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Abstract 
Growing interest in accurately estimating nonmotorized activities has generated a large number of studies 
over the past several years. The use of the direct-demand modeling approach to predict pedestrian and 
bicyclist volume is gaining attention due to its simplicity in application and the recent availability of large-
scale datasets. While the objectives of the studies are similar, researchers and transport planners have used a 
myriad of approaches based on the magnitude of the available data and the characteristics of the study area. 
Preference for explanatory variables often varies by location and time period. Also, different modeling 
approaches have different strengths and weaknesses. This report summarizes the challenges and 
opportunities reflected in the literature associated with the use of direct-demand models, and compares the 
commonalities and site-specific approach differences. This report also discusses the transferability of the 
models under certain conditions. Significant explanatory variables and their interaction with nonmotorized 
volume across studies are summarized. The relevant findings may be important to decision makers, and 
observations about the variations in the different approaches may inform future studies.  
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Executive Summary 
Walking and bicycling make up a relatively small portion of transportation in the United States and yet 
account for a disproportionate share of the total fatal and serious injury crashes. Unfortunately, the lack of 
availability of nonmotorized exposure data often makes it difficult to discern a trend in crash rates and to 
identify high-risk locations. Transportation researchers and several federal agencies have highlighted the 
need for good exposure data to measure pedestrian and bicyclist risks, acknowledging that nonmotorized 
volume/exposure is one of the least understood areas for transportation planners. The counts for pedestrian 
and bicycle traffic are the key input for exposure analysis. Counts can either directly measure exposure on 
specific facilities or help agencies develop and calibrate network and regional models that evaluate exposure 
at various geographic scales. Among various modeling-based approaches for exposure analysis, the direct 
(facility) demand model is the most frequently used approach in the area of pedestrian/bicyclist safety.  

The direct-demand model relates walking and bicycling demand directly to various associating factors such as 
sociodemographic factors and land use characteristics. Studies dating back 50 years have used this modeling 
approach to forecast nonmotorized traffic, and it has been widely used in different areas of transportation. 
Recently, this approach has attracted attention because it benefits from the availability of a large volume of 
good-quality data and spatial database management software such as geographic information systems, and 
results in comparatively simple tools that enable transport planners to predict nonmotorized traffic at 
relevant locations where count data are not available.  

This report reviewed various studies that used the direct-demand modeling approach to estimate pedestrian, 
bicycle, and trail traffic volume at different locations. While the objectives of the studies are similar, 
researchers and transport planners have used a myriad of approaches based on the magnitude of the 
available data and the characteristics of the study area. This report summarizes the challenges and 
opportunities reflected in the literature associated with the use of the direct-demand models and compares 
the commonalities and differences in the site-specific approaches.  

The generalized approach to develop a direct-demand model includes selection of a wide array of 
independent variables, often at various spatial scales, and choice of a suitable analysis method to estimate 
pedestrian, bicycle, or trail traffic in an area or location. Typically, the dependent variables of direct-demand 
models are pedestrian, bicycle, or trail traffic volumes for various time periods, such as during the peak 
period, hourly, daily, or annually. While some research has directly used data for the specific collection 
period, other studies have expanded short-period data to longer periods by using a scaling factor to be 
integrated and used in models. Studies have also explored a wide array of independent variables. Preference 
for explanatory variables often varies by location and time period. To review the independent variables used 
in these studies, this report categorizes the variables into nine groups: demographic, socioeconomic, 
network/interaction with vehicle traffic, pedestrian- or bicycle-specific infrastructure, transit facilities, major 
generators, weather and environmental, temporal or time related, and land use factors. Studies have 
highlighted that walking and bicycling trip behaviors differ substantially and need to be investigated 
separately. To identify the impact of land-use and built-environment characteristics on nonmotorized 
volume, a number of studies have considered a range of buffer widths. Investigating the influence of various 
independent variables by different buffer widths, studies have suggested that the best model may be 



 

Page 7 of 49 
 

obtained using different scales of buffer zones for different variables because the variables are unlikely to be 
significant at the same buffer scale. To explore whether the variables have a consistent impact on 
nonmotorized volume across the studies, this report identifies the positive or negative impact of each of the 
significant variables on pedestrian, bicycle, and trail traffic across studies. It was observed that often the 
impact of the same independent variable varies across studies, most likely because of the land use 
characteristics of the study location. A wide variety of approaches and methods (e.g. ordinary least squares, 
negative binomial, and Poisson models) have been used in predicting nonmotorized activity using direct-
demand models. Through the exploration of a wide array of modeling techniques, the majority of the studies 
have acknowledged the suitability of negative binomial models in predicting pedestrian and bicyclist volume. 

The direct-demand modeling approach has some advantages over some other modeling approaches. The 
major advantage of the direct-demand modeling approach is that it can be developed largely using existing 
data and common software packages. Because the model explains the impact of different factors that 
influence people’s travel choice, it can provide important contributions to the decision-making process. For 
example, a positive association between major streets and nonmotorized volume may promote initiatives 
such as Complete Streets. The significance of independent variables such as bus stops and off-street trails, at 
a small spatial scale, indicates that targeted improvements in infrastructure could encourage nonmotorized 
activities. However, the model has some limitations, especially when transferred far into the future and for 
large areas, and researchers and practitioners need to be judicious in developing and applying these models. 

Although significant progress can be observed in the use of direct-demand modeling to estimate 
nonmotorized activity, challenges in data collection and model interpretation are yet to be fully resolved. The 
insights and findings in this report are intended to inform future research and transport-related policy 
making. 

 



Introduction 

Background 
Recognizing the benefits of nonmotorized activity in physical fitness and sustainable transportation 
development, health advocates and transport planners have been steadfast in promoting walking and biking 
over the past several years. With the increasing development of pedestrian- and bicyclist-friendly 
infrastructures and design improvements, and perhaps the help of campaigns encouraging walking and 
bicycling, several U.S. cities are seeing a rise in nonmotorized activity. The American Community Survey 
reported that from 2000 to 2012, bicycle trips had the largest increase of any commuting mode (McKenzie, 
2014). Although it varies widely by location, walking also appears to be a popular mode among young 
workers and students in some cities (McKenzie, 2014). However, walking and bicycling make up a relatively 
small portion of commuting activity in the United States (Centers for Disease Control and Prevention, 2016). 

Despite their relatively low share of overall traffic, pedestrians and bicyclists account for a disproportionate 
share of the total fatal and serious injury crashes in the United States. In 2015, 5,376 pedestrians were killed 
and around 70,000 pedestrians were injured (National Highway Traffic Safety Administration, 2016). That 
same year, over 1,000 bicyclist deaths and almost 467,000 bicycle-related injuries were reported (Centers for 
Disease Control and Prevention, 2017). These two modes accounted for around 18 percent of the total U.S. 
traffic fatalities that year (National Highway Traffic Safety Administration, 2016). Unfortunately, the lack of 
exposure data for nonmotorized vehicles often makes it difficult to discern a trend in crash rates and identify 
high-risk locations (Turner et al., 2017). A National Highway Traffic Safety Administration and Federal 
Highway Administration (FHWA) report describes the need for good exposure data to measure pedestrian 
and bicyclist risks, stating that exposure for nonmotorized travel is one of the least understood areas for 
transportation planners (Hedlund, 2000). In addition to safety analysis, planners and decision makers need a 
reliable estimate of the current and future nonmotorized activity demand to plan and manage resources. Due 
to a lack of reliable volume estimates, bicycle development projects are often at a disadvantage when 
competing with projects for motorized vehicles despite their enormous potential to develop sustainable 
communities (Gosse and Clarens, 2014).  

The question of how many people actually use current pedestrian or bicycle facilities, or how many will use a 
new or improved facility, can be answered by demand forecasting models that predict future levels of 
pedestrian and bicycle travel. The compelling benefits of nonmotorized demand forecasting modeling include 
better planning of infrastructure requirements, prioritization of projects based on benefits, and assessment 
of the safety of nonmotorized modes by developing exposure information for crash/safety models (Schwartz 
et al., 1999; Molino et al., 2009; Schneider et al., 2009a; Schepers, 2012; Aoun et al., 2015). Demand 
forecasting approaches can answer policy makers’ most frequently asked questions (Porter et al., 1999), such 
as: 

• How many people will use a new facility? 
• Will a new facility increase demand? 
• How will the facility affect overall mobility, traffic congestion, or air quality conditions? 
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Furthermore, some modeling approaches are particularly useful for isolating and quantifying the influence of 
specific factors on nonmotorized travel behavior and for assessing the interaction among the factors (Bhat et 
al., 2005). A comprehensive understanding of the influencing factors is also beneficial for long-term decision 
making. For example, the influence of precipitation on nonmotorized activity reveals people’s reluctance to 
walk or bicycle in the rain, thus showing the need for measures to ensure pedestrian and bicyclist safety 
during adverse weather conditions (Lindsey, 2011).  

The demand forecasting approaches vary widely in the quantity, specificity, and scale of data used. Data used 
for demand forecasting models can range from readily available census data to continuous cell phone or 
global positioning system (GPS) tracking data (Aoun et al., 2015). Although the methods of collecting 
motorized traffic data are well established and practiced by several transportation agencies, only a few states 
and municipalities have a formal approach for counting nonmotorized traffic (Fagnant and Kockelman, 2016). 
Often, transportation agencies quantify nonmotorized activity through manual short counts performed by 
staff and volunteers at sites. The amount of data collected by this method is limited and often not 
representative of the actual demand pattern over the course of days, months, or seasons (City of 
Greensboro, North Carolina, 2015). Moreover, systematic effort is required to gather and analyze data to 
understand the prevailing nonmotorized traffic patterns (Handy and McCann, 2010). Hunter and Huang 
(1995) looked at pedestrian and bicyclist counts in different locations and concluded that even within the 
same facility, pedestrian and bicycle activity varies widely with location and time. The authors also concluded 
that the short-term counts in many studies were not representative enough to be generalized and used in 
modeling and decision making. While a number of early studies have used short counts to estimate average 
daily or annual volume, continuous count data are necessary to account for daily, weekly, and seasonal 
variations in nonmotorized activity (Schneider et al., 2009b). Recently, several automated technologies such 
as pneumatic tubes, inductive loops, thermal cameras, infrared sensors, magnetometers, piezoelectric 
devices, radar sensors, and video imaging have been used to increase the accuracy of walking and bicycling 
data (Levinson et al., 2016; Nordback et al., 2016). A number of cities have established a robust program of 
continuous, automated pedestrian and bicycle counters to observe nonmotorized activity data. However, the 
count observations cannot be considered immediately policy relevant until they are scaled to a long-term 
representative value (Gosse and Clarens, 2014). Moreover, it is not cost effective to install automatic sensors 
at every location in a city to monitor continuous pedestrian and bicycle volume data (El Esawey et al., 2015). 

