
Response of Autonomous

Vehicles to Emergency

Response Vehicles (RAVEV)

PPPR #!Final Report

May 2020

Disclaimer
The contents of this report reflect the views of the authors, who are responsible for the
facts and the accuracy of the information presented herein. This document is
disseminated in the interest of information exchange. The report is funded, partially or
entirely, by a grant from the U.S. Department of Transportation’s University
Transportation Centers Program. However, the U.S. Government assumes no liability for
the contents or use thereof.

i

TECHNICAL REPORT DOCUMENTATION PAGE

1. Report No.
03-051

2. Government Accession No.

3. Recipient’s Catalog No.

4. Title and Subtitle
Response of Autonomous Vehicles to Emergency Response
Vehicles (RAVEV)

5. Report Date
June 2020
6. Performing Organization Code:

7. Author(s)
Abhishek Nayak, Sivakumar Rathinam, Swaminathan
Gopalswamy

8. Performing Organization Report No.
Report 03-051

9. Performing Organization Name and Address:
Safe-D National UTC
Texas A & M University, College Station

10. Work Unit No.
11. Contract or Grant No.
69A3551747115/Project 03-051

12. Sponsoring Agency Name and Address
Office of the Secretary of Transportation (OST)
U.S. Department of Transportation (US DOT)
State of Texas

13. Type of Report and Period
Final Research Report
14. Sponsoring Agency Code

15. Supplementary Notes
This project was funded by the Safety through Disruption (Safe-D) National University Transportation Center, a
grant from the U.S. Department of Transportation – Office of the Assistant Secretary for Research and Technology,
University Transportation Centers Program, and, in part, with general revenue funds from the State of Texas.

16. Abstract
The objective of this project was to explore how an autonomous vehicle identifies and safely responds to emergency
vehicles using visual and other onboard sensors. Emergency vehicles can include police, fire, hospital and other
responders’ vehicles. An autonomous vehicle in the presence of an emergency vehicle must have the ability to
accurately sense its surroundings in real-time and be able to safely yield to the emergency vehicle. This project used
machine learning algorithms to identify the presence of emergency vehicles, mainly through onboard vision, and
then maneuver an in-path non-emergency autonomous vehicle to a stop on the curbside. Two image processing
frameworks were tested to identify the best combination of vision-based detection algorithms, and a novel lateral
control algorithm was developed for maneuvering the autonomous vehicle.

17. Key Words
Emergency vehicles, Autonomous Vehicles,
Vision

18. Distribution Statement
No restrictions. This document is available to the
public through the Safe-D National UTC website, as
well as the following repositories: VTechWorks, The
National Transportation Library, The Transportation
Library, Volpe National Transportation Systems
Center, Federal Highway Administration Research
Library, and the National Technical Reports Library.

19. Security Classif. (of this report)
Unclassified

20. Security Classif. (of this
page) Unclassified

21. No. of Pages
21

22. Price
$0

Form DOT F 1700.7 (8-72) Reproduction of completed page authorized

https://www.vtti.vt.edu/utc/safe-d/
https://vtechworks.lib.vt.edu/
https://ntl.bts.gov/
https://ntl.bts.gov/
https://www.library.northwestern.edu/libraries-collections/transportation/
https://www.library.northwestern.edu/libraries-collections/transportation/
https://www.volpe.dot.gov/library
https://www.volpe.dot.gov/library
https://highways.dot.gov/resources/research-library/federal-highway-administration-research-library
https://highways.dot.gov/resources/research-library/federal-highway-administration-research-library
https://ntrl.ntis.gov/NTRL/

ii

Abstract

The objective of this project was to explore how an autonomous vehicle identifies and
safely responds to emergency vehicles using visual and other onboard sensors.
Emergency vehicles can include police, fire, hospital and other responders’ vehicles. An
autonomous vehicle in the presence of an emergency vehicle must have the ability to
accurately sense its surroundings in real-time and be able to safely yield to the emergency
vehicle. This project used machine learning algorithms to identify the presence of
emergency vehicles, mainly through onboard vision, and then maneuver an in-path non-
emergency autonomous vehicle to a stop on the curbside. Two image processing
frameworks were tested to identify the best combination of vision-based detection
algorithms, and a novel lateral control algorithm was developed for maneuvering the
autonomous vehicle.

Acknowledgements

This project was funded by the Safety through Disruption (Safe-D) National University
Transportation Center, a grant from the U.S. Department of Transportation – Office of the
Assistant Secretary for Research and Technology, University Transportation Centers
Program.

We acknowledge valuable comments by Prof. Dezhen Song, Texas A&M University,
College Station, who served as a subject matter expert for this proposal.

iii

Table of Contents

INTRODUCTION ... 1

METHODS ... 2

Response of Autonomous Vehicles to Emergency Response Vehicles (RAVEV) Dataset Collection 2

Vision Based Identification of EVs ... 3
Framework 1 ... 3
Framework 2 ... 4
EV Classification .. 5

Control Algorithm ... 8
Curve Fitting and Error Calculation.. 9
Feedforward and Feedback Controllers .. 10

RESULTS .. 12

Results of Vision-Based Identification of EVs ... 12
Performance of Framework 1 ... 12
Performance of Framework 2 ... 13

Performance of the Control Algorithms .. 14

CONCLUSIONS AND RECOMMENDATIONS ... 16

ADDITIONAL PRODUCTS .. 17

Education and Workforce Development Products ... 17

Technology Transfer Products ... 17

Data Products ... 18

REFERENCES ... 19

APPENDIX ... 21

iv

List of Figures
Figure 1. Flowchart representation of the sequence of steps for EV detection in Framework 1. ... 3

Figure 2. Flowchart representation of the sequence of steps for EV detection in Framework 2. ... 4

Figure 3. Neural network architecture of EV classifier. ... 7

Figure 4. Accuracy vs epochs plot during training the neural network classifier........................... 7

Figure 5. Loss vs epochs plot during training the neural network classifier. 8

Figure 6. Structure of the controller. ... 8

Figure 7. Curve fitting and error calculation. ... 9

Figure 8. Illustration of lateral error for an arc. .. 10

Figure 9. Illustration of lateral error for a straight line. .. 10

Figure 10. Bicycle model used solve dynamics of the autonomous vehicle. 11

Figure 11. Detection outputs from YOLOv3 implemented on the RAVEV Dataset I. 12

Figure 12. The original and lane changing path with detection point. ... 15

Figure 13. Vehicle speed variations during the lane change maneuver. 15

Figure 14. Lateral error measurements during the lane change maneuver. 15

Figure 15. Yaw error measurements during the lane change maneuver. 15

Figure 16. Yaw rate error measurements during the lane change maneuver. 16

List of Tables
Table 1. Confusion Matrix for 2 Class Classification Corresponding to 13,429 Detections in 4
Video Sequences ... 13

