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Abstract 
There are many situations where tacit communication between drivers and pedestrians 
governs and enhances safety. The goal of this study was to formalize this communication 
and apply it to the driving strategy of an autonomous vehicle. Toward this, we performed 
a field study of the interaction between drivers and pedestrians. Vehicles were 
instrumented to capture behavioral information on a driver as well as passengers and the 
traffic scenario in general. The data captured were reduced by data analysts to provide 
insights into the communication and driving patterns. The categorical reduction on driver, 
pedestrian, and environmental variables was captured. A domain specific language (DSL) 
was developed to precisely describe the driver-pedestrian behavior, toward the 
development of a behavioral model for generating autonomous vehicle controls. 
Specifically, interaction was formalized through a probabilistic model, namely a partially 
observable Markov decision process (POMDP). This enabled study of what-if scenarios 
with different risk averseness characteristics. One particular strategy was implemented 
on an autonomous vehicle and experimental observations were made. Future work will 
consider (i) richer DSLs to better quantify the driver-human communication, (ii) faster 
POMDP solvers for  real-time operation, and (iii) further applications. 
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Introduction 
Recent studies, such as Lavasani et al. [1], predict that more than 80% of the vehicles sold by 2050 
will be autonomous. Additionally, studies suggest that the transformation of transportation from 
manually operated to autonomous vehicles (AVs) promises significant safety benefits. For 
example, Fagnant et al. [2] predict that a 90% market penetration of AVs will lead to 21,700 lives 
saved per year and 4.2 million fewer crashes.  

One crucial safety concern in the development of AVs is their interactions with pedestrians. 
Current AV designs gather contextual information on pedestrians, such as their location, speed, 
and direction of motion from a variety of sensors (see Gandhi and Trivedi [2]). However, such 
information does not explicitly factor in any communication between the pedestrian and vehicle, 
such as when drivers and pedestrians make eye contact, or the driver waves the pedestrian through. 
This report presents a series of efforts to study pedestrian-driver communication and translate that 
data into a model that can be used by AVs. 

Original Research Proposal 
As originally proposed to the Safety Through Disruption (Safe-D) University Transportation 
Center (UTC), this research involved three phases: 

1. Human Behavior Analysis – Using an instrumented vehicle, collect data on how human 
drivers and pedestrians use tacit communication at crosswalks. 

2. Domain Specific Language – Abstract and codify the data collected during the field study 
in a domain specific language (DSL). 

3. Autonomous Vehicle as a Technology Demonstrator Platform – Use an autonomous 
Polaris GEM e4 electric golf cart to integrate and evaluate the code derived from the DSL 
developed in the previous phase. 

However, it quickly became apparent that the data collection and human behavior analysis 
proposed in Phase 1 would take significant effort and time. Thus, performing Phases 2 and 3 in 
series to directly incorporate the results of Phase 1 into the AV experiments would result in the 
project exceeding its planned duration. Additionally, Phase 2 was addressing an open research 
question that required exploration of ideas, which could be done independent of Phase 1. This led 
to a revised research plan that involved conducting the field study in parallel with the other efforts. 
As a result, the data from the field study were not available to inform the development of the DSL.  

For Phase 3, while we started the AV technology demonstrator platform on the Polaris golf cart 
(including initial experimentation with explicit communication devices such as programmable 
LEDs), our research informed us that it was more important to consider implicit rather than explicit 
communication. A majority of the effort was shifted to addressing this question of implicit 
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communication. Such implicit communication requires a relatively precise understanding of the 
state of the pedestrian, which is a complex task, still subject to open research, and outside the scope 
of our original proposal. Such a capability was more readily available from sensors mounted on 
the roadside. In order to leverage this capability, we  moved to a Lincoln MKZ as a demonstration 
platform. However this capability could not be realized before the completion of the project, and 
therefore Phase 3 was performed through simulations. (A demonstration of the capabilities using 
the MKZ platform was performed after completion of the contracted work.) 

Research Focus  
The objective of this research, as revised, was to explore the communication that happens between 
drivers and pedestrians, and develop a method to apply that to autonomous decision-making that 
will mimic human driver behavior. Prior work has explored communication with pedestrians using 
a technology focus. For example, Anaya et al. [6] developed a Wi-Fi warning system for 
pedestrians and determined the minimum communication distance that would provide adequate 
reaction time. Our focus is to infer the communication intent of the pedestrian through probabilistic 
models defining the interaction. This was accomplished through a field study and a three-step 
process to formalize driver-pedestrian communication to support autonomous driving.  

Field Study on Driver-Pedestrian Interactions 
The field study collected data on driver-pedestrian interactions at crosswalks.  

Participants 
The field study collected data from 11 drivers: six females and five males. Due to an equipment 
failure, one female driver had incomplete data and therefore the final sample consisted of five 
females and five males. The drivers were recruited by gender to account for possible gender 
differences in driving behavior. Participants received research credit for their participation. One 
hour of research credit was awarded for each hour of participation.  

Equipment 
The vehicle for the field study was a 2008 Cadillac STS. Data were collected from the Controller 
Area Network (CAN) bus and a MiniDAS data acquisition system (DAS). The MiniDAS is a 
compact data collection instrument that attaches easily to the vehicle windshield, providing 
continuous forward video of the roadway, along with video of the driver via an internal facing 
camera. In addition, the MiniDAS collects audio and accelerometer data. 

Study Design 
The study followed a 3-way factorial design to explore tacit communication between vehicles and 
pedestrians in high-density pedestrian traffic. The three variables from the 3-way factorial each 
had two levels, providing a 2 × 2 × 2 full factorial study design. The three independent variables 
were (1) driving context, (2) driving route, and (3) narration. The two levels of driving context 
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were driving the experimental vehicle with and without a sign reading “self-driving vehicle.” 
Driving route included one route primarily covering unsignalized crosswalks and a second route 
primarily covering signalized crosswalks. The narration condition included driving the vehicle 
with no special instructions and driving the vehicle while performing a think-aloud protocol. 

During the think-aloud protocol, participants were instructed to narrate whatever they were 
thinking about while reacting to external stimuli. For example, if the driver altered their behavior 
in response to a pedestrian entering the roadway, they were requested to talk through the decision. 
We hypothesized that the think-aloud protocol would provide a small window into the participant’s 
decision-making during pedestrian interactions. Unfortunately, most participants failed to convey 
their thoughts during the narration condition (we suspect due to poor training/comprehension). 

We attempted to minimize ordering effects by having all participants drive both routes under each 
driving context without performing the think-aloud protocol. The first four drives involved no 
narration, with the routes and driving context randomized. Subsequently, the driver performed the 
same order for the routes and driving context while performing the narration protocol. This 
selection was made because performing without the think-aloud protocol is unlikely to affect 
performance in the think-aloud protocol. However, if the think-aloud protocol had been introduced 
first, the participants may have experienced a carryover into the other drives.  