The Current Study in Context 
The counts for pedestrian and bicycle traffic are the key input for exposure analysis at a specific scale. As part 
of a recent FHWA project, Turner et al. (2017) conducted a comprehensive review of the methods for 
estimating exposure for nonmotorized traffic and indicated that the counts can either directly measure 
exposure on specific facilities, or help agencies develop and calibrate network and regional models that 
evaluate exposure at various geographic scales. Acknowledging the limitations of exposure analysis based 
solely on direct measurement, the authors identified several modeling-based methodologies for exposure 
analysis. Among these, Turner et al. (2017) highlighted that the direct (facility) demand model is the most 
frequently used modeling approach in the area of pedestrian/bicyclist safety. The other approaches include 
regional travel demand models (e.g., trip-based models and activity-based models), trip generation and flow 
models (e.g., pedestrian trip generation and flow models, and network simulation models), geographical 
information system (GIS)–based models (e.g., walk accessibility models), simulation-based traffic models 



 

Page 10 of 49 
 

(e.g., dynamic traffic assignment models), and other special focused models such as bicycle route choice 
models. While some of these methodologies are widely used by practitioners and researchers, some have 
been used infrequently or not at all; however, Turner et al. (2017) discussed different methods by explaining 
their potential in estimating exposure for nonmotorized travel. In addition, while some of these models 
provide direct volume exposure estimate (e.g., direct-demand models or regional travel demand models), the 
others (e.g., bicycle route choice models) need to be integrated into various tools to obtain the exposure 
estimate.  

Emerging technologies are also paving the way for refining data collection methods to accurately assess 
demand in an easy and cost-effective way (Anda et al., 2017). GPS-enabled smartphones coupled with 
applications can track road users and their travel activities. App-based counting software such as 
Counterpoint; GPS-enabled route trackers such as Strava Metro, Cycletracks, and Cycle Atlanta; and GPS-
enabled route trackers with hardware (magnetometers and infrared cameras) such as Ride Report are being 
used to collect pedestrian and bicyclist trip data, which public agencies then purchase and analyze for 
planning purposes (O’Toole and Piper, 2017). The availability of large-scale comprehensive datasets could 
provide advantages to several demand forecasting approaches. Studies indicate that the availability of a large 
volume of good-quality data is expected to be beneficial for two general classes of models: choice-based 
regional transportation models and direct- (or facility-) demand models (Kuzmyak et al., 2014), the latter 
being the focus of this report.  

This report provides an extensive review of direct-demand modeling to estimate nonmotorized activity. 
Direct-demand models have been acknowledged as a useful tool for generating spatial estimates of 
nonmotorized activity and producing generalized results about the influence of specific built-environment 
features on pedestrian and bicycle traffic. The models are comparatively simple tools that enable transport 
planners to predict nonmotorized traffic at relevant locations where count data are not available.  

The review presented here is based on both published and unpublished articles, papers, and reports. The 
majority of the studies were conducted in the United States, but examples are also included from Canada and 
Europe. 

The remainder of this report is organized into the following sections: 

• “Direct-Demand Model Studies”—an overview of direct-demand models and an in-depth 
comparative analysis of studies and noteworthy findings. 

• “Data Analysis”—a discussion of the data analysis procedures and the dependent and independent 
variables. 

• “Relationship with Independent Variables”—an overview of the nature of interaction between the 
volume and explanatory factors. 

• “Model Benefits and Limitations”—a summary of the advantages and limitations of direct-demand 
models.  

• “Conclusion”—a summary of findings and conclusions. 
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Direct-Demand Model Studies  

An Overview of Direct-Demand Models 
The increasing interest in forecasting nonmotorized travel demand has given rise to prolific research activity 
over the past several years. The traditional regional demand forecasting approach is a four-step process: 

1. Trip generation. 
2. Trip distribution. 
3. Mode share. 
4. Traffic assignment (Schwartz et al., 1999). 

Other modeling approaches include direct-demand models, GIS-based models, trip generation and flow 
models, network analysis models, discrete-choice models, simulation-based traffic models, and more (Turner 
et al., 2017). The available modeling approaches have widely varying functions, strengths, and limitations. 
One of the most frequently used modeling approaches to estimate nonmotorized volume is the direct-
demand model, which predicts volume or flow by combining all the elements of trip generation, attraction, 
distribution between zones, and modal choice in a single model (Domencich and McFadden, 1974).  

Developed in the 1960s, direct-demand models have been widely used in estimating demand in different 
areas of transportation, such as nonmotorized demand (Pushkarev and Zupan, 1971), intercity passenger 
travel demand (Kraft, 1963), inter-urban rail travel demand (Wardman, 1997), air travel demand (Wardman 
et al., 1994), inter-regional commodity flow (Ranaiefar et al., 2014), and regional road freight movement 
(Sjafruddin et al., 1999). The model is comparable to no-constraint gravity models (Ranaiefar et al., 2014) and 
relates travel demand directly to mode, trip, and traveler attributes using different forms of regression 
analysis (Ortuzar and Willumsen, 2011). The resulting models can be used to predict travel activity at similar 
locations without counts. The models are widely used due to their simplicity in understanding and 
application. The approach is convenient, especially when it is impractical to collect continuous data at all 
locations in a large community (Schneider et al., 2012). 

The concept of using a direct-demand model to estimate nonmotorized activity is not new. Studies dating 
back 50 years have forecast nonmotorized traffic using count and spatial data. Pushkarev and Zupan (1971) 
collected pedestrian count data using aerial photography in Manhattan, New York, and carried out multiple-
correlation analysis models to forecast volume based on surrounding land-use characteristics such as 
walkway space and building floor space type. Behnam and Patel (1977) developed stepwise regression 
models where the pedestrian volume per hour per block was forecast based on land-use variables that 
included commercial space, office space, cultural and entertainment space, manufacturing space, residential 
space, parking space, vacant space, and storage and maintenance space. 

Despite these early efforts, practitioners in the field did not widely recognize and adopt the approach, in part 
because of the difficulties in assembling a large amount of spatial data. This problem can now be overcome 
because of the availability of data and spatial database management software such as GIS (Lindsey, 2011). 

http://www.sciencedirect.com/science/article/pii/0047272774900036#bBIB4
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Review of Nonmotorized Direct-Demand Models  
This section of the report reviews the studies that have used the direct-demand modeling approach to 
estimate pedestrian, bicycle, and trail traffic activity. The studies show several design differences. Data 
collection approaches range from short-term manual observation to continuous automated counting. The 
counts were collected on signalized and unsignalized intersections or at the midblock locations along the 
street segments. Choice of explanatory variables and statistical method varies widely across the studies. Few 
of the studies applied their models to predicting traffic in similar locations without counts. Although all of the 
researchers acknowledged the need for model validation, few of them validated their models. Compared to 
earlier studies, the more recent studies generally used more extensive datasets and exhibited improvements 
in model building and validation. Table 1 summarizes the commonalities and differences of several studies 
and discusses their coverage scale, application scale, methods, validation, explanatory variables, and 
limitations. The table is followed by a brief discussion of some unique approaches and noteworthy 
observations of some of the recent research.  

A number of studies have developed multiple statistical models for comparison. Table 1 lists the significant 
dependent variables (P < 0.05) but only discusses models with the best prediction accuracy (according to the 
studies). Moreover, some studies have also generated separate models for specific times and locations in 
addition to an overall model, which is aggregate in nature. Due to space constraints, the significant 
explanatory variable column lists only the findings of the aggregated models. The comment section briefly 
discusses the limitations and future scope outlined by the studies.  
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Table 1. Direct-Demand Models to Estimate Nonmotorized Traffic Volumes. 

Author (Date) 
Coverage and 

Data Collection 
Scale 

Count Type 
and Time 

Application 
Scale 

Analysis 
Methods 

Model 
Validation 

 

Initial 
Number of 
Variables 

and Buffer 
Sizes 

Significant Explanatory Variable 
(Buffer Size) 

Comment  
(Limitations and 
Future Scope If 
Outlined by the 

Study) 
Pedestrian Bicycle 

Hankey et al. 
(2017) 

Location: 
Blacksburg, VA  
Count type and 
coverage: 
pedestrian and 
bicyclist counts 
at 101 locations 
on different 
street and trail 
segments 

Data collection 
time and type: 
continuous 
counts for 
1 year (2015) at 
four sites and a 
1-week count 
at 97 sites  
Count method: 
pneumatic 
tubes, passive 
infrared, and 
radio beam 

All street and 
trail segments 
in Blacksburg 

Stepwise 
linear 
regression 

Validated by 
goodness of 
fit, internal 
validation, 
and a Monte 
Carlo–based 
20% holdout 
analysis 

18 variables 
at 11 buffer 
sizes 

Sidewalk length; 
off-street trail 
length; 
household 
income; 
residential 
addresses count 
in buffer; 
population 
density; bus 
stop count in 
buffer 

Household 
income; 
centralitya; 
population 
density; on-street 
facility length; 
major roads 
length 

Represents a 
unique small 
college town 
population. Factor 
groups to develop 
scaling factors were 
not developed, 
which may result in 
bias in average 
annual daily traffic 
estimation. 

Hankey and 
Lindsey (2016) 

Location: 
Minneapolis, 
MN 
Count type and 
coverage: 
pedestrian and 
bicyclist counts 
at 471 locations 
on different 
street and trail 
segments 

Data collection 
time and type: 
2-hour (4 to 
6 p.m.) counts 
from 2007 to 
2014, 
weekdays in 
mid-September  
Count method: 
trained 
volunteer-
based counts 

Midpoint of 
each block for 
the entire 
transportation 
network (both 
streets and 
trails) in 
Minneapolis 

Stepwise 
linear 
regression 
model 

Internal 
validation 
and Monte 
Carlo–based 
10% holdout 
analysis 

16 variables 
at 12 buffer 
sizes 

Major roads 
(200 m); 
off-street trails 
(3,000 m); 
transit stops 
(400 m); retail 
areas (100 m); 
industrial areas 
(1,250 m); open 
space areas 
(100 m); job 
accessibilityb; 
population 
density (750 m) 

Off-street trails 
(200 m); on-street 
facilities (100 m); 
retail areas 
(100 m); industrial 
areas (1,250 m); 
open space areas 
(200 m); job 
accessibility; 
population 
density (1,250 m); 
precipitation; 
temperature 

Proposed future 
research to 
investigate how 
count programs 
developed for 
spatial modeling 
can decrease the 
potential for spatial 
autocorrelation and 
improve the 
performance of the 
facility-demand 
models. 
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Author (Date) 
Coverage and 

Data Collection 
Scale 

Count Type 
and Time 

Application 
Scale 

Analysis 
Methods 

Model 
Validation 

 

Initial 
Number of 
Variables 

and Buffer 
Sizes 

Significant Explanatory Variable 
(Buffer Size) 

Comment  
(Limitations and 
Future Scope If 
Outlined by the 

Study) 
Pedestrian Bicycle 

Fagnant and 
Kockelman 
(2016) 

Location: 
Seattle, WA  
Count type and 
coverage: 
bicycle counts 
at 251 
intersections  

Data collection 
time and type: 
Tuesdays 
through 
Thursdays, 
6 a.m. to 9 a.m. 
or 3 p.m. to 
6 p.m. 
Count method: 
manual 
observation 

Community of 
Shoreline, WA 

Negative 
binomial and 
Poisson 
models 

Not reported  23 variables Not reported Employment 
density; bicycle-
trail access; 
bridges; number 
of lanes; curb-
lane width; bike-
lane width; 
separated paths; 
speed limit; 
residential areas; 
morning period 
count; League of 
American 
Bicyclists (LAB) 
goldc 

The model may fall 
short of a 
comprehensive 
count program. 

