it 
has become more feasible to improve risk prediction by utilizing kinematics information. 
Currently, there are several challenges to implementing kinematics-based driver risk prediction 
models. We focus on two primary issues: (1) the decision rule and (2) the optimal threshold values 
for kinematics predictors. 
 
Data Scope: 
The naturalistic driving data collected from the second Strategic Highway Research Program 
(SHRP 2) is used to identify optimal prediction models for high-risk drivers by kinematic 
signatures. The dataset includes 3440 rows of drivers and 200 columns of features. Each row 
represents one driver, and the columns represent the characteristics of each driver. 
 
Data Specification: 
The specific data description is shown in this link: https://doi.org/10.15787/VTT1/QQEZOP. 
 
Data used for the adjust finite-sample bias for traffic safety modeling  
 
Summary Description of Analysis: 
The Poisson and NB models are generally estimated using the maximum likelihood method. When 
the sample size is small and/or when the number of events is limited (e.g., small number of 
crashes), the maximum likelihood estimators (MLEs) are biased and the bias could be substantial. 
This finite sample bias could lead to incorrect estimation of the impacts of risk factors and 
jeopardize traffic safety improvement efforts. This project addresses this gap by studying the finite 
sample bias for the parameter estimation of Poisson and NB regression models in the context of 
traffic safety modeling. 
 
Data Scope: 
To illustrate the benefit of bias correction and examine the magnitude of bias, we applied the bias-
correction procedure to an infrastructure safety evaluation dataset. 
 
This dataset includes information from 5,238 short road segments, which are collected from 2012 
to 2014 in the State of Washington. The length for each segment is 0.1 mile. The covariates used 
in the analysis include route type, whether the road segment is an entrance/exit, whether it is an 
intersection, whether it is a ramp, whether it is a wye connection, whether it is a divided highway, 
rural/urban, number of lanes, pavement type, friction, gradient, and horizontal curvature. 
 

https://doi.org/10.15787/VTT1/QQEZOP
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Data Specification: 
The specific data description are listed in this link: https://doi.org/10.15787/VTT1/QQEZOP. 
 
In order to comply with participant informed consent and IRB requirements, a portion of this data 
set is governed by a Data Use License (DUL). Additionally, the other portion of the data will not 
be available for re-use. Please send inquiries to datasharing@vtti.vt.edu. 
 
Link for Data: 
https://doi.org/10.15787/VTT1/QQEZOP 
 
Public Link for Project: 
https://www.vtti.vt.edu/utc/safe-d/index.php/projects/big-data-methods-for-simplifying-traffic-
safety-analyses/ 
 

 

https://doi.org/10.15787/VTT1/QQEZOP
mailto:datasharing@vtti.vt.edu
https://doi.org/10.15787/VTT1/QQEZOP
https://www.vtti.vt.edu/utc/safe-d/index.php/projects/big-data-methods-for-simplifying-traffic-safety-analyses/
https://www.vtti.vt.edu/utc/safe-d/index.php/projects/big-data-methods-for-simplifying-traffic-safety-analyses/
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