Results 
An event of interest was defined as occurring when a pedestrian was less than or equal to 10 feet 
from a crosswalk while the experimental vehicle was less than or equal to 50 feet from the 
crosswalk. From the video, a total of 1,738 cases were appropriate for analysis. Results are reported 
for the descriptive analysis and regression models. The descriptive analysis details the pedestrian 
demographics and the influences of the experimental conditions on pedestrian and driver behavior. 
The regression analyses identify predictors of driver yield behavior. 

Descriptive Variables 
For the driving context, just over half of the events occurred when the sign was placed on the car 
(51.2%). A total of nine variables were investigated using the chi-square test for independence. Of 
the variables investigated, only the position of the driver’s hands on the wheel, χ2(2, n = 1,738) = 
41.7, p <  .05, and the driver waving pedestrians through, χ2(1, n = 1,738) = 4.2, p <  .05, were 
significant. No dependence was detected between the driving context and yield behavior, χ2(1, n 
= 1,738) = 1.4, p > .05. All other behavioral variables investigated, including all pedestrian 
behavior variables, were non-significant, indicating no interdependence in the data. Full results are 
reported in Table 1 in Appendix A. 

Events within the narration condition were split, with just over half of the events occurring when 
the participant was thinking aloud (50.6%). Driver yield behavior was independent from the 
narration condition, χ2(1, n = 1,738) = 0.1, p > .05. Driver eye contact had a significant chi-square 
test, indicating dependence with the narration condition, χ2(1, n = 1,738) = 7.8, p < .05. All other 
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behavioral variables were found to be non-significant. Full results are reported in Table 2 in 
Appendix A. 

Predictors of Driver Yield Behavior 
A multilevel logistic regression analysis was conducted to investigate variables of interest that 
predict driver yield behavior. Only odds ratio estimates that approximate large and medium effect 
sizes were considered for interpretation. Based on previous research by Chen et al. (2010), the 
odds ratio estimates for large and medium effect size for the prevalence rate of the dependent 
variable are 4.1387 and 2.4972, respectively. The intraclass correlation was calculated from an 
unconditional means model and demonstrated that 15.5% of the variance is due to driver effects. 
The current analysis focuses on the remaining 84.5% of the variance attributed to event effects. 
Predictors were selected for inclusion if every category included at least 5% of the overall data. 
All continuous predictors were person-mean centered to control for driver effects.  

The odds ratio estimates for six categorical predictors approximated large effects: (1) stop sign 
compared to no traffic control, (2) the driver making eye contact compared to no eye contact, (3) 
a factor affecting the driver’s path compared to no path obstruction, (4) pedestrian distance to 
crossing 0 feet compared to being in the crossing, (5) pedestrian distance to crossing 0 to 5 feet 
compared to being in the crossing, and (6) pedestrian distance to crossing 5 to 10 feet compared 
to being in the crossing. The odds ratio estimate for an additional three predictors approximated a 
medium effect: (1) pedestrian making eye contact compared to no eye contact, (2) a vehicle 
traveling in the opposing lane compared to no vehicle, and (3) a factor affecting the pedestrian’s 
path compared to no path impairment. The full results are presented in Table 3 in the Appendix A.  

Discussion 
The comparison of pedestrian and driver behavior related to the driving context provided some 
interesting results. Here, the drivers were aware that the vehicle was marked with a sign reading 
“self-driving vehicle” and altered their visible behavior. Changes in steering wheel hand position 
toward the bottom and a reduction in waving pedestrians through can be interpreted as attempts 
by the participants to conform to the study expectations. Despite the changes in visible behavior, 
the safety criterion, yielding behavior, was not impacted by the sign condition. 

Another interesting finding was that pedestrians did not change any of their behavior when 
interacting with the vehicle when it was marked as a “self-driving vehicle.” The overall statistical 
test did not indicate any mean differences. However, during driving sessions the experimenter 
noticed some pedestrians had extreme reactions to the vehicle when it was equipped with the “self-
driving vehicle” sign. These included a pedestrian starting to walk into the crosswalk, followed by 
quickly returning to the curb before circling behind the vehicle to cross. However, an AV may or 
may not have an individual seated in the “driver’s seat”; thus, these results may not characterize a 
scenario when the driver’s seat is unattended. 



5 
 

Driver eye glance toward the pedestrian was influenced by the narration condition. The decrease 
in driver eye glance toward pedestrians is likely due to an increase in cognitive load. This finding 
can also be connected to past research on roadway eye glance for drivers using a hands-free phone. 
The general finding indicates that drivers using a hands-free phone spend more time looking at the 
roadway compared to a baseline measure. The overall conclusion is usually that this presents a 
protective effect on crash risk by reducing eye glance away from the roadway. In this case, eye 
glance away from the roadway may be a crash risk factor. 

The predictive model demonstrated that pedestrian distance and eye glance are key indicators for 
SAE Level 5 AV programming to consider. In addition, driver eye-glance behavior indicates the 
importance of considering how SAE Level 4 and 5 AVs indicate their intentions. The remaining 
predictors are situational factors. The path obstruction of the vehicle and pedestrian should also be 
considered for programming.  

Summary  
To maximize safety and transportation efficiency, it is essential for Level 5 AVs to be programmed 
to understand and interact with pedestrians during roadway crossing situations. Ten participants 
each completed eight drives in a 3-way factorial designed study. The research provided nearly 90 
hours of real-world video data. Differences in pedestrian and driver behavior for the independent 
variables indicated that pedestrians do not demonstrate significant behavior changes in response 
to seeing a vehicle marked as a “self-driving vehicle.” In addition, the predictive model identified 
variables for future research to improve SAE Level 5 AV programming by including consideration 
for pedestrian-vehicle interactions. 

Formalizing Driver-Pedestrian Communications 
to Support Autonomous Driving 
The second and third phases of this research involved formalizing driver-pedestrian 
communications to support autonomous driving. This involved the development of a DSL, a 
crossing intent model, and an action policy for an AV. The crossing intent model and action model 
were subsequently tested through simulation. 

Literature Review 
In the original proposal for this project, the mathematical formalization of driver-pedestrian 
communications was intended to be informed by the results of the field study. However, the field 
study was performed in parallel to the rest of the project, including the development of the DSL, 
and therefore there were no results available in time to use the DSL to abstract the field study data. 
Consequently, the formalization effort was based on a review of the literature, including studies of 
pedestrian crossing behavior and studies of pedestrian-AV interactions. 
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Studies of Pedestrian Crossing Behavior: Definitions and Known Determinants 
Early studies that analyzed pedestrian road-crossing behaviors observed that pedestrians are 
primarily concerned with time gaps instead of distance gaps when negotiating approaching traffic 
[13]. According to the Highway Capacity Manual [15], a critical gap is defined to be the time in 
seconds below which a pedestrian will not attempt to begin crossing the street. R. L. Moore [13] 
identified that each pedestrian has their own critical distance gap, but this gap changes according 
to an oncoming vehicle’s speed, and the pedestrian will not cross if the vehicle is nearer than this 
critical distance. Cohen et al. [16] also proposed a similar idea called maximum risk-taking. They 
found that 92% of pedestrians crossed a 7.0-m wide road when the vehicle was 7 s away, and 0% 
crossed when the time difference was shorter than 1.5 s. 