Tabeshian and 
Kattan (2014) 

Location: 
Calgary, Canada 
Count type and 
coverage: 
pedestrian and 
bicycle counts 
at 34 
intersections 
located on 
major arterials 
(excluding 
downtown) 

Data collection 
time and type: 
7 to 9 a.m., 
11 a.m. to 
1 p.m., 4 p.m. 
to 6 p.m. in 
different 
months from 
2007 to 2012 
Count method: 
manual 
observation 

Not reported Multiple 
linear and 
Poisson 
models 

Validation 
based on 
prediction 
models of 18 
intersections 
in southwest 
Calgary 

26 variables 
at four 
buffer sizes 

Number of bus 
stops (0.1 mi); 
street length 
(0.5 mi); total 
bus-km of bus 
routes (0.75 mi); 
total number of 
dwell counts 
(0.5 mi); 
hectares of 
commercial 
space (0.25 mi); 
number of 
schools (0.5 mi); 
pathway length 
(0.25 mi) 

Hectares of 
commercial space 
(0.10 mi); 
hectares of low-
density residential 
space (0.10 mi); 
number of bus 
stops (0.25 mi); 
hectares of 
institutional space 
(0.50 mi); number 
of street lanes 
reaching an 
intersection 

Small sample size. 
The model excludes 
the downtown 
area. 
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Author (Date) 
Coverage and 

Data Collection 
Scale 

Count Type 
and Time 

Application 
Scale 

Analysis 
Methods 

Model 
Validation 

 

Initial 
Number of 
Variables 

and Buffer 
Sizes 

Significant Explanatory Variable 
(Buffer Size) 

Comment  
(Limitations and 
Future Scope If 
Outlined by the 

Study) 
Pedestrian Bicycle 

Strauss et al. 
(2013) 

Location: the 
island of 
Montreal, 
Quebec, 
Canada  
Location type 
and size: 
bicycle activity 
counts at 647 
signalized 
intersections 

Data collection 
time and type: 
8-hour counts 
between April 
and November 
2009 (when 
seasonal 
bicycle facilities 
are open) 
Count method: 
manual 
observation 
and loop 
detector 

Not reported Bayesian 
modeling 

Not reported 14 variables 
at three 
buffer sizes 

Not reported Number of 
employment 
(400 m); presence 
of schools 
(400 m); presence 
of subway 
stations (800 m); 
land-use mix 
(800 m); length of 
bicycle facilities 
(800 m); 
commercial land-
use area (50 m); 
presence of three 
approaches 

A larger sample of 
intersections is 
needed to validate 
the results and 
draw more solid 
conclusions. 

Strauss and 
Miranda-
Moreno 
(2013) 

Location: the 
island of 
Montreal, 
Quebec, 
Canada 
Location type 
and size: 
bicycle activity 
counts at 758 
intersections 

Data collection 
time and type: 
8-hour 
weekday 
counts during 
2008 and 2009 
Count method: 
manual 
observation 
and loop 
detector 

Not reported Log-linear 
and negative 
binomial 
models 

Not reported 27 variables 
at four 
buffer sizes 

Not reported Number of 
employment 
(400 m); number 
of schools 
(400 m); presence 
of subway 
stations (150 m); 
number of bus 
stops; land-use 
mix (800 m); 
mean income 
(50 m); presence 
of a bicycle lane; 
presence of a 
cycle track; length 
of bicycle facilities 
(800 m); presence 
of parking 
entrance 

Future study may 
use additional 
variables such as 
the location and 
proximity to public 
bike stations, and 
elevation and slope 
of the intersection 
and its surrounding 
area. 
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Author (Date) 
Coverage and 

Data Collection 
Scale 

Count Type 
and Time 

Application 
Scale 

Analysis 
Methods 

Model 
Validation 

 

Initial 
Number of 
Variables 

and Buffer 
Sizes 

Significant Explanatory Variable 
(Buffer Size) 

Comment  
(Limitations and 
Future Scope If 
Outlined by the 

Study) 
Pedestrian Bicycle 

Wang et al. 
(2013) 

Location: 
Minneapolis, 
MN 
Location type 
and size: trail 
traffic counts at 
six locations on 
multiuse trails 

Data collection 
time and type: 
varying number 
of daily counts 
from June 2010 
to September 
2011 
Count method: 
active infrared 
monitors 

Not reported Negative 
binomial 
model 

Validation 
based on 
predicted 
trail traffic 
for each 
location for 
1 week, not 
included in 
the dataset, 
with the 
actual count 
during that 
time  

10 variables Percent of African-American 
residents; percent with a college 
education; percent of population 
over 64 or below 6; median 
household income; population 
density; recorded high temperature; 
deviation from the 30-year normal 
temperature; precipitation; average 
wind speed; weekends  

Counters cannot 
distinguish 
between 
pedestrians and 
bicyclists. Data are 
available for only 
six locations for 
unequal time 
periods. 

Schneider et 
al. (2012) 

Location:  
San Francisco, 
CA 
Location type 
and size: 
counts of 
pedestrians 
who crossed 
each leg of the 
50 intersections 

Data collection 
time, type, and 
count method: 
manual 2-hour 
counts at 28 
intersections in 
September 
2009 and July 
and August 
2010; 
automated 
counters at 25 
intersections in 
March and 
September 
2010 (hourly 
counts for 3 to 
4 weeks at each 
intersection) 

Not reported Log-linear 
model 

Validated 
against 2002 
pedestrian 
volume at 
other 49 
four-way 
intersections  

16 variables Number of 
households 
(0.25 mi); total 
employment 
(0.25 mi); 
intersection is in 
a high-activity 
zone; maximum 
slope on any 
intersection 
approach leg; 
intersection is 
within 0.25 mi 
of a university 
campus; 
intersection is 
controlled by a 
traffic signal  

Not reported The models may 
not perform well 
for special 
attractors. Future 
studies may test 
additional 
variables. 
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Author (Date) 
Coverage and 

Data Collection 
Scale 

Count Type 
and Time 

Application 
Scale 

Analysis 
Methods 

Model 
Validation 

 

Initial 
Number of 
Variables 

and Buffer 
Sizes 

Significant Explanatory Variable 
(Buffer Size) 

Comment  
(Limitations and 
Future Scope If 
Outlined by the 

Study) 
Pedestrian Bicycle 

Hankey et al. 
(2012) 

Location: 
Minneapolis, 
MN 
Location type 
and size: 
pedestrian and 
bicyclist counts 
at 259 
locations, 
midblock 
portion of each 
street or 
sidewalk 
segment 

Data collection 
time and type: 
total 330 
2-hour (4 p.m. 
to 6 p.m.) 
counts and 43 
12-hour 
(6:30 a.m. to 
6:30 p.m.) 
counts on 
weekdays in 
September 
during 2007–
2010 
Count method: 
manual 
observation  

Estimate 
12-hour non-
motorized 
traffic counts 
for nearly all 
street 
segments in 
Minneapolis 
(12,481 streets) 

Ordinary 
least squares 
(OLS) and 
negative 
binomial 
models 

Validates 
models 
based on 
predicted 
non-
motorized 
traffic at 
85 locations 
(46 new and 
39 
previously 
sampled 
locations) 

14 variables Percent of non-
White residents; 
percent of 
residents with a 
college 
education; 
distance from 
the central 
business district 
(CBD); distance 
from the 
nearest body of 
water; recorded 
precipitation; 
principal arterial 
street (of count 
location); 
arterial street 
(of count 
location); 
collector street 
(of count 
location)  

Percent of non-
White residents; 
percent of 
residents with a 
college education; 
median 
household 
income; measure 
of mixing of land 
uses; distance 
from the CBD; 
recorded 
precipitation; off-
street trail (of 
count location); 
arterial street (of 
count location); 
year 

Since counts are 
from September, 
results should be 
interpreted as 
typical traffic 
volumes during 
September only. 
More data are 
required to better 
explain between-
location and within-
location variability. 
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Author (Date) 
Coverage and 

Data Collection 
Scale 

Count Type 
and Time 

Application 
Scale 

Analysis 
Methods 

Model 
Validation 

 

Initial 
Number of 
Variables 

and Buffer 
Sizes 

Significant Explanatory Variable 
(Buffer Size) 

Comment  
(Limitations and 
Future Scope If 
Outlined by the 

Study) 
Pedestrian Bicycle 

Lindsey et al. 
(2012) 

Location: 
Minneapolis, 
MN 
Location type 
and size: 
pedestrian and 
bicyclist counts 
at 240 different 
roads and trail 
locations 

Data collection 
time and type: 
mostly 2-hour, 
peak-hour 
counts and 
some 12-hour 
counts from 
2007 to 2009, 
in September 
or October, and 
occasionally at 
different times 
throughout the 
year 
Count method: 
manual 
observation 

Not reported OLS and 
negative 
binomial 
models 

Model based 
on 2007–
2009 data 
was used to 
predict 2010 
traffic to 
compare 
with the 
actual 2010 
count value 

20  
variables 

Percent of non-
White residents; 
percent of 
residents with a 
college 
education; 
recorded 
precipitation; 
principal arterial 
street (of count 
location); 
arterial street 
(of count 
location); and 
collector street 
(of count 
location); 
distance from 
the CBD; 
distance from 
the nearest 
body of water 

Percent of non-
White residents; 
percent of 
residents with a 
college education; 
median 
household 
income; measure 
of mixing of land 
uses; distance 
from the CBD; 
recorded 
precipitation; off-
street trail (of 
count location); 
arterial street (of 
count location); 
on-street bicycle 
facility (of count 
location); year 

Pedestrian and 
bicyclist manual 
counts are not 
available for all 
months of the year, 
and the data count 
locations are not 
representative of 
the whole city. 
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Author (Date) 
Coverage and 

Data Collection 
Scale 

Count Type 
and Time 

Application 
Scale 

Analysis 
Methods 

Model 
Validation 

 

Initial 
Number of 
Variables 

and Buffer 
Sizes 

Significant Explanatory Variable 
(Buffer Size) 

Comment  
(Limitations and 
Future Scope If 
Outlined by the 

Study) 
Pedestrian Bicycle 

Lindsey (2011) Location: 
Minneapolis, 
MN 
Location type 
and size: 
pedestrian and 
bicyclist counts 
at 240 locations 
on various 
street types 