Table 2. Classification Results (in %) of Different Classification Models Against the Feature
Vectors .. 13

1

Introduction
The effectiveness of law enforcement and public safety efforts is directly dependent on first
responders’ (e.g., police, fire, ambulance) response time in emergency scenarios. The Texas
Transportation Code states several laws and guidelines applicable to emergency vehicles (EVs)
and operating guidelines for other vehicles operating in their presence. Sec. 545.156 of this code
defines the scenarios for a vehicle being approached by an authorized emergency vehicle as
follows [1]:

a) On the immediate approach of an authorized emergency vehicle using audible and
visual signals that meet the requirements of Sections 547.305 (Restrictions on Use
of Lights) and 547.702 (Additional Equipment Requirements for Authorized
Emergency Vehicles), or of a police vehicle lawfully using only an audible or visual
signal, an operator, unless otherwise directed by a police officer, shall:

1) yield the right-of-way;
2) immediately drive to a position parallel to and as close as possible to the

right-hand edge or curb of the roadway clear of any intersection; and
3) stop and remain standing until the authorized emergency vehicle has passed.

b) This section does not exempt the operator of an authorized emergency vehicle from
the duty to drive with due regard for the safety of all persons using the highway.

Human operators generally do not follow these instructions precisely either due to lack of
knowledge, willful negligence, or the alarm created by an EV’s presence. Lack of knowledge, in
particular, is likely due to different states having different legislation pertaining to traffic rules
when navigating around EVs.

In these situations, public safety is critical, as response maneuvers by the human operator or an
autonomous vehicle must not present new scenarios that may result in traffic flow disruption or
vehicle collisions. In autonomous vehicle applications, studies [2] show that human operators still
do not fully trust automation and prefer to intervene in such scenarios to guarantee safety. An
autonomous vehicle can safely respond to an EV only when it can accurately detect, track, and
map the EV in its surrounding environment. Emergency vehicles in Texas are required to use
visual and audio warning indicators to alert other vehicles of their presence and negotiate traffic
as specified in Sections 547.305 [3] and 547.702 [4] of the Texas Transportation Code. There are
several published articles [5] [6] [7] which exclusively deal with identifying EVs based on sound
signals. In this project, we investigate how an autonomous vehicle can sense and safely yield to an
EV based on visual data. Prior to our work, we did not find any article in the area of vision-based
detection of emergency vehicles.

2

In this work, we restrict our scope to exploring different vision-based techniques for identifying
EVs and control algorithms for safely parking the autonomous vehicle after an EV is identified.
Potential applications of this research include developing emergency response capabilities in
autonomous vehicles, developing advanced driver-assistance systems with features like parking
assist in the presence of an EV, and deployment of EV sensing capabilities in smart-infrastructure
enabled autonomous systems [8] [9] [10] . Specifically, the contributions of our work are as
follows:

1. We implemented two frameworks for identifying, classifying and tracking EVs in
real-time using datasets collected at the Texas A&M Rellis campus.

2. Several well-known classifiers were implemented to identify the best algorithm that
would provide a good tradeoff between classification performance and computation
time.

3. As soon as an EV is identified, the autonomous vehicle maneuvers to park itself on
the curbside. The novel aspects of the control algorithm developed for this parking
action are as follows: (a) a fast “least-squares'' technique is used to fit a trajectory
consisting of circular arc and straight line segments to form a reference trajectory
for the autonomous vehicle to follow from its current position, (b) the reference
trajectory is used in the computation of the feed-forward control of the autonomous
vehicle, and (c) a feedback controller is developed (based on a fixed structure
controller concept) to account for any real-time errors that occur when the
autonomous vehicle deviates from the reference trajectory. The developed control
technique is generic and can be used in other platooning and emergency
maneuvering scenarios.

Methods

Response of Autonomous Vehicles to Emergency Response
Vehicles (RAVEV) Dataset Collection
A large set of videos containing emergency responders in action was collected at Rellis to test and
benchmark the performance of the vision algorithms used in this project. The original plan was to
collect these videos in collaboration with members from Texas A&M Engineering Extension
Service (TEEX). However, as scheduling operations ahead of time with the TEEX members was
challenging, the research team purchased emergency lights and installed them on personal cars to
perform data collection. Image frames were extracted from these videos and annotated to locate
all objects of interest in the images. The dataset was separated into two sets. The first set (Dataset
I) was used for detection, and a second set (Dataset II) was used for the classification tasks. For
the detection dataset, 1,070 images were annotated, listing all the EVs and non-EVs in each image.
For the classification dataset, the images inside the bounding boxes of the annotated images were
extracted and grouped into two parts: (1) a training set (Dataset II.1) with 1,000 images, each of

3

which contained an EV and a non-EV, (2) a validation set (Dataset II.2) with 350 images, each of
which contained an EV and a non-EV. The training set was used for the learning algorithms while
the validation set served as the ground truth to evaluate the performance of the classification
algorithms.

Vision Based Identification of EVs
Two independent EV identification frameworks were investigated: (1) In Framework 1, the EVs
and non-EVs in each image were directly identified using a machine learning algorithm and
tracked across frames; (2) In Framework 2, all the moving objects were first identified using a
neural network, and then classified into EVs and non-EVs using an object detector.

Framework 1
In Framework 1, an object detection framework was selected and trained using the RAVEV
Dataset I containing images with both EVs and non-EVs. The training weights generated by the
detection model were subsequently used to detect EVs in the input video feed and generate object
region proposals. The region proposals generated, along with the object class labels, served as
input to a detection-based tracking algorithm, which yielded tracked trajectories of the object in
the video. The overview of framework 1 is illustrated in Figure 1.

Figure 1. Flowchart representation of the sequence of steps for EV detection in Framework 1.

For object detection, we chose the You Look Only Once (YOLO) [11] algorithm due to its superior
performance and speed compared to other state-of-the-art object detectors. The YOLOv3 object
detector was trained on the RAVEV Dataset I, with a learning rate of 0.001 and learning
momentum of 0.9, in batches of 64 images to generate testing weights. During testing, the video
feed was passed on as input to the trained YOLOv3 object detector. The region proposals generated
for objects of interest (EVs and non-EVs) in each frame, along with the detection labels, were sent
to an object tracker to obtain continuously tracked object coordinates in the video feed. We used
the simple online real-time tracker (SORT) algorithm developed by Bewley et al. [12] for tracking.
This algorithm uses a combination of Kalman Filtering and the Hungarian algorithm for estimation
and association of object bounding boxes between frames, as compared to the use of appearance
features. Using these computationally inexpensive methods, the tracker was reported to update at
a rate of 260 Hz, which is over 20 times faster than other state-of-the-art online trackers while
achieving similar accuracy levels.