Several researchers followed up on these studies with a thorough evaluation of the factors that may 
influence the critical gap. Brewer et al. [17] categorized pedestrians’ crossing maneuvers based on 
different traffic flow and road geometric conditions: (1) a single-stage crossing is when pedestrians 
cross the road in one crossing maneuver; (2) two-stage is when pedestrians cross to the median 
first and then cross to the far side; (3) rolling is when pedestrians search for gaps between a 
continuous flow of vehicles by adjusting the speed and direction of their movements. W. A. Harrell 
[18] analyzed crossing behaviors with variables for multiple parameters, including traffic volume, 
temperature, and the width of the roadway. He concluded that traffic volume has an inverse 
relationship with cautiousness. 

In addition, it has been observed that personal characteristics influence pedestrians’ critical gap. 
Studies have shown that gender affects pedestrian behavior, most results indicating that males tend 
to take riskier actions, whereas females often cross with greater caution [19, 20]. Age is another 
influence on pedestrian behavior. Oxley et al. [21] suggest that age-related perceptual and 
cognitive deficits affect crossing behavior. Moreover, the complexity of the traffic has a larger 
effect on the behavior of older pedestrians. For example, on two-way undivided roads, elderly 
people are frequently found crossing even when the traffic is already closing up [23]. 

Prior Studies of Pedestrian Interaction and Cooperation with AVs 
Researchers have proposed different approaches to predict pedestrian behavior to enable planning 
and action-selection for AVs. Schneemann and Heinemann [23] classified pedestrian intention 
using a combination of a support vector machine (SVM) along with a context-based feature 
descriptor. Bandyopadhyay [24] used a mixed observable Markov decision process to maintain 
uncertainty over pedestrians’ headings to generate a conservative avoidance policy. Most of these 
studies focus on avoiding a collision by relying on collecting pedestrian data.  

The result is that the vehicle’s action choices come to be dominated by the pedestrian’s behavior 
which, while guarded, can undermine social resolution of contention. For example, those 
approaches have the potential to make rolling crossing dangerous or entirely infeasible. Moreover, 
such an approach can be counterproductive, reducing overall efficiency and encouraging (or, if not 
exactly rewarding, then certainly never penalizing) interposition by pedestrians. 
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There are other studies that focus on communicating the vehicle’s intentions to nearby pedestrians. 
No single solution dominates, and a variety of different communication methods for AVs and 
pedestrians have been explored. Some studies state that showing physical information such as gap 
distance dominates the communication [5]. Others suggest that designing external interaction 
devices can help reassure the pedestrian that it is safe to cross. Lagstrom and Lundgren [25] 
conducted experiments with an LED strip mounted on the windshield of a car and provided 
evidence that it boosts confidence in pedestrian decision-making. Companies such as Google [26], 
Mercedes [27], and Nissan [28] have also proposed their own external hardware (such as 
programmable LED displays and speakers) to interact with pedestrians. In contrast, in this study 
we deliberately opted to use only standard production vehicle features. 

Domain Specific Language (DSL) for Capturing Communication 
Events 
DSL Framework 
The focus of this task was to explore the use of a controlled natural language (CNL) representation 
of events relevant to driver-pedestrian communication. There has been a significant interest in the 
use of CNL for knowledge representation in general (e.g., Schwitter [9]). The primary reason to 
look at CNL is to provide a mechanism to describe communication events precisely yet in a human-
readable form.  

A CNL is often developed to not just describe knowledge but also enable programmatic access to 
this knowledge for the purpose of automation. In this case, the description evolves into a domain-
specific language (DSL). A DSL is a more general concept than a CNL, with well-defined syntax 
and semantics, and well-defined transformations that can eventually enable analysis and execution 
directly from the DSL descriptions (for example, see Volter [10]).  

An editor is required to describe the communication events in the DSL, along with associated tools 
that can analyze the syntax and semantic constraints of (i.e., compile) the DSL. This is normally a 
huge task, and therefore we decided to use a language work bench (LWB) [11] to aid in the 
development of the DSL. We chose MPS (Meta Programming System) [12] as a suitable LWB 
because it allows relatively easy construction of a CNL-type editor without compromising the 
ability to define the underlying semantics of the language.  

Key Components of DSL for Describing the Communication Scenario 
Based on the literature review and engineering intuition, we selected key components to develop 
the first iteration of the DSL. Thus, it was not possible to comprehensively identify all the key 
components of the DSL within the scope of this project. However, we attempted to characterize 
some of the critical components, with the intent that this will be expanded in future studies to make 
it more comprehensive. 
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• Scenario description: Before describing the specifics of the communication, it is important 
to describe the scenario in a uniform fashion. Typically, this consists of defining the 
infrastructural elements near the scene (e.g., presence and position of a crosswalk [or the 
absence of a crosswalk], stop sign, traffic signal, number of vehicles, number of 
passengers, etc.), and the state of motion of the dynamic objects (i.e., velocity and position 
of the vehicles and passengers). 

• Communication description: Based on the type of information that was going to be 
available from the field study, the key components of the communication that we identified 
were change of state of motion (e.g., speed up, slow down, stop, etc.), unilateral actions 
such as waving or flashing lights, and bilateral actions such as eye contact. 

Sample DSL Implementation 
While the DSL will continue to evolve in the future as we iterate on the key components and the 
user interface, we will describe a sample implementation of the DSL using MPS for this project. 
The communication scenario is described in three steps: definition of the infrastructure, description 
of the dynamic objects, and description of the communication. 

Definition of the Infrastructure 
Since the description of the infrastructure is usually static in nature, we felt that it was efficient to 
have a tabular user interface to define this instead of a CNL. This is seen in the table at the top part 
of Figure 1. 

 

Figure 1. Screen capture. Example of communication scenario DSL editor. 

Description of the State of Motion of the Dynamic Objects (Vehicles and Pedestrians) 
For the dynamic scenario description, we used CNL as the editing interface for the DSL. The 
resultant CNL description is seen in the middle part of Figure 1. 
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The example shows that it is possible to specify explicit values for the state of motion (e.g., 10 
m/s). It is also possible to specify the states of mind of the pedestrian and driver (in this example, 
“alert”), to be chosen from a predefined set of possible states. 

Even though the description appears in the form of “text,” the editor allows a more nuanced 
interface, where the available options for typing change depending on the context.  

Description of the Communication 
The interface for describing the communication is very similar to that of the dynamic scenario 
description. The editor provides nuanced support, as shown in the bottom part of Figure 1. A drop-
down list of available element types is provided depending on the context, and this list of options 
gets expanded or whittled down depending on what the user types.  

MPS provides the ability to define an underlying DSL that can be projected in multiple editors, 
such as a table or text. We leveraged this to generate the CNL for the communication as shown in 
Figure 2. 

 

Figure 2. Screen captue. Projection of communication DSL as CNL. 