Data collection 
time and type: 
total 352 
2-hour and 43 
12-hour 
observations 
between 2007 
to 2010 during 
fall of each year 
Count method: 
manual 
observation 

Models were 
used to predict 
12-hour non-
motorized 
traffic counts 
for all street 
segments 
(n = 12,481) in 
Minneapolis 

OLS model Not reported 25  
variables 

Land-use mixd; 

percent of Black 
residents; 
percent of 
college 
students; 
median 
household 
income; 
recorded high 
temperature; 
minor arterial 
road facility of 
count location 
and major 
collector road 
facility of count 
location 

Land use mix; 
percent of Black 
residents; percent 
of college 
students; percent 
of residents 
younger than 5 
and older than 65 
years; median 
household 
income; recorded 
high temperature; 
deviation from 
daily high 
temperature; 
minor arterial 
with a bicycle 
facility (of count 
location); minor 
arterial without a 
bicycle facility; 
off-street trail 
facility (of count 
location) 

The model is not 
representative of 
the full range of 
weather conditions 
throughout the 
year. Additional 
measures of 
income, education, 
population age 
distribution, access 
to employment, 
access to 
recreation and 
other destinations, 
and even street 
classification could 
be tested. 
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Author (Date) 
Coverage and 

Data Collection 
Scale 

Count Type 
and Time 

Application 
Scale 

Analysis 
Methods 

Model 
Validation 

 

Initial 
Number of 
Variables 

and Buffer 
Sizes 

Significant Explanatory Variable 
(Buffer Size) 

Comment  
(Limitations and 
Future Scope If 
Outlined by the 

Study) 
Pedestrian Bicycle 

Miranda-
Moreno and 
Fernandes 
(2011) 

Location: 
Montreal, 
Canada  
Location type 
and size: 
pedestrian 
counts at 1,018 
signalized 
intersections 

Data collection 
time and type: 
8-hour 
observation 
during the a.m. 
peak, noon, 
and p.m. peak 
periods, mostly 
taken in 2009 
and some in 
2008 
Count method: 
manual 
observation 

Not reported Log-linear 
model 

Validated 
based on 
20% of the 
sample 
holdout 
analysis 

25 variables 
at three 
buffer sizes 

Population 
(400 m); 
commercial 
space area 
(50 m); open 
space area 
(150 m); 
presence of a 
subway station 
(150 m); 
number of bus 
stops (150 m); 
number of 
schools (400 m); 
percent of 
major roads 
(400 m); 
average street 
length (400 m); 
three- or four-
way 
intersection; 
distance to 
downtown; very 
warm 
temperature 
(max. 
temperature 
> 32°C) 

Not reported The sample of 
intersections was 
not randomly 
selected. The 
parameter 
estimates may be 
biased because the 
models did not 
account for the 
potential spatial 
correlation across 
intersections. 
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Author (Date) 
Coverage and 

Data Collection 
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Count Type 
and Time 

Application 
Scale 

Analysis 
Methods 

Model 
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Initial 
Number of 
Variables 

and Buffer 
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Significant Explanatory Variable 
(Buffer Size) 

Comment  
(Limitations and 
Future Scope If 
Outlined by the 

Study) 
Pedestrian Bicycle 

Griswold et al. 
(2011) 

Location: 
Alameda 
County, CA 
Location type 
and size: 
bicycle counts 
at 
81 intersections 
along arterial 
and collector 
streets 

Data collection 
time and type: 
two 2-hour 
period counts 
at each 
intersection, 
one taken on a 
weekday and 
one taken on a 
Saturday during 
different times 
of the day in 
spring 2008 and 
2009 
Count method: 
manual 
observation 

Not reported Log-linear 
OLS model 

Not reported 15 variables 
at three 
buffer sizes 

Not reported Number of 
commercial 
properties 
(1/10 mi); 
presence of 
bicycle markings 
on any approach; 
network distance 
to University of 
California, 
Berkeley campus 
edge; average 
slope (degrees) of 
terrain (1/2 mi); 
year 
 
 
 

The model can be 
refined further by 
collecting counts at 
additional locations 
and conducting 
model validation. 
Additional land-
use, transportation 
system, and 
socioeconomic 
variables can be 
added. 
 

Jones et al. 
(2010) 

Location: San 
Diego, CA 
Location type 
and size: 
bicycle and 
pedestrian 
counts at 
80 intersections 

Data collection 
time and type: 
two (2007 and 
2008) peak-
period counts 
at 80 locations 
and 1 year 
(August 2007 to 
July 2008) of 
automated 
24-hour counts 
at five locations 
Count method: 
manual and 
combination of 
passive infrared 
counters and 
active infrared 
counters 

San Diego  Stepwise 
regression 
model 

Not reported 34 variables 
at three 
buffer sizes 

Employment 
density 
(0.25 mi); 
population 
density 
(0.25 mi); 
presence of 
retail (0.25 mi) 

Footage of Class I 
(Multi-Use Path) 
bicycle path 
(0.25 mi); 
employment 
density (0.25 mi) 

Additional variables 
could be 
considered, such as 
presence of parks, 
retail 
establishments, 
choke points, and 
other factors that 
may affect walking 
and bicycling. 
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Author (Date) 
Coverage and 

Data Collection 
Scale 

Count Type 
and Time 

Application 
Scale 

Analysis 
Methods 

Model 
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Initial 
Number of 
Variables 

and Buffer 
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Significant Explanatory Variable 
(Buffer Size) 
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Future Scope If 
Outlined by the 

Study) 
Pedestrian Bicycle 

Liu and 
Griswold 
(2009) 

Location: San 
Francisco, CA  
Location type 
and size: 
pedestrian 
counts at 63 
intersections 

Data collection 
time and type: 
12 days in May, 
June, August, 
and September 
2002 from 2:30 
to 6:30 p.m., 
weekdays 
Count method: 
manual 
observation 

Not reported Regression 
analysis 

Not reported 18 variables 
at five buffer 
sizes 

Presence of bike 
lane; job density 
(1/4 mi); 
percent of 
residential land 
use (1/16 mi); 
number of 
municipal 
transportation 
agency bus or 
light-rail stops 
(3/8 mi); 
population 
density (1/2 mi); 
mean slope 
(1/16 mi); 
patche richness 
density 
(1/16 mi) 

Not reported Perception of crime 
safety may be a 
better measure for 
modeling 
pedestrian flow. 
Due to data 
limitations, the 
model cannot be 
generalizable to 
some 
neighborhoods 
with steep terrain 
and curvilinear 
street patterns. 

Schneider et 
al. (2009b) 

Location: 
Alameda 
County, CA 
Location type 
and size: 
pedestrian 
counts at 
50 intersections 
along arterial 
and collector 
roadways  

Data collection 
time and type: 
two counts of 
each 
intersection 
between April 
and June 2008, 
one a weekday 
count and the 
other a 
Saturday count 
during different 
times of the 
day  
Count method: 
manual 
observation 

Not reported OLS model Validated 
based on 
models 
developed 
for 46 new 
intersections 
in different 
parts of 
Alameda 
County 

50 variables 
at three 
buffer sizes 

Total population 
(0.5 mi); 
number of jobs 
(0.25 mi); 
number of 
commercial 
retail properties 
(0.25 mi); 
presence of a 
regional transit 
station (0.1 mi) 

Not reported The model did not 
include pedestrian 
facility quality 
variables. It may 
not be 
representative of 
locations near 
special attractors. 
Different weighting 
factors may be 
assigned to 
different 
pedestrian 
attractors. 
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and Time 
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Scale 
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Future Scope If 
Outlined by the 

Study) 
Pedestrian Bicycle 

Pulugurtha 
and Repaka 
(2008) 

Location: 
Charlotte, NC 
Location type 
and size: 
pedestrian 
counts at 176 
signalized 
intersections 

Data collection 
time and type: 
12-hour 
(7:00 a.m. to 
7:00 p.m.) 
counts at each 
site on a 
normal day in 
2005  
Count method: 
manual 
observation 

Not reported Multiple 
regression 
analysis 
through 
backward 
elimination 
of indepen-
dent 
variables 

Not reported 32 variables 
at three 
buffer sizes  
 

Population 
(0.5 mi); single-
family 
residential areas 
(0.5 mi); 
number of 
transit stops 
(0.5 mi) 

Not reported The model did not 
include variables 
such as population 
density, population 
by age group, and 
automobile 
ownership, which 
may yield better 
models. 

Lindsey et al. 
(2007) 

Location: 
Indianapolis, IN 
Location type 
and size: 
30 locations on 
five multiuse 
greenway trails 

Data collection 
time and type: 
continuous 
counts for 
different 
durations from 
2001 through 
2005 
Count method: 
infrared 
monitors 

Not reported OLS model The model 
was 
validated 
comparing 
the actual 
and 
predicted 
traffic on 
two of the 
trails of the 
study 

29 variables Weekend; month of the count; 
deviation of daily average 
temperature; deviation of daily 
precipitation accumulation; 
deviation of daily snow 
accumulation; deviation of daily 
percentage sunshine; percent 
population less than 5 and greater 
than 64; percent African American; 
percent other ethnicities, excluding 
White and African American; 
percent population 25+ with college 
degree; median household incomes; 
mean Normalized Difference 
Vegetation Index (NDVI)f value in 
census blocks (0.5 mi); population 
density (0.5 mi); percent of 
commercial land use in the trail 
neighborhood; parking lot area in 
the trail neighborhood; average 
length of network street segments 
(0.5 mi) 

The errors 
associated with 
extrapolation of a 
small sample of 
peak-hour counts 
to annual counts 
ranged from 6% to 
36%. 
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Pedestrian Bicycle 

Desyllas et al. 
(2003) 

Location: 
central London 
Location type 
and size: 
pedestrian 
counts at the 
midpoint of 231 
street 
segments 

Data collection 
time and type: 
counts were 
made between 
8 a.m. and 
7 p.m. in March 
2000, July 
2001, and 
August 1999 
Count method: 
manual 
observation 

Predicted flow 
per hour values 
for all 
7,526 street 
segments in the 
25 km2 area of 
central London 

Stepwise 
regression 
model 

Not reported 15 variables Average 
visibility within 
the street 
network; 
accessibility to a 
London 
Underground 
station; 
pavement 
width; 
percentage of 
frontage that is 
retail 

Not reported Additional 
explanatory 
variables such as 
urban density 
should be included 
in future studies. 