Limitations of Using Framework 1

4

Since Framework 1 is based on the tracking-by-detection framework, the tracking performance
was dependent on the detection accuracy of the object detector throughout the video sequence
containing the object to be tracked. It was essential for the object detector to accurately identify
the object class throughout the video sequence, as this was required for the tracker to associate the
detections in the subsequent image frames with the same object ID. Whenever there was a false
detection or lack of detection in one of the intermediate frames, the tracer history was reset, and
the subsequent detections were attributed to a new object ID. The distinguishing feature between
an EV and a regular vehicle is the EV’s flashing lights. In the absence of flashing lights, both
object classes look similar and thus have similar visual features. Accordingly, there existed a
possibility of an EV being wrongly identified as a regular vehicle in some of the intermediate
frames where the visual features from the flashing lights were not very pronounced.

Framework 2
Framework 2 aimed to address the limitations of Framework 1. In Framework 1, an EV’s proposed
regions were being classified as non-EVs in some of the intermediate frames, which re-initialized
the object ID in the tracker. This was prevented by considering both EVs and non-EVs as a single
object class of vehicle during the object detection step. The region proposals generated for all the
vehicles in the image frame served as an input to the SORT tracking algorithm. Once the tracker
made a frame-by-frame prediction and associated the frames with an object ED, all the tracked
objects were passed on to the image classification pipeline to be marked as an EV or a non-EV.
The part of the image inside the bounding boxes proposed by the object detector was processed to
extract feature vectors that served as input to the EV classifier.

The advantage of this approach was that we could afford some false detections in the intermediate
frames. Since all the objects of interest were grouped under the vehicle class, object IDs were
preserved throughout the tracking stage. Figure 2 shows the flowchart of the overall architecture
of Framework 2.

Figure 2. Flowchart representation of the sequence of steps for EV detection in Framework 2.

5

Framework 2 also used a combination of the YOLOv3 object detector and the SORT object tracker.
Since the object detection and the object classification steps were clearly delineated in framework
2, the YOLOv3 could be trained on any of the popular datasets to identify a vehicle’s object class.
We used the YOLOv3 trained on RAVEV Dataset II.1 for object detection. YOLOv3 exhibited an
accuracy score of 86% and a precision score of 95% on the RAVEV Dataset II.1. The models and
the feature vectors used to further classify the vehicles will be discussed in the following sections.

EV Classification
A classification algorithm can be implemented in two steps. In the first step, the key features that
characterize the given region of the image are extracted and stored as a feature vector. In the second
step, a classification algorithm uses the feature vector to identify whether the given region
corresponds to an EV or a non-EV.

Feature Descriptors and Feature Arrays
A feature vector consists of unique attributes extracted from the images of objects that will be used
by the models to classify them into different classes. Some of the features we used in our feature
arrays included the image pixel array, histogram of oriented gradients (HOG) descriptor, and color
histogram. The array of bounding boxes associated with a single object ID was obtained from the
object tracker and its corresponding image information was extracted from the video frame. The
obtained image was processed to extract features or feature descriptors. This processed image was
converted into a feature vector, which was then used as an input to the image classifier.

We explored three of the commonly used feature vectors for image classification (numbers 1–3
below) and developed one custom-feature vector (number 4 below) consisting of specific features
to identify EVs.

1. Image Pixel Array: Image pixel array as a feature vector refers to using a raw image of
the object as an input for classification. The image inside the bounding box is extracted
using the data received from the object tracker and reshaped into a 128*128 image (using
the reshape function in OpenCV). This is done to maintain parity of dimensions between
different images. This reshaped image is then converted into a ({128*128} x 1) feature
vector, which is used as input to the classification model.

2. HOG (histogram of oriented gradients): HOG is a feature descriptor commonly used
for object detection tasks in computer vision research [13]. HOG features have also found
extensive applications for vehicle detection tasks [14] in transportation research. HOG
features are extracted by computing f gradient orientation of the image’s pixel intensities.
These orientations are discretized and binned into a histogram. The histogram is then
converted into a linear array and used as the feature vector for classification. In our
analysis, we discretized the gradients into nine orientations.

3. Color Histograms: A color histogram of an image is a plot of the range of pixel
intensities vs the number of pixels. Color histograms are widely used in image

6

classification tasks, as they have been found to perform better on classification models,
which perform poorly on high dimensional feature vectors [15]. For our application, a 3D
color histogram was extracted from an image by dividing the RGB pixel values (range:
[0, 255]) into 32 bins and plotting the number of pixels belonging to each of those bins.
We used the cv2.calcHist() function from OpenCV [16] for our implementations. The
histogram array containing the value of pixel quantities that belongs to the bin of each of
the three colors was flattened into a linear vector of size ((32*32*32)x1) and supplied to
the classification pipeline. It was observed that reducing the number of bins deteriorated
the accuracy levels of the classification model, whereas an increase in the number of bins
showed no significant improvement.

4. Custom Array: The distinguishing factor between a non-EV and EV in terms of visual
features are the lights mounted on the EV. We identified features from the EV image that
would capture details of these lights. Assuming that the lights on the EV are a
combination of red and blue, the following eight features were used in the input feature
vector for classification:

F1 – HSV_Blue (Total area corresponding to blue in the HSV Color space)
F2 – HSV_Red (Total area corresponding to red in the HSV Color space)
F3 – Max Contour Blue (Area of the largest blue contour)
F4 – Max Contour Red (Area of the largest red contour)
F5 – Centroid Blue X (X-coordinate of the max blue contour as a ratio to image width)
F6 – Centroid Blue Y (Y-coordinate of the max blue contour as a ratio to image height)
F7 – Centroid Red X (X-coordinate of the max red contour as a ratio to image width)
F8 – Centroid Red Y (Y-coordinate of the max red contour as a ratio to image height)

The above features were extracted from all the images in the classification dataset and used
as a 8*1 feature vector to train the classification models.

Classification Models
The feature vectors obtained by processing the vehicle images were used as input to the
classification models trained on the RAVEV Dataset II.1. We compared the performances of some
of the most commonly used classifiers, such as SVM, K-Nearest neighbors, and Adaboost, on each
of these feature vectors. We also developed a three-stage neural-network classifier and tested the
performance of the XGBoost package for EV classification tasks. We list the classification results
below. Based on the stream of the tracked objects classified as EVs, we were able to process the
data for tasks of object localization, motion planning, etc.