Code Generation from DSL to Implementation in Vehicle 
While the eventual goal of the DSL is to enable the synthesis of an optimal action strategy for the 
vehicle, we could also use the DSL as way of describing the “typical” human driver, and therefore 
make the AV mimic the behavior of such a human driver. Since the DSL is defined precisely, with 
well-defined underlying semantics, we can use the LWB to auto-generate the code that will drive 
the behavior of the AV. We implemented a proof-of-concept of this by taking a scenario 
description defined using the DSL and auto-generating code (in Python) that would then interface 
with code that was already running in our AV, ARV_003, a Polaris GEM golf cart.  

Crossing Intent Model 
The core part of our work was to develop a method to capture the communication between the 
human driver or the vehicle and the pedestrian at an unsignalized intersection. Since the field study 
had a broader scope, and data were not readily available at the time of development of the models, 
we focused on using knowledge distilled from studies of pedestrian crossing behavior (see the 
literature review above) in order to first design and then investigate a simple decision-theoretic 
model. The model is instantiated in a prototypical road crossing setting, where it forms the basis 
for a planning problem that an AV might use to interact and communicate with pedestrians.  
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Formal Problem Definition 
The model concerns a pedestrian and a vehicle both approaching the same segment of a roadway. 
As they start, it is ambiguous as to who will cross the intersection first. The laws usually leave it 
open-ended (e.g., see the California Driver Handbook [35]). As the scenario unfolds, both vehicle 
and pedestrian interact via their respective actions to efficiently and smoothly resolve this question. 
A graphic representation of this scenario appears in Figure 3. 

 

Figure 3. Diagram. Bird’s eye view of crossing scenario. 

Our goal is to understand the crossing behavior of both the vehicle and the pedestrian as a dynamic 
process. The basic assumption that motivates our modeling approach is to presume that both agents 
resolve the question of who will cross first as a form of uncertainty reduction. The most concise 
representation is a single binary variable whose value encodes who will cross the intersection first. 
We consider this variable as representing the (changing) crossing intent of the pedestrian. The 
crossing intent that the pedestrian has in mind cannot be observed directly by the vehicle. Instead, 
the vehicle maintains a “belief” (i.e., a probability distribution) over this binary variable. As the 
scenario evolves, the vehicle gains information regarding the pedestrian, integrating observations 
and using its model of the pedestrian’s progress to learn more about the pedestrian’s state.  

An “observation model” is created that describes the dependence of a vehicle’s observation on the 
actual behavior of the pedestrian. When the pedestrian’s behavior, as sensed under the observation 
model, depends markedly on the pedestrian’s sense of the crossing order, then the vehicle can 
leverage this dependence to “learn” the crossing order implicitly. 

We formulate an instance of a partially observable Markov decision process (POMDP) [29] that 
describes the impact of actions for the vehicle. The solutions to such decision problems balance 
actions that gain information with those that attain valuable reward. In our case, the former turn 
out to be actions that the vehicle takes to better ascertain the pedestrian’s understanding of the 
crossing order, when that is valuable. Further, it must be emphasized that “better ascertain” does 
not merely mean observing but, potentially, also influencing. 
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Vehicle-Pedestrian Interaction Model 
In the sections that follow, we will examine the dynamics of the vehicle’s and the pedestrian’s 
beliefs about the intersection crossing order in order to analyze how they resolve the ambiguity 
and reach an agreement. 

Non-observable States: Crossing Order 
Let us denote the binary variable encoding crossing order as 𝜉𝜉. We define 𝜉𝜉 ∈ {0,1}, where 𝜉𝜉 = 0 
means that the pedestrian crosses first and 𝜉𝜉 = 1 means the vehicle crosses first. We can describe 
the dynamics of 𝜉𝜉 based on some domain knowledge (i.e., a decision based on the time gap).  

Pedestrian Dynamics 
We express the dynamics of a pedestrian with a collection of Markov chains. Each state in the 
chain contains variables that describe the pedestrian’s physical states and status. We also think of 
𝜉𝜉 as being associated with the pedestrian. 

In this study, we restrict ourselves to a very basic motion of the pedestrian: the pedestrian can 
either move along the crosswalk or not. We assume that the pedestrian can move at any reasonable 
speed, but we treat speed in a particular way. In each state of the Markov chain, the physical state 
is a representation of the distance (discretized) from the crosswalk. The transition probability 
between each physical state is calculated based on the speed the pedestrian is traveling. To define 
the speed, we first need to know the crossing order (recall, 𝜉𝜉 is seen as the pedestrian’s belief). 

We can break down the influences on pedestrian crossing decision-making into two main factors: 
contextual and habitual. Contextual factors include the position and velocity of the vehicle and the 
location of the crosswalk. Habitual factors include the pedestrian’s traits and personal 
characteristics, such as age and gender. We condense contextual factors into a notion of the “level 
of perilousness” of the current world state. The level of perilousness is computed based on the time 
difference between the time remaining until the vehicle’s arrival at the crossing point and the 
pedestrian’s arrival at the crossing. The sooner the vehicle arrives compared to the pedestrian, the 
higher the level of perilousness and vice versa. The habitual factors determine how the pedestrian 
will act according to its sense of the level of perilousness. For modeling purposes, consider the 
extremes: a reckless and a cautious pedestrian. Let us denote the behavior by 𝛾𝛾 , with 𝛾𝛾 = 1 
implying that the pedestrian’s behavior is reckless and 𝛾𝛾 = 0 implying the pedestrian is cautious. 

The final result is the making of a decision, which we consider as having 𝜉𝜉 take a value. Based on 
the factors described above, the dynamics of 𝜉𝜉 can be expressed as below: 

𝑃𝑃�𝜉𝜉𝑡𝑡+10 |𝜉𝜉𝑡𝑡1, 𝑆𝑆𝑡𝑡
𝑝𝑝, 𝑆𝑆𝑡𝑡𝑣𝑣� = 

0.9 if vehicle slows down near the crosswalk and the pedestrian is reckless 
0.7 if the vehicle slows down dramatically 
0.5 if pedestrian is reckless 
0.3 if vehicle slows down from far 
1.0 otherwise 
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𝑃𝑃�𝜉𝜉𝑡𝑡+11 |𝜉𝜉𝑡𝑡1, 𝑆𝑆𝑡𝑡
𝑝𝑝, 𝑆𝑆𝑡𝑡𝑣𝑣� = 

0.9 if vehicle speeds up near the crosswalk and pedestrian is cautious 
0.5 if vehicle speeds up from far 
1.0 otherwise 

Here the number in the superscript is the value for which the probability is being calculated. For 
example with 𝑃𝑃�𝜉𝜉𝑡𝑡+11 |𝜉𝜉𝑡𝑡1,𝑆𝑆𝑡𝑡

𝑝𝑝, 𝑆𝑆𝑡𝑡𝑣𝑣� , 𝑆𝑆𝑡𝑡𝑣𝑣 represents 𝑃𝑃(𝜉𝜉𝑡𝑡+1 = 1|𝜉𝜉𝑡𝑡 = 1) . (The 𝑆𝑆𝑡𝑡
𝑝𝑝  and 𝑆𝑆𝑡𝑡𝑣𝑣  serve as 

indicators that pedestrian and vehicle state information is needed to compute the expressions). 