Qin and Ivan 
(2001) 

Location: rural 
areas, CT 
Location type 
and size: total 
number of 
crossing 
pedestrians, 
pedestrian 
counts at 32 
sites 

Data collection 
time and type: 
weekday and 
weekend 
counts at each 
site, generally 
from 8:00 a.m. 
to 5:30 p.m. in 
May, June, 
October, and 
November 
1999 
Count method: 
manual 
observation  

Not reported Generalized 
linear model 

Not reported Four 
variables 

Presence of 
sidewalk; 
number of lanes 
of road; campus 
area; tourist and 
downtown area  

Not reported Only the total 
number of crossing 
pedestrian 
exposures was of 
interest. Walking 
on the sidewalk 
was not included in 
the study. 
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Behnam and 
Patel (1977) 

Location: 
Milwaukee, WI 
Location type 
and size: 
pedestrian 
counts from a 
midblock of the 
streets within 
the study area 
(CBD)  

Data collection 
time and type: 
6-minute 
counts at each 
station 
between 6 a.m. 
and 6 p.m. 
during summer 
1971 through 
1973 
Count method: 
manual 
observation  

Not reported Stepwise 
regression 
model 

Not reported Eight 
variables 

Commercial 
space area; 
office space 
area; cultural 
and 
entertainment 
space area; 
residential 
space area; 
vacant space 
area; storage 
and 
maintenance 
space area 

Not reported  The model only 
considered land-
use variables. 
Applications are 
limited to very 
dense CBDs during 
specific times of 
day. 

Pushkarev 
and Zupan 
(1971) 

Location: 
midtown 
Manhattan, NY 
Location type 
and size: 
pedestrian 
counts at block 
sectors  

Data collection 
time and type: 
instantaneous 
counts during 
midday and 
evening rush 
hour  
Count method: 
aerial 
photographs  

Not reported Multiple-
correlation 
analysis 

Not reported 11 variables Available 
walkway space 
area; office floor 
space in each of 
10 buildings; 
retail floor 
space in each of 
10 buildings; 
restaurant floor 
space in each of 
10 buildings 

Not reported The model has data 
limitations because 
the observed 
values are based on 
instantaneous 
photographs. 

a Centrality is the number of times a link in a network is used along the path of all shortest paths between all nodes. 
b Accessibility measures were for the 60-minute time-based buffer.  
c Gold-level communities are included in LAB bicycle-friendly community listings. 
d Land-use mix is a measure of acres of retail, office, and commercial space per housing unit. 
e Patch density is the areal density of patches (a contiguous area with the same land use). 
f The NDVI determines the density of green on a patch of land. 
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As seen in Table 1, the generalized approach to developing a direct-demand model includes selection of 
independent variables, often at various spatial scales, and choice of a suitable analysis method to estimate 
pedestrian, bicycle, or trail traffic in an area or location. A few of the studies have used their developed 
model to predict nonmotorized traffic in locations where count data were not available. Additionally, to shed 
light on some unique approaches and noteworthy observations made by the studies, the following briefly 
discusses some recent research.  

One recent study (Hankey et al., 2017) developed a direct-demand model for pedestrians and bicyclists in a 
small rural college town. For this study, the data collection sites were selected specifically to capture the 
spatial variability in pedestrian and bicycle activity. Since the study monitored nonmotorized activity in a 
small community, the sample size was deemed representative. While underscoring the need for developing 
separate models for pedestrians and bicyclists, the study demonstrates that nonmotorized count monitoring 
programs can be designed with multiple goals, including estimating performance measures and developing 
spatial models.  

Hankey and Lindsey (2016) developed direct-demand models and explored trade-offs between fully specified 
(i.e., exploratory) models and reduced-form models that can be easily used in the field. The study also 
assessed the change in model performance when a location has multiple counts. Three types of facility-
demand models were compared for both pedestrians and bicyclists. While the statistically optimal models for 
bicyclists included almost all the variables, the same model for pedestrians included only 11 variables, and 
most of those variables followed the expected directions for the variables. The researchers then developed a 
reduced-form core model that ensured that the direction of the effects of the variables conformed to the 
theories. In addition to the variables used in bicycle models, the models for pedestrians included a few other 
variables, including transit stops and major roads. The pedestrian model did not include weather variables 
because it was assumed that weather has a greater impact on bicyclists than on pedestrians. The research 
highlighted the need for further research to investigate how count programs developed for spatial modeling 
can decrease the potential for spatial autocorrelation. 

Fagnant and Kockelman (2016) developed a suitability model to identify the relationship between a number 
of variables and the expected share of bicyclist counts. The study applied the developed model to Shoreline, 
Washington’s road network and mapped the Highway Capacity Manual (HCM) bicycle level of service (BLOS) 
values of the intersecting streets; the study found little correlation between bicyclist volume and HCM BLOS. 

Wang et al. (2013) investigated the suitability of different regression models to predict nonmotorized activity 
and developed eight models (which encompassed general, location-specific, and trail-specific models) to 
estimate trail traffic in Minnesota. The general model is intended to be used at similar locations without 
traffic counts. The location-specific models can be used in the specific location when counts from monitors 
are not available, and the trail-specific models can explain the variation in trail activity in response to 
variations in the weather and day of the week. Comparing the prediction error across the models, the study 
indicated that the ranges of errors for the trail-specific models were smaller than for the other models.  

Hankey et al. (2012) converted hourly counts to 12-hour daily counts using a scaling factor and developed 
models for estimating pedestrian and bicycle traffic. After analyzing the data, researchers concluded that 
1-hour counts (peak hour) were highly correlated with 12-hour daily counts; thus, the peak-hour count can 
be scaled to a long-term value to inform decisions and planning when needed.  



 

Page 27 of 49 
 

Schneider et al. (2012) used manual and automated pedestrian counts at 50 intersections in San Francisco, 
California. The manual 2-hour count was adjusted with automated-counter, temporal, and weather 
adjustment factors to estimate the annual pedestrian crossing volumes. The study also mentioned the 
limitations and applicability of the models, which may not perform well in areas where pedestrian volume is 
highly variable, such as major parks, waterfronts, and sports arenas. Researchers proposed testing other 
variables in future studies, including the overall mix of land use, special pedestrian generators (such as 
schools), sidewalk width and buffer between the roadway and sidewalk, roadway width and number of 
motor vehicle lanes, percentage of households with no vehicles available, types of transit facilities (e.g., light-
rail stop versus bus stop), presence of bicycle parking, and components of the San Francisco pedestrian 
environmental quality index.  

Griswold et al. (2011) developed pilot models of bicycle intersection volumes in Alameda County. 
Researchers developed four models using log-linear OLS regression and revealed differences in intersection 
volume between weekdays and weekends. One of the interesting findings of the study was the variation of 
influence of the explanatory variables across weekdays and weekends. While the proximity to commercial 
retail properties or a large university had greater impact on volumes on weekdays, marked bicycle facilities 
had greater association with volumes on weekends. Researchers concluded that the model can be used to 
estimate bicycle volume during specific time periods. 

Miranda-Moreno and Fernandes (2011) developed four models for the a.m. peak period, noon period, p.m. 
peak period, and entire day to explain pedestrian activity in Montreal, Canada. The study was one of the early 
attempts to generate a spatiotemporal model of pedestrian activity for a large city. The study had three 
limitations: 

• The potential spatial correlation of the intersections was not accounted for. 
• Intersections were not randomly selected. 
• Volumes were not standardized to account for the temporal and weather variations. 

The California Department of Transportation sponsored the Seamless Travel Study (Jones et al., 2010), which 
was performed by Alta Planning and Design and the University of California, Berkeley Traffic Safety Center. At 
that time, the study was the largest and longest combined effort of manual and automated counts of 
nonmotorized activity in the United States. Researchers developed models to predict pedestrian and bicycle 
volumes at intersections during the morning peak period (7 to 9 a.m.) on weekdays in San Diego, California. 
The study went through a comprehensive, systematic procedure to screen initially selected independent 
variables. One of the interesting observations of the study suggested that separate bike lanes are not an 
indicator of bicycle use since often they are built based on location feasibility rather than high bicycle traffic. 
Although bike lanes are an attractive feature for bicyclists, all things being equal, bicyclists tend to follow the 
most direct route with the best combination of other features such as topography, lane width, and traffic 
speeds. The study indicated that a model with refinement factors—with variables triggered by specific 
thresholds of volumes—may improve prediction accuracy.  

Using collected data in Alameda County, California, Schneider et al. (2009b) recommended a simple tool that 
can roughly estimate pedestrian crossing volumes at intersections. To avoid bias in location choice, the study 
used a structured process to select sites with a wide range of pedestrian volumes and other characteristics. A 
unique approach of the study was that it considered the variation in the pedestrian volume trend at different 
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locations (e.g., employment centers, residential areas, neighborhood commercial areas, and multiuse trails) 
to make necessary adjustments to the model. The study also accounted for the differences in time (e.g., time 
of day and day of week) and weather (e.g., cloud cover and temperature) to adjust and extrapolate 2-hour 
counts to weekly volume. The study recommended future studies to assign differential weighting factors to 
various pedestrian trip attractors, such as commercial properties, regional transit stations, and schools.  

A study in London (Desyllas et al. 2003) developed a citywide pedestrian-demand model using the direct-
demand modeling approach. In addition to capacity, accessibility, and land-use variables, the study used 
street grid configuration (visibility within the street network) variables using visibility graph analysis, which 
was a noteworthy approach. The study found visibility the most significant variable and suggested that 
pedestrians may select routes based on complexity and not based on distance. Further, pedestrians with 
limited knowledge about street configuration may choose routes that are the most visible. 

Qin and Ivan (2001) estimated pedestrian crossing volume as a measure of exposure based on 
sociodemographic, traffic signal, and land-use characteristics in rural areas in Connecticut. The count in the 
study did not include pedestrians using sidewalks. The number of lanes, area type, and sidewalk system were 
significantly associated with the weekly pedestrian exposure in that area. The study showed that factors 
influencing pedestrian activity in rural settings may differ from that of urban, suburb, and rural mixture 
conditions.  

Data Analysis 
This section outlines the data analysis approaches, including the use of statistical models and independent 
variables of different studies. Since the choice of models and independent variables varies widely across the 
research, the next section discusses the data analysis procedure in an aggregated manner.  

Choice of Model 
A wide variety of approaches and methods have been used in predicting nonmotorized activity using direct-
demand models. However, only a few studies have discussed the implications of model choices to predict 
nonmotorized traffic activity (Kim and Susilo, 2011). A number of studies have used OLS regression to 
develop models (Lindsey et al., 2007; Schneider et al., 2009b). Studies have discussed the limitations of OLS 
models, where the output could be a negative pedestrian and bicycle traffic volume when in actuality the 
result must be zero or positive (Hankey et al., 2012). Hankey et al. (2012) compared the performance of 
negative binomial and OLS regression by comparing predicted and estimated pedestrian and bicyclist counts 
at 85 locations in Minneapolis, Minnesota, and concluded that generally the negative binomial model 
performs better. Wang et al. (2013) indicated that Poisson and negative binomial models tend to be a better 
fit for urban nonmotorized traffic characteristics than OLS regression models. 