1. scikit-learn Classification models: The scikit-learn package for Python [17] consists of a
wide range of machine learning algorithm implementations for solving supervised and
unsupervised problems. We trained some of the object classification models on the
RAVEV Dataset II.1. The trained model was then tested on the RAVEV Dataset II.2. The

7

object classification models from scikit-learn that we evaluated during this study included
support vector machines (SVM) [18], K-nearest neighbors (KNN) [19], random forests
[20], Adaboost [21] and gradient boosting [22].

2. XGBoost: XGBoost is an optimized python implementation of gradient boosted decision
tree algorithms designed for high efficiency and performance. XGBoost performs
extremely well on most regression and classification tasks.

3. Neural Network Classifier: Neural networks have time and again proven to produce the
best-in-class results for computer vision applications. We used the Keras [23] library in
python to construct a neural network-based binary classifier for classifying EVs and non-
EVs. For generating the feature maps, we used a three-layer stack made of 2D
convolution layers with ReLU activation followed by max-pooling layers. On top, we
used a fully connected ReLU activation layer. We used a single unit sigmoid activation
function as the final layer for binary classification into EV or non-EV categories. The
neural network architecture is depicted in Figure 3. Plots of accuracy vs epoch and loss vs
epoch for the neural network during training on the RAVEV dataset are shown below in
Figure 4 and Figure 5. We see that the neural network reaches an accuracy level of about
97% and loss of about 5% after 50 training epochs.

Figure 3. Neural network architecture of EV

classifier.

Figure 4. Accuracy vs epochs plot during training

the neural network classifier.

8

Figure 5. Loss vs epochs plot during training the neural network classifier.

Control Algorithm
In this section, we present the control algorithm that we developed to maneuver the vehicle from
its current position to a safe location on the curbside. This algorithm is generic and can also be
used in platooning and other emergency scenarios. The main structure of the controller is presented
in Figure 6. The input to this controller is a set of reference data for the vehicle to follow. This data
could be generated a-priori or be communicated to the autonomous vehicle in real-time. If the data
is generated a-priori, its coordinates are transformed relative to the current position of the
autonomous vehicle. Prior to discussing the details of the control algorithm, we refer the reader to
the Appendix (Nomenclature) for an explanation of all the symbols used in this section.

Figure 6. Structure of the controller.

This controller consists of three main parts: curve fitting/error computation block, feedforward
block, and feedback block. The curve fitting block uses a collection of arcs and straight lines to
accurately fit the given data with a reference trajectory for the vehicle to track. This block also
computes the lateral and longitudinal errors, which quantifies the deviation of the autonomous
vehicle’s position from the reference trajectory. The feedforward block estimates the steering
command based on vehicle speed, 𝑣𝑣𝑥𝑥, and reference path radius of curvature, 𝑅𝑅. To account for
any other disturbance or model uncertainties and initial position errors, we also include a feedback

9

block to the control, which compensates for the lateral error, elat , yaw error 𝜃𝜃� , and yaw rate
error, 𝜃𝜃�̇. In the ensuing discussion, we briefly cover the key aspects of each of the blocks.

Curve Fitting and Error Calculation
A curve fitting algorithm is first used to find the radius of path curvature that the vehicle must
track and the error signals used in the feedforward and feedback controller design. The flowchart
for this procedure is illustrated in Figure 7.

All the data are separated into two types: a line segment or a curve segment. The data fits a straight
line if the deviation of (𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖) from the line joining (𝑥𝑥1,𝑦𝑦1) and (𝑥𝑥𝑁𝑁 ,𝑦𝑦𝑁𝑁) is within a threshold.
Otherwise, we find the center (𝑥𝑥𝑐𝑐,𝑦𝑦𝑐𝑐), radius R of the “least mean square (LMS) fit” circular arc
through these points. Using this information, we determine the feedback signals: 𝑒𝑒𝑙𝑙𝑙𝑙𝑙𝑙, 𝜃𝜃�, and 𝜃𝜃�̇.
An outline of the formulation and the method used to find the circular arc is as follows: given
(𝑥𝑥1,𝑦𝑦1), (𝑥𝑥2,𝑦𝑦2) , …, (𝑥𝑥𝑁𝑁 ,𝑦𝑦𝑁𝑁), the problem is to find a "least squares fit" of a circular arc; i.e.,
find the center (𝑥𝑥𝑐𝑐, 𝑦𝑦𝑐𝑐) and radius 𝑅𝑅 so that the error J is minimized.

𝐽𝐽 = �(𝑅𝑅2 − (𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑐𝑐)2 − (𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑐𝑐)2)
𝑁𝑁

𝑖𝑖=1

Figure 7. Curve fitting and error calculation.

10

The reasons for choosing the least square form of the error are as follows: first, when the points in
the data are exactly on the circular arc, the error is zero. Second, this form is relatively easier to
optimize, as the partial differentials with respect to the center (𝑥𝑥𝑐𝑐,𝑦𝑦𝑐𝑐) and radius 𝑅𝑅 are easy to
compute. As the curve fitting is implemented in real time, this formulation enabled us to compute
the parameters quickly.

An illustration of the errors is shown in Figure 8 and Figure 9. If the given data is an arc, the lateral

error is 𝑒𝑒𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑅𝑅− �(𝑋𝑋𝑣𝑣 − 𝑋𝑋𝑐𝑐)
2 + (𝑌𝑌𝑣𝑣 − 𝑌𝑌𝑐𝑐)

2 . If the given data fits a straight line better, the

lateral error is 𝑒𝑒𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑦𝑦𝑣𝑣−𝑚𝑚𝑥𝑥𝑣𝑣−𝑐𝑐
�1+𝑚𝑚2

, where y = mx + c is the equation of the straight-line. The yaw

error and yaw rate error can be represented as 𝜃𝜃� = 𝜃𝜃 − 𝜃𝜃𝑅𝑅, 𝜃𝜃�̇ = �̇�𝜃 − 𝑣𝑣𝑥𝑥
𝑅𝑅 .

Once the error signals and radius of curvature for path are derived, we design the feedforward and
feedback controller for the autonomous vehicle. Prior to that, we describe the vehicle model and
the assumptions we used to derive the equations.

Figure 8. Illustration of lateral error for an arc.

Figure 9. Illustration of lateral error for a straight

line.

Feedforward and Feedback Controllers
Vehicle model
In this work, the autonomous vehicle is modeled as a bicycle (refer to Figure 10). The following
assumptions must be followed for using this vehicle model:

• The radius of turn, R, is far larger than wheelbase L.
• The left and right steer angle must be approximately the same.