Crossing Order 
The pedestrian’s motion depends on their intent to cross first or second. This is, of course, precisely 
the information in 𝜉𝜉𝑡𝑡. Hence, the motion can be clearly defined in two cases. 

Pedestrian Intends to Cross First (𝜉𝜉𝑡𝑡 = 0)  
When the pedestrian decides to cross the intersection before the vehicle does, the pedestrian will 
attempt to travel at some speed to ensure this. We will assume that if the pedestrian decides to 
cross, they would do so at a minimum speed corresponding to nominal walking speed (1.4 m/s). 
However, if they perceive that the vehicle might arrive at the road crossing before they leave the 
crossing, they will tend to speed up, up to a maximum walking speed (2.5 m/s). Quantitatively, we 
capture it as below, with 𝑓𝑓0 representing the walking speed: 

  

Here 𝑜𝑜∆𝑡𝑡 is the difference between the remaining time for the vehicle to arrive at the intersection 
and the remaining time for the pedestrian to finish crossing the intersection. 𝛼𝛼 is a negative constant 
that represents the incline of the pedestrian’s speed. (We might write 𝑆𝑆𝑡𝑡

𝑝𝑝  and 𝑆𝑆𝑡𝑡𝑣𝑣  again as a 
reminder but omit them for simplicity.) 

Pedestrian Expects Vehicle to Cross First (𝜉𝜉𝑡𝑡 = 1) 
In the case of the pedestrian expecting the vehicle to cross first, they will first determine if they 
can reach the other side of the road while walking at nominal speed. If they believe that that is not 
possible, they will stop at the curb and wait for the vehicle to pass before proceeding. This behavior 
is captured by the following equation for their velocity: 

 

where 𝑜𝑜𝛽𝛽 represents the distance between the pedestrian and crosswalk. Once the pedestrian starts 
crossing the crosswalk, 𝑜𝑜𝛽𝛽 becomes a negative distance in our representation. 
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Optimal Action Policy for Autonomous Driving 
Vehicle Dynamics 
The vehicle, unlike the pedestrian, has actions that we wish to determine. Hence, we model the 
vehicle’s controls as actions of a decision process. The vehicle needs to avoid collision with the 
pedestrian, whose crossing behavior is not perfectly known. The vehicle must deal with two forms 
of uncertainty: partial observability and stochasticity. By choosing actions, the vehicle seeks an 
optimal strategy through reasoning about the pedestrian’s behavior as expressed in the stochastic 
model. 

Vehicle’s Motion Model 
Let 𝑉𝑉𝑝𝑝𝑝𝑝𝑝𝑝  be the state that represents the vehicle’s distance from the crosswalk and state 𝑉𝑉𝑣𝑣𝑣𝑣𝑣𝑣 
represent the vehicle’s velocity. The evolving physical state of the vehicle is specified as 
�𝑉𝑉𝑝𝑝𝑝𝑝𝑝𝑝,𝑉𝑉𝑣𝑣𝑣𝑣𝑣𝑣�. The vehicle is constrained to move in a fixed direction towards the crosswalk and its 
control is based on acceleration rate 𝑎𝑎 ∈ {𝑎𝑎𝑑𝑑𝑣𝑣𝑑𝑑 , 0,𝑎𝑎𝑖𝑖𝑖𝑖𝑑𝑑}, where 𝑎𝑎𝑑𝑑𝑣𝑣𝑑𝑑 < 0 and 𝑎𝑎𝑖𝑖𝑖𝑖𝑑𝑑 > 0. Given 𝑎𝑎, 
the new state of the vehicle is calculated as 

 

Vehicle-Pedestrian Interaction 
The interactions between vehicle and pedestrian near the crossing point are embedded into 
transition functions. When the vehicle and the pedestrian are far from the crossing, they transition 
to their next state based on their individual dynamics. However, the pedestrian’s crossing behavior 
considers the vehicle position and velocity. Once the pedestrian is near the crosswalk, both the 
crossing behavior of the vehicle and the pedestrian are now tightly coupled: both their state 
transition probabilities are influenced by not only the vehicle’s state but its actions as well. 

Sensors and Observations 
We assume that the vehicle is equipped with sensors capable of detecting the pedestrian and 
reporting their position and velocity. These sensors produce data that has an error range, which 
decreases as the vehicle gets closer to the pedestrian.  

Additionally, the vehicle is assumed to have sensors that return an accurate value of its velocity 
and pose (the latter is merely the distance from the crosswalk). Taken together, this sensing 
equipment generates observations for the POMDP. We can represent these observations as a 4-
tuple: �𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝,𝑃𝑃𝑣𝑣𝑣𝑣𝑣𝑣 ,𝑉𝑉𝑝𝑝𝑝𝑝𝑝𝑝,𝑉𝑉𝑣𝑣𝑣𝑣𝑣𝑣�. 

Rewards 
The decisions for the vehicle shall be synthesized based on maximizing rewards that will reflect 
the objectives of the pedestrian and the vehicle during a crossing. The reward model is simple: the 
primary objective of the vehicle is to minimize the risk of colliding with the pedestrian. 
Consequently, we assign a large penalty when both the vehicle and the pedestrian are on the 
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crosswalk simultaneously. Additionally, to incentivize efficiency, the vehicle receives rewards for 
those states with a higher velocity. 

We emphasize that the vehicle is not specifically rewarded for knowing things about the 
pedestrian; any information of value is valuable because it has implications for safe, efficient 
motion indirectly. 

The Vehicle’s Perspective on the Crossing Order 
Unlike the pedestrian, who has a state 𝜉𝜉 to represent whether they intend to cross first or not, the 
vehicle has no such explicit state. Instead, the POMDP maintains a distribution over the entire 
state space, i.e., a belief state. When all dimensions of the state other than 𝜉𝜉 are marginalized out, 
what remains is a probability that represents the vehicle’s estimate of the pedestrian’s conception. 

Quantifying the Value of Knowing the Crossing Order 
Given that the vehicle has a distribution over 𝜉𝜉, the POMDP permits us to quantify the value of 
that single bit of information. We present this by way of an example. Assume there are three 
policies generated by the POMDP solver denoted 𝜋𝜋1,𝜋𝜋2, and 𝜋𝜋3. Assume that 𝜋𝜋1 has a belief 
distribution for 𝜉𝜉 as shown in Table 1. Further, suppose that 𝜋𝜋2 and 𝜋𝜋3 are policies with a 100% 
belief on 𝜉𝜉 = 0 and 𝜉𝜉 = 1, respectively. The value of knowing (or communicating), denoted 𝑉𝑉𝜉𝜉, 
at each time step can be calculated by comparing the expected reward of 𝜋𝜋1 with that of 𝜋𝜋2and 𝜋𝜋3: 

 

Table 1. Example of Comparison of Rewards Between Policies 

 ξ = 0 ξ = 1 Expected Reward 

Policy π1 70% 30% 50 

Policy π2 100% 0% ≥ 50 

Policy π3 0% 100% ≥ 50 

Evaluation 
We evaluated the methodology developed above using a mathematical simulation of the vehicle 
and pedestrian behavior. 