Kim and Susilo (2011) compared the performance of the Poisson regression model and negative binomial 
regression model in predicting pedestrian demand at a regional level. The authors concluded that the 
negative binomial regression is more appropriate to explain the overdispersed dependent variables than the 
Poisson regression. Other studies have also indicated that the negative binomial models tend to be 
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statistically superior to Poisson regression models in explaining nonmotorized behavior (Cao et al., 2006; 
Baran et al., 2008; Fagnant and Kockelman, 2016). 

Nordback (2012) investigated several models, including multivariate linear regression models, general linear 
models with log-linear regression, generalized additive models, Poisson models, Gaussian models, and 
negative binomial generalized linear models with log-link. The aim of the study was to develop a predictive 
model to estimate bicycle counts as a function of time and weather variables. The study concluded that the 
negative binomial generalized linear model with log-link was the best model to fit the positively skewed 
hourly count data. 

Dependent Variables  
Typically, the dependent variables of direct-demand models are pedestrian, bicycle, or trail traffic volumes 
for various time periods, such as during the peak period, hourly, daily, or annually. While some research has 
directly used data for the specific collection period, other studies have expanded short-period data to longer 
periods by using a scaling factor to be integrated and used in models (Lindsey, 2011; Hankey et al., 2012; 
Wang et al., 2016). 

Several examples are present in the field. For instance, one study scaled hourly count data to 12-hour daily 
volume to model pedestrians and bicyclists on streets in Minneapolis, Minnesota (Hankey et al., 2012). 
Another study translated instantaneous counts to hourly flow rates (Pushkarev and Zupan, 1971). Another 
study conducted short pedestrian counts at 50 locations and adjusted the volume to account for the type of 
area and the difference in time and weather; the study then extrapolated to weekly counts (Schneider et al., 
2009b). Nordback (2012) developed a method to estimate annual average daily bicycles in Boulder, Colorado, 
based on short-term counts (between 1 hour and 1 month). Lindsey et al. (2007) extrapolated hourly counts 
to annual estimates and used a natural logarithm to normalize the distribution in order to use it in the OLS 
regression.  

Independent Variables  
Although traditional belief is that the important dimension for bicycling is the proximity of cycling-specific 
infrastructure and the important dimension for walking is the proximity of neighborhood retail (Krizek, 2006), 
the volume of pedestrians and bicyclists tends to be governed by a broad array of factors. Often, the 
literature aggregates the two nonmotorized modes, walking and bicycling, when identifying the determinant 
factors (Pikora et al., 2003). However, walking and bicycling trip behaviors differ substantially and need to be 
investigated separately (Krizek, 2006; Hankey and Lindsey, 2016). Hankey and Lindsey (2016) indicated that 
pedestrian traffic is mostly influenced by activity centers with high job accessibility and public transport 
infrastructure, whereas bicycle traffic is mostly influenced by job accessibility and bicycle facilities. Moreover, 
Jones et al. (2010) revealed that explanatory variables such as the built environment and socioeconomic 
characteristics were different for high- and low-volume pedestrian intersections, while the same variables 
were not found significantly different for low- and high-volume bicycle locations.  

To identify an initial set of independent variables, studies have taken into consideration the previously 
established relationships between nonmotorized activity and various sociodemographic, land-use, and 
surrounding built-environment factors (Kitamura et al., 1997; Moudon et al., 1997; Landis et al., 2001; Dill 
and Carr, 2003; Dill and Voros, 2007). Often, different measuring units are used to compute the same 
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explanatory variable. For example, to compute weather variables (precipitation, snow, etc.), Lindsey et al. 
(2007) used deviations from the long-term daily average, while Nordback (2012) used the daily/hourly 
average.  

To identify the impact of land-use and built-environment characteristics on nonmotorized volume, a number 
of studies have considered a range of buffer widths. Miranda-Moreno and Fernandes (2011) used buffers of 
50 m, 150 m, and 400 m around intersections to investigate the impact of immediate surroundings, within-
close-proximity urban form features, and within-walking-distance features, respectively, on pedestrian 
activity. Liu and Griswold (2009) concluded that the area around a one-block radius of an intersection has the 
strongest influence on pedestrian volume. Pulugurtha and Repaka (2008) investigated the influence of 
independent variables by different buffer widths and concluded that demographic and socioeconomic 
variables are more predominant within a 0.25-mi buffer width than a 0.50-mi or 1-mi buffer width, whereas 
speed limit and traffic volume variables are more predominant within a 0.50-mi or 1-mi buffer width than a 
0.25-mi buffer width. This study also found that the 0.50-mi buffer width model tended to be a better fit than 
the 0.25-mi and 1-mi buffer models. However, Liu and Griswold (2009), Miranda-Moreno and Fernandes 
(2011), and Schneider et al. (2009b) suggested that the best model may be obtained using different scales of 
buffer zones for variables because the variables are unlikely to be significant at the same buffer scale. Hankey 
and Lindsey (2016) confirmed the assertion, stating that some variables (e.g., industrial area and population 
density) have the greatest influence on a large spatial area (more than 1 km), and some variables (e.g., 
bicycle facilities, retail areas, and open spaces) may influence a smaller spatial area (100 to 400 m).  

The majority of the studies began with a large number of independent variables that were subsequently 
reduced through a systematic statistical procedure such as correlation and skewness testing. For example, 
Miranda-Moreno and Fernandes (2011) performed a multicorrelation analysis to identify variables with high 
correlations. The study generated a correlation matrix for the 50-m, 150-m, and 400-m buffer widths. Other 
than the criteria of 95th percentile significance and correlations less than 0.4, researchers also used intuition 
when selecting variables for the preferred models.  

To review the independent variables used in several studies, this report categorizes the variables into the 
following nine groups: 

• Demographic. 
• Socioeconomic. 
• Network/interaction with vehicle traffic. 
• Pedestrian- or bicycle-specific infrastructure. 
• Transit facilities. 
• Major generators. 
• Weather and environmental. 
• Temporal or time related. 
• Land use. 

Table 2 depicts all the independent variables considered in bicycle, pedestrian, and trail traffic direct-demand 
model studies reviewed in this study. As mentioned previously, the same variable can have different 
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measuring units. The table mainly lists a generalized form of the independent variables; for example, 
household income may represent either median household income or average household income.  

Table 2. Explanatory Variables Used in Pedestrian, Bicycle, and Trail Traffic Model Studies. 
Variable Category Variable References 
Demographic  Population density 

Percentage of population younger than 5 and older 
than 65 years 

Percentage of African-American population 
Percentage of Hispanic population 
Percentage of other ethnicity population (excluding 

White and African American) 
Percentage of population 25+ with a college degree 
Number of children 
Household density 
Total housing units 
Vacant housing units 
Rented housing units 
Percentage of male, single, and multifamily housing 
Commuting population 
Walking and biking commuters 

Hankey et al. (2012, 2017); Fagnant and 
Kockelman (2016); Hankey and Lindsey (2016); 
Tabeshian and Kattan (2014); Strauss and 
Miranda-Moreno (2013); Wang et al. (2013); 
Jones et al. (2010); Lindsey et al. (2006, 2007, 
2012); Lindsey (2011); Liu and Griswold 
(2009); Miranda-Moreno and Fernandes 
(2011); Pulugurtha and Repaka (2008); 
Schneider et al. (2009b, 2012)  

Socioeconomic  Household income 
Employment density 
Unemployment rate 
Households with no automobile 
Households below the poverty line 
Number of workers 

Hankey et al. (2012, 2017); Fagnant and 
Kockelman (2016); Hankey and Lindsey (2016); 
Jones et al. (2010); Lindsey et al. (2006, 2007 
2012); Lindsey (2011); Liu and Griswold 
(2009); Miranda-Moreno and Fernandes 
(2011); Schneider et al. (2009b, 2012); 
Tabeshian and Kattan (2014); Wang et al. 
(2013); Strauss et al. (2013); Strauss and 
Miranda-Moreno (2013) 

Network/ 
interaction with 
vehicle traffic  

Number of street segments 
Average length of network street segmentsa 
Steeper slopes 
Presence of traffic signals 
Number of intersections 
Percentage/length of major roads 
Length of local roads 
Presence of three-way or four-way intersections 
Mean block length 
Presence of arterial streets/freeways 
Maximum average daily traffic volume 
Average curb-to-curb length 
Average number of lanes 
Speed limit 
Bridges 
Intersection density 
Connected node ratio 
Road classification 
Lane visibility 
Network accessibility 
Maximum radial line of sight 

Hankey et al. (2012, 2017); Fagnant and 
Kockelman (2016); Griswold et al. (2011); 
Hankey and Lindsey (2016); Jones et al. (2010); 
Lindsey et al. (2006, 2007, 2012); Lindsey 
(2011); Liu and Griswold (2009); Miranda-
Moreno and Fernandes (2011); Pulugurtha 
and Repaka (2008); Schneider et al. (2009b, 
2012); Qin and Ivan (2001); Strauss and 
Miranda-Moreno (2013); Desyllas et al. (2003) 
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Variable Category Variable References 
Pedestrian- or 
bicycle-specific 
infrastructure 

Presence of bike lanes 
Length of off-street trail 
Length/presence of bike paths 
Area of sidewalk coverage 
Sidewalks with bufferb 
Number of marked crosswalks  
Median refuge areas 
Bike-lane width 
Curb-lane width  
Sharrows, crosswalks, and pedestrian heads 
Bicycle facility characteristics on the road 

Hankey et al. (2012, 2017); Fagnant and 
Kockelman (2016); Hankey and Lindsey (2016); 
Jones et al. (2010); Lindsey (2011); Liu and 
Griswold (2009); Pushkarev and Zupan (1971); 
Schneider et al. (2009b); Tabeshian and Kattan 
(2014); Qin and Ivan (2001); Strauss et al. 
(2013); Strauss and Miranda-Moreno (2013); 
Desyllas et al. (2003) 

Transit facilities  Presence of subway stations  
Number of bus/light-rail stops  
Mileage of bus route 
Percentage of commuters who walk or take transit 
Distance to stations 
Number of jobs accessible by transit 
Transit ridership 
Total bus-km of bus routes 

Hankey et al. (2012, 2017); Desyllas et al. 
(2003); Griswold et al. (2011); Hankey and 
Lindsey (2016); Jones et al. (2010); Lindsey 
(2011); Liu and Griswold (2009); Miranda-
Moreno and Fernandes (2011); Schneider et 
al. (2009b); Tabeshian and Kattan (2014); 
Strauss et al. (2013); Strauss and Miranda-
Moreno (2013) 

Major generators Distance to downtown 
Distance to ocean or a water body 
Distance to a university 
Number of schools (elementary, middle, and high) 
Number of college campuses 

Griswold et al. (2011); Hankey et al. (2012); 
Lindsey et al. (2012); Miranda-Moreno and 
Fernandes (2011); Schneider et al. (2009b, 
2012); Qin and Ivan (2001); Strauss et al. 
(2013); Strauss and Miranda-Moreno (2013) 