11

• The side slip angle of front wheels 𝛼𝛼𝑓𝑓 is equal, as is the slip angle of rear wheel side slip
angle 𝛼𝛼𝑟𝑟.

• Side slip angles are small: 𝛼𝛼𝑓𝑓 ≈ 𝛿𝛿𝑓𝑓 − �
𝑣𝑣𝑦𝑦+𝑙𝑙𝑑𝑑𝜃𝜃𝑑𝑑𝑙𝑙
𝑣𝑣𝑥𝑥

� 𝛼𝛼𝑟𝑟 ≈ −�
𝑣𝑣𝑦𝑦−𝑏𝑏

𝑑𝑑𝜃𝜃
𝑑𝑑𝑙𝑙

𝑣𝑣𝑥𝑥
�.

• Linear Model for Cornering Forces: 𝐹𝐹𝑟𝑟 = 𝐶𝐶𝑟𝑟𝛼𝛼𝑟𝑟 𝐹𝐹𝑓𝑓 = 𝐶𝐶𝑓𝑓𝛼𝛼𝑓𝑓.

The equations of motion of the vehicle using the bicycle model can be described as:

m�
𝑑𝑑𝑣𝑣𝑦𝑦
𝑑𝑑𝑙𝑙

+ 𝑣𝑣𝑥𝑥�̇�𝜃� = 𝐶𝐶𝑓𝑓𝛿𝛿𝑓𝑓 −
𝐶𝐶𝑓𝑓 + 𝐶𝐶𝑟𝑟
𝑣𝑣𝑥𝑥

𝑣𝑣𝑦𝑦 −
𝑙𝑙𝐶𝐶𝑓𝑓 − 𝑏𝑏𝐶𝐶𝑟𝑟

𝑣𝑣𝑥𝑥
�̇�𝜃

I�̈�𝜃 = 𝑙𝑙𝐶𝐶𝑓𝑓𝛿𝛿𝑓𝑓 −
𝑙𝑙𝐶𝐶𝑓𝑓 − 𝑏𝑏𝐶𝐶𝑟𝑟

𝑣𝑣𝑥𝑥
𝑣𝑣𝑦𝑦 −

𝑙𝑙2𝐶𝐶𝑓𝑓 + 𝑏𝑏2𝐶𝐶𝑟𝑟
𝑣𝑣𝑥𝑥

�̇�𝜃

where m, I, a and b are the vehicle mass, inertia and distance from the center of mass to vehicle
front and rear tire, 𝛼𝛼𝑓𝑓 and 𝛼𝛼𝑟𝑟 are side slip angles of tires & 𝐶𝐶𝑓𝑓 and 𝐶𝐶𝑟𝑟 are the cornering stiffness of
vehicle.

Figure 10. Bicycle model used solve dynamics of the autonomous vehicle.

Controller Design
The feedforward part provides a control command, 𝛿𝛿𝑓𝑓𝑓𝑓, based on the vehicle speed and previewed
path’s curvature. At a constant speed, no initial error and no disturbances/model uncertainties, the
vehicle should track the circular arc without any error. However, errors are common and inevitable
due to modeling assumptions and practical uncertainties. To handle these errors, a feedback
controller is also required.

12

The feedback controller contributes control command, 𝛿𝛿𝑓𝑓𝑏𝑏 , based on the lateral error, elat, yaw

error, 𝜃𝜃�, and yaw rate error, 𝜃𝜃�̇ . The summation of feedback and feedforward is the final control
input to the vehicle. The feedforward, feedback and final control command, 𝛿𝛿𝑓𝑓 , can be described
as:

𝛿𝛿𝑓𝑓𝑓𝑓 =
𝐿𝐿
𝑅𝑅+

𝑚𝑚
𝐿𝐿 �

𝑏𝑏
𝐶𝐶𝑓𝑓
−
𝑙𝑙
𝐶𝐶𝑟𝑟
�
𝑣𝑣𝑥𝑥2

𝑅𝑅

𝛿𝛿𝑓𝑓𝑏𝑏 = −𝑘𝑘𝑒𝑒𝑒𝑒𝑙𝑙𝑙𝑙𝑙𝑙 − 𝑘𝑘𝜃𝜃 𝜃𝜃� − 𝑘𝑘𝜔𝜔𝜃𝜃�̇

𝛿𝛿𝑓𝑓 = 𝛿𝛿𝑓𝑓𝑓𝑓 + 𝛿𝛿𝑓𝑓𝑏𝑏

Results

Results of Vision-Based Identification of EVs
Performance of Framework 1
Figure 11 shows an image with EV detections made by YOLOv3 using the trained weights. Table
1 contains the confusion matrix for the predictions made by the trained YOLOv3 detector on a
sequence of 13,429 detections from video sequences.

Figure 11. Detection outputs from YOLOv3 implemented on the RAVEV Dataset I.

13

Table 1. Confusion Matrix for 2 Class Classification Corresponding to 13,429 Detections in 4 Video
Sequences

Performance of Framework 2
We first quantify the classification results of Framework 2 in terms of accuracy, precision and
recall scores to help us select the best classifier. By definition,

𝐴𝐴𝑐𝑐𝑐𝑐𝐴𝐴𝑟𝑟𝑙𝑙𝑐𝑐𝑦𝑦 𝑆𝑆𝑐𝑐𝑆𝑆𝑟𝑟𝑒𝑒 =
𝑇𝑇𝑃𝑃 + 𝑇𝑇𝑇𝑇

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇
=
𝑇𝑇𝑆𝑆𝑙𝑙𝑙𝑙𝑙𝑙 𝑐𝑐𝑆𝑆𝑟𝑟𝑟𝑟𝑒𝑒𝑐𝑐𝑙𝑙 𝑝𝑝𝑟𝑟𝑒𝑒𝑑𝑑𝑝𝑝𝑐𝑐𝑙𝑙𝑝𝑝𝑆𝑆𝑝𝑝

𝑇𝑇𝑆𝑆𝑙𝑙𝑙𝑙𝑙𝑙 𝑃𝑃𝑟𝑟𝑒𝑒𝑑𝑑𝑝𝑝𝑐𝑐𝑙𝑙𝑝𝑝𝑆𝑆𝑝𝑝𝑃𝑃

𝑃𝑃𝑟𝑟𝑒𝑒𝑐𝑐𝑝𝑝𝑃𝑃𝑝𝑝𝑆𝑆𝑝𝑝 𝑆𝑆𝑐𝑐𝑆𝑆𝑟𝑟𝑒𝑒 =
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃
=