Simulation Setup 
Our simulator emulates a continuous world describing a crossing scenario and employs DESPOT 
[30, 31] as a POMDP solver to create a safe and efficient crossing policy for the vehicle. (DESPOT 
is an online solver that uses a belief-tree approach in which sampled scenarios produce nodes that 
are connected via edges to produce approximate policies.) Both the simulator and solver are 
connected through the Robot Operating System (ROS) [32]. We implemented them as ROS nodes 
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with inter-process communication handled by having them subscribed to one another, with 
messages sent via publication functions. 

We developed a custom simulator to model the crossing scenario depicted above in Figure 3. The 
pedestrian motion is simulated using the pedestrian crossing behavior model described earlier. The 
vehicle was simulated to move towards the crossing point. The vehicle proceeds at the speed of 
3 m/s initially, with its speed changing according to the acceleration rates produced as actions. 
These actions are themselves generated directly by DESPOT. 

One round of simulation occurs when the vehicle or pedestrian finishes crossing from one side to 
the other. Each round begins with both the vehicle and the pedestrian in the simulator moving 
steadily towards the shared crossing. When the vehicle is 14 m or less away from the crosswalk, 
the simulator node sends a message to start the POMDP solver. For every execution step, the solver 
reads the current state of the simulator, including both the vehicle and the pedestrian information, 
and outputs an acceleration rate. The simulator will transition to the next world state as the vehicle 
transitions based on the generated acceleration rate as input and the pedestrian transitions based 
on its crossing behavior model. The simulator continues to subscribe for new acceleration rates 
until the round finishes. 

For the DESPOT solver, we used 500 sampled scenarios with the maximum depth of the belief 
tree as 100, and the discount factor set to 0.98. The solver was given 1 s to construct the search 
tree and choose an action. The simulations were executed on an Intel Core i7-6670HQ 2.6 GHz 
processor with 32 GB of RAM running Ubuntu 16.04. 

We constructed a crosswalk 4-m wide and 5-m long. The vehicle was set to start 14 m away from 
the crosswalk, and the pedestrian was set 4.2 m away from the crosswalk. The vehicle’s and the 
pedestrian’s position state space were generated by discretizing the continuous space by an interval 
of 1.75 and 0.75, respectively. The velocity state for the vehicle contained values from 0 to 3 with 
an interval of 1. The pedestrian had three velocity states: {0.0, 1.4, 2.5}. We defined the action 
space of the POMDP model to be {-1.0, 0.0, 0.5}, where each item is an acceleration rate that can 
be feasibly executed by the vehicle. 

Results 
In this section, we discuss the performance of the simulated AV by analyzing the resulting behavior 
based on overall safety (i.e., occurrence of a collision) and the quality of the vehicle’s belief of the 
pedestrian’s intent (which reflects the quality of implicit communication). We also briefly discuss 
results where the vehicle has an option to take an action that generates explicit communication. 
We present the simulation via detailed plots of a variety of variables as they evolve in time. Figure 
4(a) and (b) depict simulations of a cautious and a reckless pedestrian, respectively. The positions 
of both pedestrian and vehicle are shown in the graph entitled “continuous position.” The vertical 
axis of the graph is the distance from the crossing, where negative values represent positions that 
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are before the crossing point. The horizontal axis of the graphs is the number of iterations the belief 
states are updated. The time interval between each update is 0.04 s.  

 

 (a)  (b)Figure 4. Graphs. Simulation results showing (a) vehicle executing a policy, interacting 
with a cautious pedestrian, and (b) vehicle executing a policy, interacting with a reckless pedestrian. 

Crossing Safety 
We can see that regardless of whether interacting with a reckless or a cautious pedestrian, the lines 
for the vehicle and the pedestrian positions are never both greater than 0 simultaneously. This 
indicates adequate spatial separation, i.e., no collision occurs. 

In our simulation, we decelerate at the rate of −1.0 m/s2, which is within the Institution of 
Transportation Engineers (2009) recommended average maximum deceleration rate of 3.0 m/s2 
and the comfortable deceleration rate of 3.4 m/s2 defined by AASHTO (2004). This assures the 
safety and comfort of the speed change. 

Beliefs Over Non-observable States 
In our scenario, the key to communication is the inference of behavior, which itself is resolved as 
a question about the pedestrian’s crossing decision (𝜉𝜉). Recall that 𝜉𝜉 is calculated based on the 
perilousness of the crossing for the pedestrian and also their habitual characteristics. Since neither 
this characteristic nor 𝜉𝜉  are observable, the vehicle’s knowledge of these two elements is 
understood in terms of the belief state (or distribution) over both variables. The third plot in the 
figures shows how the belief of the characteristic converges to the correct trait. As for the belief 
distribution of the pedestrian’s 𝜉𝜉 , it appears (along with the actual pedestrian’s 𝜉𝜉  value for 
comparison) in the fourth plot of the figures. Notice that 𝜉𝜉  changes, but the vehicle’s belief 
distribution is shown to align with the changes in the pedestrian’s 𝜉𝜉.  

Implicit Communication: An Interpretation 
To help assimilate the results, we chose to compare the behavior of the simulated AV with the 
behavior of human drivers under circumstances where they are uncertain of the pedestrian’s sense 
of who should cross. 
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Figure 5. Chart. Strategies of the vehicle in ambiguous situations with a reckless pedestrian (based on [13] 
but redrawn with modifications). 

Figure 5 is a summary of the behavior of our simulated vehicle; it is redrawn from Schneemann 
and Gohl [13] using their style of summarization, along with some modifications for clarity, and 
with numbers reporting the data from our simulations. The percentages and speed values are based 
on the results of running simulations using a reckless pedestrian as input. (One example of the 
strategy is shown in Figure 4). Schneemann and Gohl [13] report that human drivers resolve 
ambiguous situations by initially reducing their speed, and then deciding whether to speed up or 
come to a stop depending on the pedestrian’s response to their speed reduction. We see that the 
vehicle’s strategy is less conservative than that of human drivers. Figure 5 can be interpreted as 
the vehicle trying to gain efficiency (i.e., directly modelled via rewards) while also balancing 
uncertainty. Instead of slowing down to learn the pedestrian’s crossing order decision passively, 
the vehicle remains at moderately high speeds, seemingly to express its intention to cross first. 
This communicates with the pedestrian, and the pedestrian’s subsequent motion can be explained 
as a reply to the crossing arrangement. In Figure 4(a), the cautious pedestrian is shown to slow 
down, acceding to the vehicle crossing first. In Figure 4(b), the reckless pedestrian accelerated to 
express disagreement on the vehicle crossing order. Both the vehicle and the pedestrian continue 
to adapt their maneuvers thereafter in order to reach an agreement on the crossing order. 