Weather and 
environmental 

Temperature  
Precipitation 
Snow accumulation 
Sunshine 
Solar radiation 
Wind 
Humidity 

Fagnant and Kockelman (2016); Hankey and 
Lindsey (2016); Lindsey et al. (2006, 2007, 
2012); Lindsey (2011); Nordback (2012); Wang 
et al. (2013); Strauss and Miranda-Moreno 
(2013) 

Temporal or time 
related 

Month, hour, or day  
Weekend 
Holiday 
School day 
Season or year  

Fagnant and Kockelman (2016); Hankey and 
Lindsey (2016); Hankey et al. (2012); Lindsey 
et al. (2006, 2007, 2012); Nordback (2012); 
Wang et al. (2013) 

Land use  Housing units, all households, residential addresses, 
non-residential addresses 

House density, low density residential space, 
medium density residential space, high density 
residential space, dwell, single family housing, 
multi-family housing 

Number of vacant housing, proportion of vacant 
housing,  

Number of rented housing, proportion of rented 
housing  

Urban residential area, urban residential commercial 
area, residential—mobile, resort residential, 
urban residential commercial area 

Neighborhood business 
Job accessibility 
Historic district, community service 
Park recreation education 
Manufactured house, public buildings 
Open space area, vacant space 

Hankey et al. (2012, 2017); Behnam and Patel 
(1977); Desyllas et al. (2003); Fagnant and 
Kockelman (2016); Hankey and Lindsey (2016); 
Jones et al. (2010); Lindsey et al. (2006, 2007, 
2012); Lindsey (2011); Liu and Griswold 
(2009); Miranda-Moreno and Fernandes 
(2011); Pulugurtha and Repaka (2008); 
Pushkarev and Zupan (1971); Schneider et al. 
(2012); Tabeshian and Kattan (2014); Qin and 
Ivan (2001); Strauss et al. (2013); Strauss and 
Miranda-Moreno (2013) 
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Variable Category Variable References 
Tree canopy, non-tree vegetation, patch richness 

density, shannon’s diversity index, impervious 
surface 

Paved parking 
Slope 
Institutional, research district, neighborhood service 

district, cultural and entertainment space 
Business, office space, retail area, industrial area 
commercial space, storage and maintenance space 
Government 
Hotel, restaurant, commercial center 
Airport 
Direct control space 
Hazardous waste district 
High-activity zone, gigh crime 
Land use mix, land use charecteritics, land use type, 

mixed land use 
Visibility, maximum radial line of sight. 
Accessibility 
Planned unit development 
Innovative 

a The average length of network street segments is the total road length divided by the number of street segments. 
b Surface streets are separated from the edge of the roadway by grass, trees, shrubs, or other types of buffers. 
c Shannon’s diversity index is characterized by species diversity in a community. 
d Innovative land use is a nontraditional and new type of land use. 

Relationship with Independent Variables 
This section provides a brief discussion of the independent variables and their impact on nonmotorized 
activity, which are explained by several studies. Table 3, Table 4, and Table 5 identify the positive or negative 
impact of each of the significant variables on pedestrian, bicycle, and trail traffic, respectively. The tables 
provide clear insight into whether the variables have consistent impact on nonmotorized volume across the 
studies. The following discussion briefly explains the characteristics and influence of the independent 
variables depicted in the tables. 
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Table 3. Influence of Explanatory Variables on Pedestrian Volumes. 
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Demographic 
Population density   + +  +  +      
Population         + +    
Percent of non-White residents     +         
Percent of residents with a college 
education 

    +  +       

Percent of Black residents       −       
Socioeconomic              
Household income   −    −       
Total employment            +  
Employment density      +  −      
Network/interaction with vehicle traffic 
Major roads length    +          
Percent of major arterials         −     
Number of street segment          +     
Street lengths             + 
Principal arterial street (of count 
location) 

    −         

Arterial street (of count location)     +  +       
Collector street (of count location)     +  +       
Presence of four-way intersection         +     
Number of lanes           +   
Pedestrian- or bicycle-specific infrastructure 
Sidewalk length   +           
Off-street trail length   − +          
Pathway length             + 
Presence of bike lane        +      
Presence of sidewalk           +   
Footway pavement width  +            
Transit facilities              
Number of transit/bus stops   + +    + + +   + 
Presence of a subway stop         +     
Bus frequency             + 
Accessibility to an underground 
station 

 +            

Major generators 
Distance from the CBD/downtown     −    −     
Distance from the nearest body of 
water 

    −         

Proximity to a university campus           + +  
Number of schools         +     
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Weather and environmental 
Precipitation     −         
Recorded temperature       −       
Very warm temperature (max. 
temperature >32°C) 

        −     

Land use 
Residential land use +  −     −    +  
Land-use mix (area of retail, office, 
and commercial space per housing 
unit) 

      +       

Retail area  +  +  −        
Office space area +             
Industrial area    −          
Cultural and entertainment space 
area  

+             

Storage and maintenance space area +             
Vacant space area +             
Open space area    +          
Job accessibility    +          
Dwell count             + 
Commercial space +        +    + 
Open space         −     
Schools             + 
High-activity zone intersection             +  
Maximum/mean slope         −    −  
Traffic-signal-controlled intersection            +  
Patch richness density        +      
Single-family residential areas          −    
Average visibility within the street 
network 

 +            

Tourist and downtown area           +   
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Table 4. Influence of Explanatory Variables on Bicycle Volumes. 
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Demographic 
Population density   + +         
Percent of non-White residents     +  +      
Percent of Black residents        −     
Percent of residents with a college 
education 

    +  + +     

Percent of residents younger than 5 and 
older than 65 years 

       +     

Total population         +    
Socioeconomic             
Household income   −  −  − −   +  
Employment density +     +       
Number of jobs         + + +  
Network/interaction with vehicle traffic 
Major roads length   +          
Number of lanes +           − 
Speed limit −            
Off-street trail (of count location)     +  +      
Arterial street (of count location)     +  +      
Pedestrian- or bicycle-specific infrastructure 
On-street bicycle facility length   + +   +   + +  
Presence of a bicycle track           +  
Presence of a bicycle lane           +  
Off-street trail length    +    +     
Bicycle-trail access +            
LAB golda +            
Curb-lane width +            
Bike-lane width +            
Separated path +            
Minor arterial with a bicycle        +     
Minor arterial without a bicycle        +     
Presence of bicycle markings on any 
approach 

 +           

Footage of bicycle network I (Multi-Use 
Path) 

     +       

Transit facilities 
Number of bus/transit stops         +  + + 
Presence of a subway station          + +  
Major generators 
Distance from the CBD     −  −      
Distance from a university  −           
Presence of schools          + +  
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Weather and environmental 
Precipitation    − −  −      
Temperature    +    +     
Deviation from daily high temperature        −     
Temporal or time related 
Morning period count −            
Year     +  +      
Land use 
Centralityb   +          
Retail area    +         
Industrial area    −         
Open space area    +         
Job accessibilityc    +         
Bridge +            
Residential area −            
Commercial space  +       + +  + 
Low-density residential space            + 
Institutional space            + 
Land-use mix     +  + +  + +  
Average slope (degrees) of terrain  −           
Presence of three approaches          −   
Presence of parking entrance           −  

a Gold-level communities are included in LAB bicycle-friendly community listings. 
b Centrality is the number of times a link in a network is used along the path of all shortest paths between all nodes. 
c All accessibility measures were for the 60-minute time-based buffer.  
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Table 5. Influence of Explanatory Variables on Trail Traffic Volumes. 

Variables 

Li
nd

se
y 

et
 a

l. 
(2

00
7)

 

W
an

g 
et

 a
l. 

(2
01

3)
 

Demographic 
Percent of African-American population + + 
Percent of other ethnicity population, excluding White and African American +  
Percent with a college education + + 
Percent of population over 64 or below 6 − − 
Population density + + 
Socioeconomic 
Median household income + + 
Network/interaction with vehicle traffic 
Street length +  
Weather and environmental 
Recorded high temperature  + 
Deviation of temperature from the long-term average  + − 
Precipitation  − 
Deviation of precipitation from the long-term average  −  
Deviation of daily snow from the long-term average −  
Deviation of daily percentage sunshine from the long-term average +  
Wind speed  − 
Temporal or time related 
Weekend +  
Month +  
Land use 
Parking lot area +  
Commercial land use +  
Mean NDVI value +  

 

Demographic 
Studies have used a wide array of demographic variables to explain the nonmotorized activity in an area. 
Population and employment density are two of the easiest to compute and two of the most frequently used 
variables in these studies. A demographic characteristic such as a high population of residents with a college 
education tends to have a positive relationship with pedestrian and bicycle activity. A study by Lindsey (2011) 
expected a high percentage of residents over the age of 65 or under the age of 5 to have a positive effect on 
pedestrian volume but a negative one on bicycle volume. However, contrary to the expectation, the study 
found bicycle traffic to be positively associated with the population in those age group. On the other hand, a 
high population in those age groups had a negative influence on trail traffic (Lindsey et al., 2007; Wang et al., 
2013). 

Socioeconomic 
The volume of pedestrians and bicyclists appears to be associated with income, employment, and vehicle 
ownership characteristics. Lower-income citizens are expected to walk more, considering their lack of access 
to cars. A majority of the studies found high income to have a negative impact on pedestrian and bicycle 
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activity. Although not consistent in all of the studies, employment density is generally found to be positively 
correlated with pedestrian and bicycle activity, as might be expected.  

Network/Interaction with Vehicle Traffic 
Street network and roadway characteristics tend to influence nonmotorized activity. Studies indicate that 
communities with greater street connectivity observe higher pedestrian activity compared to communities 
without street connectivity (Moudon et al., 1997). A steep slope at intersections is inversely correlated with 
pedestrian traffic, whereas signal-controlled intersections have a positive impact on pedestrians (Schneider 
et al., 2012). Other traffic characteristics such as vehicular traffic volume and traffic speed influence traffic 
safety and therefore pedestrian and bicycle activity (Landis et al., 2001). A majority of the studies found a 
positive correlation between major streets and pedestrian and bicyclist volume. Hankey et al. (2012) 
explained the association by stating that pedestrians and bicyclists want to reach destinations for which the 
most efficient access is provided by the major roads.  

Pedestrian- or Bicycle-Specific Infrastructure 
Pedestrian- and bicycle-specific facilities are one of the most significant determinants of walking and bicycling 
volume in an area. Studies have indicated that within the same functional type street facility, without 
controlling for other factors, average bicycle volume tends to be higher on streets with separate bicycle 
facilities than on streets with none (Lindsey, 2011). However, Hankey et al. (2017) found off-street trails to be 
negatively correlated with pedestrian volume. The study suggested that the finding might be the result of 
high pedestrian volume on sidewalks near retail areas and on local roads near university campuses. Studies 
have included other variables such as median refuge areas, bike-lane width, curb-lane width, sharrows, and 
crosswalks to investigate their impact on nonmotorized activities and generally found nonmotorized-friendly 
designs and infrastructures to have a positive impact on the volume. 