𝑇𝑇𝑆𝑆𝑙𝑙𝑙𝑙𝑙𝑙 𝑃𝑃𝑆𝑆𝑃𝑃𝑝𝑝𝑙𝑙𝑝𝑝𝑣𝑣𝑒𝑒
𝑇𝑇𝑆𝑆𝑙𝑙𝑙𝑙𝑙𝑙 𝑃𝑃𝑟𝑟𝑒𝑒𝑑𝑑𝑝𝑝𝑐𝑐𝑙𝑙𝑒𝑒𝑑𝑑 𝑃𝑃𝑆𝑆𝑃𝑃𝑝𝑝𝑙𝑙𝑝𝑝𝑣𝑣𝑒𝑒

𝑅𝑅𝑒𝑒𝑐𝑐𝑙𝑙𝑙𝑙𝑙𝑙 𝑆𝑆𝑐𝑐𝑆𝑆𝑟𝑟𝑒𝑒 =
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑇𝑇
=

𝑇𝑇𝑆𝑆𝑙𝑙𝑙𝑙𝑙𝑙 𝑃𝑃𝑆𝑆𝑃𝑃𝑝𝑝𝑙𝑙𝑝𝑝𝑣𝑣𝑒𝑒
𝑇𝑇𝑆𝑆𝑙𝑙𝑙𝑙𝑙𝑙 𝐴𝐴𝑐𝑐𝑙𝑙𝐴𝐴𝑙𝑙𝑙𝑙 𝑃𝑃𝑆𝑆𝑃𝑃𝑝𝑝𝑙𝑙𝑝𝑝𝑣𝑣𝑒𝑒

where,

TP = True Positive
TN = True Negative

FP = False Positive
FN = False Negative

Accuracy, precision and recall values of each of the classification models against the different
feature vectors are listed in Table 2.

Table 2. Classification Results (in %) of Different Classification Models Against the Feature Vectors

Feature Score SVM Adaboost Random
Forrest

Gradient
Boosting XGBoost KNN-3

HOG Accuracy 58.02 99.51 95.06 95.31 97.53 76.79
HOG Precision 53.3 99.48 96.77 93.10 97.42 67.48
HOG Recall 100 99.48 92.78 97.42 97.42 99.48
Color Histogram Accuracy 47.90 99.51 98.52 97.28 99.75 92.48
Color Histogram Precision 47.90 99.48 98.96 96.92 100 89.10
Color Histogram Recall 100 99.48 97.94 97.42 99.48 96.91
Pixel Array Accuracy 85.19 96.54 95.56 94.32 98.27 94.32
Pixel Array Precision 100 96.88 97.83 93.85 99.47 100
Pixel Array Recall 69.07 95.88 92.78 94.33 96.91 88.14
Custom Array Accuracy 83.98 93.20 92.62 92.23 94.82 89.71
Custom Array Precision 95.50 86.36 85.71 85.55 90.78 82.74
Custom Array Recall 53.00 93.25 92.02 90.80 93.5 85.28

 14

Overall, XGBoost and Adaboost performed better than the other classification models on the tested
data. This can be attributed to the fact that, during training, boosting algorithms, unlike neural
networks and SVMs, combine many relatively weak learners to create a highly accurate prediction
rule, reducing the curse of dimensionality and potentially improving execution time. SVM
inherently performs poorly on high dimensional vectors and we can see a similar result with HOG
and color histogram feature vectors. XGBoost performs better than the scikit-learn implementation
of gradient boosting when trained on RAVEV dataset for EV classification. XGBoost performs
best with color histogram/pixel array, whereas HOG descriptor works best on Adaboost. The
custom array that the research team defined has a worse performance rate compared to the other
feature vectors.

In addition to the above classifiers, we also tested the neural network classifier directly on the pixel
array, since finding the HOG and color histogram features required computation times in the order
of a second. The results from the neural network classifier provided an accuracy of 98.57%,
precision of 96.89%, and recall of 97.35%. In addition, the neural network classifier in combination
with the pixel array ran approximately three times faster than the XGBoost classifier in
combination with the color histogram or other feature vectors. Therefore, for real-time
implementation, we used the neural network classifier on the pixel array to differentiate between
an EV and a non-EV. Once an EV was identified by the vision software onboard the autonomous
vehicle, the control algorithms were invoked to safely park that vehicle.

Performance of the Control Algorithms
The combined sensing and control algorithms were tested multiple times at the Texas A&M Rellis
Campus. The results from a commonly repeated test of lane changing and parking when an EV
was detected are discussed below. More details on the algorithm and its implementation at multiple
speeds can be found in [24].

The test vehicle was autonomously driven in a straight line at 30 mph (13.4 m/s). An EV was
driven behind this autonomous vehicle without triggering the emergency lights. After a brief
period, the lights in the EV were turned on. On detecting the EV using the vision algorithm
presented in the previous section, the controller slowed the test vehicle and followed a lane
changing path. The autonomous vehicle was finally stopped at one lane right of the original path.
The original path and lane change path are shown in Figure 12.

 15

Figure 12. The original and lane changing path

with detection point.

Figure 13. Vehicle speed variations during the

lane change maneuver.

During the 26th second of the test, the autonomous vehicle detected the EV. The autonomous
vehicle’s speed then decreased with time and the vehicle moved one lane to the right (to the safety
zone). Slowly, the vehicle finished the lane changing maneuver and came to a complete stop.
Vehicle speed variation with time is displayed in Figure 13. The vehicle’s lateral error along the
lane changing path is shown in Figure 14. The maximum error occurred when the vehicle was
undergoing the lane changing maneuver, at around 0.55 meters. The lateral error then decreased
with time to around 10 centimeters. The vehicle yaw error and yaw rate error are illustrated in
Figure 15 and Figure 16, which are all bounded in -0.05~+0.01 rad and -0.08~+0.06 rad/sec. This
implies that the vehicle was not only following the lane changing path but was also within
reasonable margins of error with respect to its heading angles.

Figure 14. Lateral error measurements during the

lane change maneuver.

Figure 15. Yaw error measurements during the

lane change maneuver.

 16

Figure 16. Yaw rate error measurements during the lane change maneuver.

Conclusions and Recommendations
With respect to control algorithms, our proposed approach is generic and can be extended to other
applications where vehicles may have to follow trajectories and also avoid obstacles. The main
contribution of our methods to the body of transportation research is in the formulation of the
problem and in the development of a systematic procedure for identifying the gains of the
controllers [24]. This approach is currently being extended to platooning applications.