Explicit Communication 
We also conducted a simple simulation to analyze the value of communicating crossing order by 
creating an action that communicates 𝜉𝜉 explicitly. In Figure 6 of Appendix B, the vehicle can flash 
its headlights. We model the pedestrian as understanding this action as an indication that the 
vehicle intends to let the pedestrian cross first. Additionally, to have the vehicle’s policy be 
deliberate in choosing to communicate intent and establish 𝜉𝜉, we assign a negative reward as 
penalty for opting to flash the lights.  

As seen from the results in Figure 6, the vehicle chooses to flash its lights (quite frequently in fact) 
despite a penalty being incurred. Moreover, when we compare the third graph in Figure 4(b) to 
that in Figure 6, it is clear that knowledge of the pedestrian’s characteristic is recognized faster 
with explicit communication. The fourth graph in both figures also shows that 𝜉𝜉 stabilizes sooner 
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too. As the ambiguity is resolved, the result is that both the vehicle and pedestrian cross the 
crosswalk more efficiently. 

Conclusions and Recommendations 
This project had the objective of understanding the interaction between a vehicle with a human 
driver and pedestrians so that this understanding could be leveraged to synthesize driving policies 
for AVs that are derived from a rational trade-off between traffic efficiency and safety. There were 
two primary activities towards this understanding: (i) a field study that captured and documented 
the behavior of drivers and pedestrians under a variety of realistic traffic scenarios, and (ii) a 
mathematical formalization of the vehicle-human communication leading to an optimization-
based decision strategy for autonomous driving. 

The field study resulted in a large amount of knowledge captured through both raw video and other 
sensory data, as well as through curated information captured in Excel files.  

The formalization of communication effort resulted in (1) the development of a DSL methodology 
for precisely capturing the driving behavior, which can be used for both translating human 
behavior directly to AVs (which was demonstrated on an actual AV), as well as for parameterizing 
a more formal communication model that can be used to generate optimal control strategies for 
AVs; (2) a communication intent model that recognizes the fundamental nondeterminism 
associated with  human behavior and addresses it through a POMDP; and (3) a practically 
realizable decision support system that leverages state-of-the-art solvers for POMDP, and 
demonstrating this on a real AV. 

By modeling the pedestrian behavior as a POMDP, a vehicle maintains a distribution over a binary 
variable that encodes whether a pedestrian aims to cross first and generates a sequence of actions 
that manage uncertainty, including some actions that seem to elicit information—bearing the 
hallmarks of implicit communication. Our simulation results show a vehicle capable of resolving 
uncertainty in order to achieve efficiency. An examination of the vehicle’s crossing behavior 
suggests that the strategy is less conservative than some driving behavior, including some humans, 
while trying to resolve ambiguous situations. Motivated by studies conducted on and patents issued 
for external hardware designs for AVs, we also briefly discussed vehicle strategies that include 
explicit communication actions.  

Recommendations for Future Work 
Here we make a few recommendations on future work: 

1. The development of the DSL is not a one-time activity, but something that needs to be 
evolved as more and more scenarios are considered for description using the DSL. A direct 
way to achieve this is by applying the DSL to field data. While this had been one of the 
paths identified, it was not possible to do this during the course of this project as the field 
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study was happening in parallel with the formalization activity. A future study should take 
the large amounts of field study data that have been generated and use the DSL to abstract 
the descriptions of the communication events. During this process, the DSL itself needs to 
be improved. 

2. As a corollary to the above, if sufficient data are processed through the DSL, it becomes a 
rich knowledge base that can be programmatically analyzed, so the formal communication 
models can be more accurately parameterized to represent typical driver-pedestrian 
behavior. 

3. While we have had very remarkable results eliciting the tacit communication using just one 
behavioral state—the binary variable capturing crossing intent—we recognize that there 
are multiple behavioral states that are relevant and need to be considered. This would be a 
natural area for future work. 

4. The ultimate value in a keener understanding of communication between vehicles and 
pedestrians is being able to use that understanding for decision support. Using more 
variables to describe the behavior results in exponential growth in complexity, making the 
implementation of optimal decision support a challenge. Thus, activity is needed to look at 
efficient optimization and implementation techniques that can be implemented in real-time. 

Additional Products 
The Education and Workforce Development (EWD) and Technology Transfer (T2) products 
created as part of this project can be downloaded from the project page on the Safe-D website. The 
final project dataset is located on the Safe-D Collection of the VTTI Dataverse. 

Education and Workforce Development Products 
The research project supported an M.S. student, Ya-Chuan Hsu. She presented a poster at the 3rd 
Annual Texas A&M Transportation Technology Conference, fitting the theme of “Preparing for 
Connected Automation.” A preliminary report on the research she coauthored, “An MDP Model 
of Vehicle-Pedestrian Interaction at an Unsignalized Intersection,” was accepted to a workshop 
held at the IEEE Vehicular Technology Conference in Chicago, Illinois. She has a paper 
titled “Implicit Coordination via Uncertainty-aware Plans: A POMDP Treatment of Vehicle-
pedestrian Interaction” under submission to IEEE/RSJ International Conference on Intelligent 
Robots and Systems 2019. She is well on her way to successfully defending her M.S. thesis and 
has expressed an interest in continuing her graduate studies to pursue a Ph.D. in Computer Science. 

Dylan Shell, co-principal investigator, used the topic of uncertainty-aware planning as a means to 
realize implicit communication as a basis for a topical discussion on September 3, 2019, in the Fall 
2019 offering of CSCE-691, section 646. Aspects of POMDPs were introduced and reviewed, then 
information gathering in standard formulations was examined. Finally, discussion with application 
to social settings where the planner realizes communication for interaction was described. This 

https://www.vtti.vt.edu/utc/safe-d/index.php/projects/formalizing-human-machine-communication-in-the-context-of-autonomous-vehicles/
https://dataverse.vtti.vt.edu/dataverse/safed
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constituted a topic for 1.5 hours of time, and culminated in a student present (not affiliated with 
the original project) expressing that both the application and the non-standard formulation were 
interesting and novel to him. 

Co-principal investigator Srikanth Saripalli led a group of senior undergraduate students as part of 
a capstone project. Five students teamed up as part of MEEN 401/402 over two semesters and built 
a communication system consisting of LEDs, speakers, and GPS that can communication the 
intentions of an AV to pedestrians. The project ended in December 2019. 

Technology Transfer Products 
The methodology that we have developed has broader implications in the context of Human Robot 
Interaction (HRI). The generality of the approach, specifically in treating actions as informative 
and hence expressing the subtle intercouplings of agents in the world, has raised the question of 
how widely state-of-the-art planning techniques may be used to realize social competency in 
robots. In particular, we have already engaged a new project that extends the methodologies 
developed here to the AGV-pedestrian interaction scenario in a factory setting. The belief is that 
the separation of a specification language (for recording observations and posing scenarios) from 
the realization via probabilistic models (e.g., particular discrete Markov decision processes) is a 
methodology applicable to a range of settings of practical and potential importance. 