Transit Facilities 
The availability of and accessibility to a transit facility seem to have a significant impact on pedestrian and 
bicycle activity because people generally walk or bicycle to transit stops. Studies conducted in both Canada 
and the United States have found high pedestrian activity in places with high transit use (Schneider et al., 
2009b; Miranda-Moreno and Fernandes, 2011). The presence and number of transit stops, transit frequency, 
and accessibility to transit stations have a positive correlation with nonmotorized activity.  

Major Generators 
Downtown areas, CBDs, and university areas generate a large amount of walking and bicycling traffic partly 
because they often provide limited parking facilities. Schools and colleges, especially major university 
campuses, are considered prominent pedestrian and bicycle trip attractors. The presence of water bodies, 
including seas, lakes, rivers, and creeks, may also attract nonmotorized activity (Hankey et al., 2012). 

Weather and Environmental 
Studies have used a number of weather variables to explain the variation in nonmotorized activity. Lindsey et 
al. (2006, 2007) computed variables for temperature, precipitation, snow accumulation, and percentage of 
sunshine as the deviation from the long-term daily mean. Nordback (2012) computed precipitation, 
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temperature, and solar radiation as daily and hourly values. Studies have indicated that nonmotorized 
activity has a negative correlation with precipitation and a positive correlation with temperature. However, 
nonmotorized volume may decrease with extremely high temperatures (Stinson and Bhat, 2004). Studies 
conducted in places such as San Diego, California, where the weather is mild, did not find weather to be a 
significant factor (Jones et al., 2010). The pedestrian model developed by Hankey and Lindsey (2016) did not 
include a weather variable with the assumption that weather has a greater impact on bicyclists than on 
pedestrians. Findings in a study by Lindsey (2011) corroborate this assumption.  

Temporal or Time Related 
To control the time effects—including day of the week, month, and year—studies use dummy variables for 
months, years, weekend days, and so forth. Differences in day-of-the-week nonmotorized activity volumes 
may account for utilitarian or recreational trips depending on location (Nordback, 2012). Studies have 
indicated that mean weekend daily traffic tends to be greater than mean weekday daily traffic (Lindsey et al., 
2007). 

Land Use 
The characteristics of surrounding land use may be fundamental in shaping walking and bicycling behavior in 
an area. Compact, mixed land-use characteristics at employment or commercial areas promote 
nonmotorized activity (Kuzmyak et al., 2014). Commercial and office areas may attract more pedestrians than 
industrial areas do (Pulugurtha and Repaka, 2008). Slope, presence of three- or four-way intersections, 
presence of bridges, and other elements have a significant impact on nonmotorized volume. Studies have 
used different buffer widths to compute the impact of various land-use characteristics. Liu and Griswold 
(2009) found a positive correlation between crime level and pedestrian count. Although the result is 
counterintuitive, the study indicated that crime exposure may be a more suitable variable than raw crime 
measures. The same study also used a patch richness density and Shannon’s diversity index variable as a 
measure of landscape diversity. 

Desyllas et al. (2003) acknowledged the influence of street configuration on nonmotorized activity and 
argued that the land-use characteristics within a buffer area may represent the attractiveness of origins or 
destinations but may not capture pedestrians’ preference of route choice between a set origin and 
destination. The model developed by Pushkarev and Zupan (1971) accounted for the unique geometry of the 
Manhattan street grid by differentiation between streets and avenues. Hillier (1996) suggested that 
pedestrian movement patterns are influenced by the layout of the street grid of a city area and that 
measures of the street grid’s spatial configuration should be used as an explanatory variable in the 
pedestrian flow model. Desyllas et al. (2003) developed a pedestrian model where average visibility within 
the street network was used as one of the explanatory variables to represent the street grid configuration.  
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Model Benefits and Limitations 
Direct-demand models are comparatively simple tools that enable transport planners to predict 
nonmotorized traffic at relevant locations where count data are not available. Aoun et al. (2015) listed a 
number of advantages of direct-demand models such as: 

• Software requirements to develop and use the models are usually limited to Excel® spreadsheets or 
common statistical software packages. 

• The models can be developed largely using existing data. 
• Necessary data are typically available to the public and most often can be found at various 

geographic levels. 

The direct-demand modeling approach also has some advantages over some other modeling approaches 
such as traditional four-step models. When compared to conventional models, studies indicated that some of 
the shortcomings of four-step models, such as errors in trip-end totals and errors generated by poorly 
estimated intra-zonal trips, can be avoided in direct-demand models because they simultaneously calibrate 
trip generation, distribution, and mode choice steps, including characteristics of other modes and a wide 
array of level-of-service and activity variables (Ortuzar and Willumsen, 2011; Aldian, 2005). 

Ortuzar and Willumsen (2011) also indicated that direct-demand models are more useful for estimating 
demand in areas where the zones are large, such as those areas depicted in inter-urban studies. While 
discussing the use and suitability of demand models in developing countries, Timberlake (1988) found that 
direct-demand models were able to better accommodate the unique traffic characteristics of a corridor in 
Sudan than the gravity model. 

While discussing the shortcomings of conventional modeling approaches, Domencich and McFadden (1974) 
highlighted the fact that conventional models are basically nonbehavioral and not policy oriented. The 
models do not necessarily reveal the interaction between system performance and the choices of trip 
frequency or trip destination. On the other hand, direct-demand models are expected to explain the impact 
of different factors that influence the demand for people’s travel choice and therefore inform decision 
making.  

A few studies have discussed shortcomings and recommended caution in using direct-demand models for 
nonmotorized traffic estimation. Barnes and Krizek (2005) examined why using predictive models to estimate 
nonmotorized activity based on explanatory factors such as land-use and sociodemographic factors is unlikely 
to ever be very precise. The study noted the following shortcomings of direct-demand models: 

• People’s perceptions of a facility are not considered. 
• The pattern of activity varies widely with location. 
• The range of sampling error tends to be many times greater than the sample mean due to the low 

levels of nonmotorized activity. 
• Sometimes positive correlation between volume and facilities could be causation in the other 

direction, such as when a large number of bicyclists justifies an exclusive facility rather than a new 
facility. 
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When models are transferred far into the future and for large areas, the difference between people and 
locations may result in inaccurate estimates. Often, changes in technology and society have an unanticipated 
influence on user behavior (Katz, 2003). Highlighting the caveats of using this method, Kuzmyak et al. (2014) 
indicated that while the direct-demand model may establish a strong relationship between nonmotorized 
traffic volume and explanatory variables, the model cannot readily show the cause of the behavior 
represented in the count. The authors suggested that because the accuracy of the model is limited due to its 
aggregated structures, its use should be limited to preliminary analysis or screening until a more 
comprehensive model is available.  

However, noting the relative advantage of direct-demand models over other modeling approaches, Kuzmyak 
et al. (2014) mentioned the need to be judicious in developing and applying these models and suggested the 
following guidelines for application: 

• Models developed for a specific area cannot be construed as transferable. 
• Uncertainties developed due to unaccounted origin-destination, route choice, and trip purpose data 

may be narrowed down by developing counts and models focused on a specific time period. 
• After model calibration, the reliability of the models to predict volume in individual locations and the 

overall study area should be tested. 
• Decisions or recommendations based on the models have to be carefully investigated. 

Conclusion 
This report presents an in-depth review of the available literature associated with direct-demand modeling to 
estimate nonmotorized activity. Researchers and various transport practitioners endeavor to use direct-
demand modeling to estimate exposure for crash risk analysis. A steady evolution in methodology to 
overcome previous deficiencies and to yield new insights can be observed.  

Studies have shown the need for developing count programs specifically tailored for spatial modeling to 
decrease the potential for spatial autocorrelation and improve the performance of facility-demand models. 
Through their exploration of a wide array of modeling techniques, the majority of the studies have 
acknowledged the suitability of negative binomial models in predicting pedestrian and bicycle volume. The 
wide range of independent variables include type, unit, and measured buffer width. Studies have suggested 
that not only should pedestrian and bicycle volumes be modeled separately, but also the factors may need to 
be interpreted differently for these nonmotorized activities (Lindsey, 2011). The influence of explanatory 
variables may provide useful insights in the decision-making process. For example, the positive association 
between major streets and nonmotorized volume may promote initiatives such as Complete Streets, and the 
significance of independent variables such as bus stops and off-street trails, at a small spatial scale, indicates 
that targeted improvements in infrastructure have the potential to encourage nonmotorized activities.  

Although there is a tendency to associate walking and bicycling potential with a number of sociodemographic 
attributes (e.g., young or low-income individuals), given the right circumstances, nonmotorized modes can 
also be chosen by other sociodemographic segments. The choice of independent variables and their 
magnitude and direction of impact on nonmotorized activity largely depend on community, people, and 
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location. For example, despite inclement weather and complex topography, many countries observe higher 
rates of pedestrians and bicyclists than the United States (Bassett et al., 2008).  

Moreover, while differentiating the primary difference between the factors affecting walking and bicycling 
trips, studies have indicated that walking trips are more likely to be motivated by availability of sidewalks or 
land use characteristics, but decisions about bicycling trips may be affected by different factors across spatial 
areas beyond the trip origin (Winters et al., 2010). The geographic accessibility of destinations may also 
influence the decision to bicycle, considering the fact that the majority of bicycling trips are less than 10 km 
(Doyle et al., 2006)  

Although a number of studies have established the relationship between bicycling and built environment, a 
few individual-level studies could not find strong associations between bicycling and built-environment 
variables (Moudon et al., 2005; Wendel-Vos, 2004). These studies underlined the methodological issue in 
bicycle studies where a spatial zone is selected to investigate the influence of the built environment. A buffer 
area of 1 mile may represent the walkable distance from home or origin point, but the activity space for 
bicycling should cover a larger area (Moudon et al., 2005).  

These limitations warrant using emerging technologies such as GPS or mobile phone apps to accurately 
identify where people travel or engage in physical activity (Dill, 2009). The data from GPS-enabled 
smartphone apps, wearable tech, interactive websites, or even bike-share systems in a city—often termed 
big data—have the potential to describe the detailed spatio-temporal travel patterns of nonmotorized traffic 
in an unprecedented level of detail (Misra et al., 2014). Researchers have investigated various data sources to 
identify their usefulness to understand the travel patterns and behaviors of bicyclists and to eliminate 
traditional data collection efforts. A number of studies have already used some of the big data sources to 
estimate volume in a region (Strauss et al., 2015) and to shed light on the factors influencing nonmotorized 
trips of varying purposes (Griffin and Jiao, 2015). 

Finally, although significant progress can be observed in the use of direct-demand modeling to estimate 
nonmotorized activity, challenges in data collection and model interpretation are yet to be fully resolved. The 
insights and findings in this report are intended to inform future research in the area of transportation-
related policy making.  
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