The vision framework that worked the best for identifying EVs involved two steps. In the first
step, we identified all vehicles and tracked them using YOLOv3 and SORT algorithms. In the
second step, a classifier was used to identify whether each tracked vehicle was an EV or a non-
EV. We also found that using a neural network-based classifier worked well for real-time
implementations in our autonomous test vehicle.

The work presented in this report can be extended in several directions to include more realistic
scenarios encountered in practice. For example, the parking operation of the autonomous vehicle
could also use information from LiDAR and other sensors to avoid obstacles in real-time. There
may also be scenarios where the brake lights from an EV may be similar in color (red) to the EV’s
emergency lights. One way to address this issue is to also use the location of the emergency lights
on an EV as an input during classification. For nighttime conditions, we observed that the
developed algorithms did not perform well primarily because identifying the vehicles and tracking
them was challenging in and of itself. Though we also did some preliminary work on identifying
EVs based on sound data, we observed that the sound signals had more noise in urban settings and
led to many false positives/negatives. A better alternative would be to fuse the communicated data
(typically broadcasted by the EVs) with vision data.

 17

Additional Products
The Education and Workforce Development (EWD) and Technology Transfer (T2) products
created as part of this project can be downloaded from the Safe-D website here. The final project
dataset is located on the Safe-D Collection of the VTTI Dataverse.

Education and Workforce Development Products
Graduate student Abhishek Nayak’s M.S. thesis on vision algorithms for identifying emergency
vehicles was completely supported by this project. Nayak received his M.S. degree in Fall of 2019.
A significant part of doctoral student Mengke Liu’s Ph.D. dissertation of on the development of
control algorithms for parking the car was funded by this Safe-D project. The following other
graduate students also worked part-time or for a short span conducting the demonstrations during
the project: Kenny Chour, Nishat Mehta, Saipraneeth Devunuri, Mani Deep Ankem, Aditya
Gujrar.

It is expected that the data collected during this project will be used in a course module for a Math
course taught at Texas A&M University in Fall 2020. This module will be made available to the
public via the project page on the Safe-D website.

Technology Transfer Products
The following paper was published by graduate student Abhishek Nayak as part of his M.S. thesis.
His thesis work was completely supported by this project.

Nayak, Abhishek, Swaminathan Gopalswamy, and Sivakumar Rathinam. Vision-Based
Techniques for Identifying Emergency Vehicles. No. 2019-01-0889. SAE Technical Paper,
2019. https://www.sae.org/publications/technical-papers/content/2019-01-0889/

The following paper was published by graduate student Mengke Liu as part of his Ph.D.
dissertation. His dissertation work was partly supported by this project.

Liu, Mengke, Sivakumar Rathinam and Swaroop Darbha. Lateral Control of an Autonomous Car
with Limited Preview Information. European Control Conference, 2019.
https://controls.papercept.net/conferences/conferences/ECC19/program/ECC19_Content
ListWeb_4.html#fra7_06

The following poster was also presented at multiple conferences throughout the course of the
project.

Poster presentations:
Nayak, A., Rathinam, S., Gopalswamy, S, and Chrysler, S.T. (2019). RAVEV - Response of

Autonomous Vehicles to Emergency Vehicles. Poster presented at the CSCRS Safe
Systems Summit, Durham NC, Apr 23-24, 2019.

https://www.vtti.vt.edu/utc/safe-d/index.php/projects/response-of-autonomous-vehicles-to-emergency-response-vehicles/
https://dataverse.vtti.vt.edu/dataverse/safed
https://www.vtti.vt.edu/utc/safe-d/index.php/projects/response-of-autonomous-vehicles-to-emergency-response-vehicles/
https://www.sae.org/publications/technical-papers/content/2019-01-0889/
https://controls.papercept.net/conferences/conferences/ECC19/program/ECC19_ContentListWeb_4.html#fra7_06
https://controls.papercept.net/conferences/conferences/ECC19/program/ECC19_ContentListWeb_4.html#fra7_06

 18

Nayak, A., Devanuri, S., Liu, M., Rathinam, S., Gopalswamy, S, and Chrysler, S.T. (2019).

RAVEV - Response of Autonomous Vehicles to Emergency Vehicles. Poster presented at
the 3rd Annual Texas A&M Transportation Technology Conference, College Station TX,
May 8, 2018.

Nayak, A., Rathinam, S., Gopalswamy, S, and Chrysler, S.T. (2019). RAVEV - Response of
Autonomous Vehicles to Emergency Vehicles. Poster presented at the 3rd Annual Texas
A&M Transportation Technology Conference, College Station TX, April 30, 2018

Nayak, A., Rathinam, S., Gopalswamy, S, and Chrysler, S.T. (2019). RAVEV - Response of
Autonomous Vehicles to Emergency Vehicles. Poster presented at the Texas Mobility
Summit Demo Day, October 28, 2018.

PIs Dr. S. Rathinam and Dr. S. Gopalswamy also presented a summary of the demonstrations
performed in this project at the Autonomous Cars Conference, Brookings Institution, Washington
D.C. on July 25, 2019.

Data Products
The following video and audio datasets used for training and testing the algorithms have been
uploaded to the Safe-D Dataverse and can be found at https://doi.org/10.15787/VTT1/IVNW9L
[25]. They can also be accessed through the project website at
https://sites.google.com/tamu.edu/ravev/research-data:

• Two Image Datasets that were used to develop and train EV identification and
classification algorithms

1. RAVEV Dataset I for vision-based detection: 1,000 images annotated with 3
classes – EV, non-EV and pedestrians.

2. RAVEV Dataset II for vision-based classification: An annotated dataset
containing cropped images of EV and non EV divided into two parts—a training
set containing 1,000 images and a validation set containing 350 images of each
class.

https://urldefense.proofpoint.com/v2/url?u=https-3A__doi.org_10.15787_VTT1_IVNW9L&d=DwMFAg&c=u6LDEWzohnDQ01ySGnxMzg&r=sDqlop34w0zlvrFIqfAwgMt9E_tsYzSEvLx2ZpImPT8&m=6qAFeGoWpFjhb-T4Q6cKZxco9hCjYFjwPvCwYhUr2Fs&s=kKo1tEZ-Pm2QKTi1YX_PgSo8QHO1Pd-k298GlAr39BA&e=
https://sites.google.com/tamu.edu/ravev/research-data

 19

References

[1] "Texas Transportation Code, Title 7, Subtitle C, Section 545.156 (Year 1995)".

[2] Y. Xing, C. Lv, L. Chen, H. Wang, H. Wang, D. Cao, ... and F. Y. Wang, "Advances in
vision-based lane detection: algorithms, integration, assessment, and perspectives on ACP-
based parallel vision.," IEEE/CAA Journal of Automatica Sinica, pp. 5(3), 645-661, 2018.