Data Products 
The data collected as part of the field study are available via the Safe-D collection on the VTTI 
Dataverse at https://doi.org/10.15787/VTT1/IC4KCQ. The CommAutoExport dataset contains the 
data analysts’ annotations for the 1,808 pedestrian interactions with detailed descriptions of each 
variable in the dataset, including data type, range of values, coding for categorical variables, and 
identifiers used to denote missing values or errant data. The Tacit Communication Video 
Reduction Directory includes the values for the annotations in the CommAutoExport dataset. The 
CommAuto Driver Dataset includes information on the driving context, driving route, narration, 
and participant demographics.  

https://urldefense.proofpoint.com/v2/url?u=https-3A__doi.org_10.15787_VTT1_IC4KCQ&d=DwMFAg&c=ODFT-G5SujMiGrKuoJJjVg&r=TmlpRBCHy7MmeJ6WEMqRxXQi6mLFY7IcHagMzZONSb0&m=gBTkKub78mUjpLxnrIaEM0mR29cxuRS4IhxMbEA3MyE&s=M3EX_B-ZQpznymwKxXrjt7ZFYgFz-JdG2-j-MEdaC68&e=
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Appendices 
 

Appendix A: Field Study Results 
Table 2. Results of Chi-Square Tests Between the Driving Context Condition and Behavioral Variables 

  Driving context   
  Vehicle without sign Vehicle with sign χ2(df) 
Driver yield 
behavior 

Yield 763 783 1.4(1) 

 Failure to yield 86 106  
Driver hand 
position 

Top of wheel 446 339 41.7(2)* 

 Side of wheel 36 28  
 Bottom of wheel 367 522  
Driver eye contact Yes 769 805 0.0(1) 
 No 80 84  
Driver wave 
through 

Yes 79 59 4.2(1)* 

 No 770 830  
Driver wave palm 
outward 

Yes 34 38 .1(1) 

 No 815 851 6.6(4) 
Driver reaction No reaction 88 113  
 Continue, but accelerate 34 45  
 Continue, but decelerate  367 359  
 Comes to complete stop 214 199  
 Interrupted driving, then 

continued 
146 173  

Pedestrian eye 
contact 

Yes 482 505 0.0(1) 

 No 367 384  
Pedestrian wave 
palm outward 

Yes 72 77 0.0(1) 

 No 777 812  
Pedestrian reaction No reaction 601 635 7.3(6) 
 Continue, but accelerate 54 52  
 Continue, but decelerate  20 28  
 Begin walking from 

stationary 
59 42  

 Interrupted walking, then 
continued 

91 99  

 Interrupted walking and 
aborted 

14 24  

 Other 10 9  
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Table 3. Results of Chi-Square Tests Between the Narration Condition and Behavioral Variables 

  Narration   
  No think-aloud Think-aloud χ2(df) 
Driver yield 
behavior 

Yield 762 784 0.1(1) 

 Failure to yield 97 95  
Driver hand position Top of wheel 377 408 1.1(2) 
 Side of wheel 33 31  
 Bottom of wheel 859 879  
Driver eye contact Yes 795 779 7.8(1)* 
 No 64 100  
Driver wave through Yes 63 75 0.9(1) 
 No 796 804  
Driver wave palm 
outward 

Yes 30 42 1.8(1) 

 No 829 837  
Driver reaction No reaction 93 108 3.7(4) 
 Continue, but accelerate 45 34  
 Continue, but decelerate  367 359  
 Comes to complete stop 204 209  
 Interrupted driving, then 

continued 
150 169  

Pedestrian eye 
contact 

Yes 496 491 0.6(1) 

 No 363 388  
Pedestrian wave 
palm outward 

Yes 69 80 0.6(1) 

 No 790 799  
Pedestrian reaction No reaction 630 606 6.1(6) 
 Continue, but accelerate 50 56  
 Continue, but decelerate  23 25  
 Begin walking from 

stationary 
45 56  

 Interrupted walking, then 
continued 

81 109  

 Interrupted walking and 
aborted 

20 18  

 Other 10 9  
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Table 4: Model 2 Results–Naturalistic Driving 

 
*Indicates an effect that is not a meaningful comparison  
 
  

Fixed effects Odds ratio Estimate Standard error Z-score p-value Effect size 
Intercept 0.15 -1.91 0.69 -2.77 0.01 * 
Vehicle speed 1.01 0.01 0.01 0.93 0.35  
Event history - stopped for infrastructure 0.47 -0.75 0.40 -1.88 0.06 Small 
Event history - stopped for vehicle 0.72 -0.33 0.44 -0.75 0.45  
Event history - stopped for pedestrian 0.49 -0.71 0.46 -1.55 0.12 Small 
Visual obstruction - Obstructed 0.80 -0.22 0.24 -0.92 0.36  
Traffic control - yield to pedestrian 0.97 -0.03 0.25 -0.12 0.90  
Traffic control - stop sign 0.06 -2.81 0.87 -3.21 0.00 Large 
Right of way - pedestrian 2.28 0.82 0.39 2.12 0.03 Small 
Vehicle distance - 15+ feet away 0.66 -0.42 0.26 -1.62 0.11 Small 
Number of pedestrians in path 0.98 -0.02 0.09 -0.27 0.79  
Number of pedestrians near path 1.02 0.02 0.08 0.31 0.76  
Pedestrian distance - 0 feet away 16.32 2.79 0.55 5.09 0.00 Large 
Pedestrian distance - 0-5 feet away 16.03 2.77 0.52 5.38 0.00 Large 
Pedestrian distance - 5-10 feet away 76.02 4.33 0.55 7.82 0.00 Large 
Phone use - using 1.34 0.30 0.39 0.75 0.45  
Phone use - unable to determine 2.18 0.78 0.50 1.57 0.12 * 
Pedestrian facial expression - eye contact 3.31 1.20 0.36 3.35 0.00 Medium 
Pedestrian facial expression - unable to determine 0.49 -0.72 0.71 -1.01 0.31 * 
Pedestrian assertiveness 1.10 0.09 0.07 1.40 0.16  
Driver facial expression - eye contact 0.02 -3.97 0.34 -11.64 0.00 Large 
Vehicle in opposing lane - yes 0.35 -1.06 0.38 -2.77 0.01 Medium 
Factor affecting pedestrian path - path obstruction 3.85 1.35 0.38 3.57 0.00 Medium 
Factor affecting driver path - path obstruction 0.16 -1.82 0.32 -5.77 0.00 Large 
Random effect Variance SD     
Driver 1.45 1.21     
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Appendix B: Explicit Communication Simulation 
Results: 

 
Figure 6. Reckless pedestrian interacts with vehicle equipped to flash its lights as a form of explicit 

communication. 

 

 
Figure 7. Illustration. Capstone project MEEN 401/402 for explicit communications. 
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