[3] "Texas Transportation Code, Title 7, Subtitle C, Section 547.305 (Year 1995)".

[4] "Texas Transportation Code, Title 7, Subtitle C, Section 547.702 (Year 1995)".

[5] B. Fazenda, H. Atmoko, F. Gu, L. Guan and A. & Ball, "Acoustic based safety emergency
vehicle detection for intelligent transport systems," ICCAS-SICE, pp. (pp. 4250-4255)
IEEE, 2009.

[6] F. Meucci, L. Pierucci, E. Del Re, L. Lastrucci and P. Desii, "A real-time siren detector to
improve safety of guide in traffic environment.," 16th European Signal Processing
Conference, pp. (pp. 1-5). IEEE., August 2008.

[7] O. Karpis, "System for vehicles classification and emergency vehicles detection.," IFAC
Proceesings Volumes 45(7), pp. (pp. 186-190), 2012.

[8] S. Gopalswamy and S. Rathinam, "Infrastructure enabled autonomy: A distributed
intelligence architecture for autonomous vehicles," IEEE Intelligent Vehicles Symposium
(IV), pp. (pp. 986-992). IEEE., 2018, June.

[9] A. Nayak, K. Chour, T. Marr, D. Ravipati, S. Dey, A. Gautam, S. Gopalswamy and S.
Rathinam, "A Distributed Hybrid Hardware-In-the-Loop Simulation framework for
Infrastructure Enabled Autonomy," arXiv preprint arXiv:1802.01787., 2018.

[10] D. Ravipati, K. Chour, A. Nayak, T. Marr, S. Dey, A. Gautam and .. &. S. G. , "Vision
Based Localization for Infrastructure Enabled Autonomy.," IEEE Intelligent
Transportation Systems Conference (ITSC), pp. (pp. 1638-1643). IEEE., 2019 October.

[11] J. Redmon and A. Farhadi, "Yolov3: An incremental improvement.," arXiv preprint
arXiv:1804.02767., 2018.

[12] A. Bewley, Z. Ge, L. Ott, F. Ramos and B. Upcroft, "Simple online and realtime tracking,"
IEEE International Conference on Image Processing (ICIP), pp. (pp. 3464-3468). IEEE.,
2016.

 20

[13] N. Dalal and B. Triggs, "Histograms of oriented gradients for human detection.," IEEE
computer society conference on computer vision and pattern recognition, pp. (Vol. 1, pp.
886-893). IEEE., 2005, June.

[14] P. Rybski, D. Huber, D. Morris and R. Hoffman, "Visual classification of course vehicle
orientation using a histogram of oriented gradients features.," Intelligent Vehicles
Symposium (IV), pp. (pp. 921-928), 2010.

[15] O. Chapelle, P. Haffner and V. N. Vapnik, "Support vector machines for histogram-based
image classification.," IEEE transactions on Neural Networks, 10(5), pp. 1055-1064, 1999.

[16] G. Bradski and A. Kaehler, Learning OpenCV: Computer vision with the OpenCV library.,
O'Reilly Media, Inc., 2008.

[17] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P.
Prettenhofer, R. Weiss, V. Dubourg and J. Vanderplas, "Scikit-learn: Machine learning in
Python.," Journal of machine learning research, pp. 2825-2830, 2011.

[18] C. Cortes and V. Vapnik, "Support-vector networks," Machine learning, 20(3), pp. 273-
297, 1995.

[19] N. Altman, "An introduction to kernel and nearest-neighbor nonparametric regression.,"
The American Statistician, 46(3), pp. pp.175-185, 1992.

[20] L. Breiman, "Random forests.," Machine learning, 45(1), pp. pp.5-32, 2001.

[21] Y. Freund and R. Schapire, "A decision-theoretic generalization of on-line learning and an
application to boosting.," Journal of computer and system sciences, 55(1), pp. pp.119-139.,
1997.

[22] T. Y. Lin, P. Goyal, R. Girshick, K. He and P. Dollár, "Focal loss for dense object
detection.," in IEEE international conference on computer vision, 2017.

[23] F. Chollet, Keras, 2015.

[24] M. Liu, S. Rathinam and S. Darbha, "Lateral Control of an Autonomous Car with Limited
Preview Information.," in 18th European Control Conference (ECC), 2019, June.

[25] A. Nayak, S. Rathinam and S. Gopalswamy, "Response of Autonomous Vehicles to
Emergency Response Vehicles (03-051)," 2019. [Online]. Available:
https://doi.org/10.15787/VTT1/IVNW9L.

[26] A. Geiger, P. Lenz, C. Stiller and R. Urtasun, "Vision meets robotics: The kitti dataset.,"
The International Journal of Robotics Research, 32(11), pp. 1231-1237, 2013.

 21

[27] A. Nayak, S. Gopalswamy and S. Rathinam, "Vision-Based Techniques for Identifying
Emergency Vehicles," SAE Technical Paper, pp. (No. 2019-01-0889)., 2019.

Appendix

Nomenclature
Symbol Description

vx Lateral velocity of the autonomous vehicle
vy Longitudinal velocity of the autonomous vehicle
Xv X position coordinate of the autonomous vehicle
Yv Y position coordinate of the autonomous vehicle
𝜽𝜽 Heading angle of the autonomous vehicle
�̇�𝜽 Yaw rate of the autonomous vehicle
R Radius of curvature of the desired path
𝜽𝜽� Yaw error

𝜽𝜽�̇ Yaw error rate

𝜽𝜽𝑹𝑹 Desired heading angle
𝒆𝒆𝒍𝒍𝒍𝒍𝒍𝒍 Lateral error of the vehicle
𝒆𝒆𝒍𝒍 , 𝒆𝒆𝒏𝒏 Unit vectors of the path reference frame
(Xc,Yc) Center of curvature of the reference path

	Introduction
	Methods
	Response of Autonomous Vehicles to Emergency Response Vehicles (RAVEV) Dataset Collection
	Vision Based Identification of EVs
	Framework 1
	Framework 2
	EV Classification
	Feature Descriptors and Feature Arrays
	Classification Models

	Control Algorithm
	Curve Fitting and Error Calculation
	Feedforward and Feedback Controllers
	Vehicle model
	Controller Design

	Results
	Results of Vision-Based Identification of EVs
	Performance of Framework 1
	Performance of Framework 2

	Performance of the Control Algorithms

	Conclusions and Recommendations
	Additional Products
	Education and Workforce Development Products
	Technology Transfer Products
	Data Products

	References
	Appendix

