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Abstract 
 
The objective of this project was to explore how an autonomous vehicle identifies and 
safely responds to emergency vehicles using visual and other onboard sensors. 
Emergency vehicles can include police, fire, hospital and other responders’ vehicles. An 
autonomous vehicle in the presence of an emergency vehicle must have the ability to 
accurately sense its surroundings in real-time and be able to safely yield to the emergency 
vehicle. This project used machine learning algorithms to identify the presence of 
emergency vehicles, mainly through onboard vision, and then maneuver an in-path non-
emergency autonomous vehicle to a stop on the curbside. Two image processing 
frameworks were tested to identify the best combination of vision-based detection 
algorithms, and a novel lateral control algorithm was developed for maneuvering the 
autonomous vehicle. 

Acknowledgements 
 

This project was funded by the Safety through Disruption (Safe-D) National University 
Transportation Center, a grant from the U.S. Department of Transportation – Office of the 
Assistant Secretary for Research and Technology, University Transportation Centers 
Program. 

We acknowledge valuable comments by Prof. Dezhen Song, Texas A&M University, 
College Station, who served as a subject matter expert for this proposal. 

  



iii 

Table of Contents 

INTRODUCTION ................................................................................................................. 1 

METHODS ........................................................................................................................... 2 

Response of Autonomous Vehicles to Emergency Response Vehicles (RAVEV) Dataset Collection ................... 2 

Vision Based Identification of EVs ............................................................................................................................. 3 
Framework 1 ............................................................................................................................................................. 3 
Framework 2 ............................................................................................................................................................. 4 
EV Classification ...................................................................................................................................................... 5 

Control Algorithm ....................................................................................................................................................... 8 
Curve Fitting and Error Calculation.......................................................................................................................... 9 
Feedforward and Feedback Controllers .................................................................................................................. 10 

RESULTS ............................................................................................................................ 12 

Results of Vision-Based Identification of EVs ......................................................................................................... 12 
Performance of Framework 1 ................................................................................................................................. 12 
Performance of Framework 2 ................................................................................................................................. 13 

Performance of the Control Algorithms .................................................................................................................. 14 

CONCLUSIONS AND RECOMMENDATIONS ................................................................. 16 

ADDITIONAL PRODUCTS ................................................................................................ 17 

Education and Workforce Development Products ................................................................................................. 17 

Technology Transfer Products ................................................................................................................................. 17 

Data Products ............................................................................................................................................................. 18 

REFERENCES ..................................................................................................................... 19 

APPENDIX ......................................................................................................................... 21 

 

  



iv 

List of Figures 
Figure 1. Flowchart representation of the sequence of steps for EV detection in Framework 1. ... 3 

Figure 2. Flowchart representation of the sequence of steps for EV detection in Framework 2. ... 4 

Figure 3. Neural network architecture of EV classifier. ................................................................. 7 

Figure 4. Accuracy vs epochs plot during training the neural network classifier........................... 7 

Figure 5. Loss vs epochs plot during training the neural network classifier. ................................. 8 

Figure 6. Structure of the controller. ............................................................................................... 8 

Figure 7. Curve fitting and error calculation. ................................................................................. 9 

Figure 8. Illustration of lateral error for an arc. ............................................................................ 10 

Figure 9. Illustration of lateral error for a straight line. ................................................................ 10 

Figure 10. Bicycle model used solve dynamics of the autonomous vehicle. ............................... 11 

Figure 11. Detection outputs from YOLOv3 implemented on the RAVEV Dataset I. ................ 12 

Figure 12. The original and lane changing path with detection point. ......................................... 15 

Figure 13. Vehicle speed variations during the lane change maneuver. ....................................... 15 

Figure 14. Lateral error measurements during the lane change maneuver. .................................. 15 

Figure 15. Yaw error measurements during the lane change maneuver. ...................................... 15 

Figure 16. Yaw rate error measurements during the lane change maneuver. ............................... 16 

 

List of Tables 
Table 1. Confusion Matrix for 2 Class Classification Corresponding to 13,429 Detections in 4 
Video Sequences ........................................................................................................................... 13 

Table 2. Classification Results (in %) of Different Classification Models Against the Feature 
Vectors .......................................................................................................................................... 13 

 

 

 



1 
 

Introduction 
The effectiveness of law enforcement and public safety efforts is directly dependent on first 
responders’ (e.g., police, fire, ambulance) response time in emergency scenarios. The Texas 
Transportation Code states several laws and guidelines applicable to emergency vehicles (EVs) 
and operating guidelines for other vehicles operating in their presence. Sec. 545.156 of this code 
defines the scenarios for a vehicle being approached by an authorized emergency vehicle as 
follows [1]:  

a) On the immediate approach of an authorized emergency vehicle using audible and 
visual signals that meet the requirements of Sections 547.305 (Restrictions on Use 
of Lights) and 547.702 (Additional Equipment Requirements for Authorized 
Emergency Vehicles), or of a police vehicle lawfully using only an audible or visual 
signal, an operator, unless otherwise directed by a police officer, shall: 

1) yield the right-of-way; 
2) immediately drive to a position parallel to and as close as possible to the 

right-hand edge or curb of the roadway clear of any intersection; and 
3) stop and remain standing until the authorized emergency vehicle has passed. 

b) This section does not exempt the operator of an authorized emergency vehicle from 
the duty to drive with due regard for the safety of all persons using the highway. 

Human operators generally do not follow these instructions precisely either due to lack of 
knowledge, willful negligence, or the alarm created by an EV’s presence. Lack of knowledge, in 
particular, is likely due to different states having different legislation pertaining to traffic rules 
when navigating around EVs. 

In these situations, public safety is critical, as response maneuvers by the human operator or an 
autonomous vehicle must not present new scenarios that may result in traffic flow disruption or 
vehicle collisions. In autonomous vehicle applications, studies [2] show that human operators still 
do not fully trust automation and prefer to intervene in such scenarios to guarantee safety. An 
autonomous vehicle can safely respond to an EV only when it can accurately detect, track, and 
map the EV in its surrounding environment. Emergency vehicles in Texas are required to use 
visual and audio warning indicators to alert other vehicles of their presence and negotiate traffic 
as specified in Sections 547.305 [3] and 547.702 [4] of the Texas Transportation Code. There are 
several published articles [5] [6] [7] which exclusively deal with identifying EVs based on sound 
signals. In this project, we investigate how an autonomous vehicle can sense and safely yield to an 
EV based on visual data. Prior to our work, we did not find any article in the area of vision-based 
detection of emergency vehicles.  
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In this work, we restrict our scope to exploring different vision-based techniques for identifying 
EVs and control algorithms for safely parking the autonomous vehicle after an EV is identified. 
Potential applications of this research include developing emergency response capabilities in 
autonomous vehicles, developing advanced driver-assistance systems with features like parking 
assist in the presence of an EV, and deployment of EV sensing capabilities in smart-infrastructure 
enabled autonomous systems [8] [9] [10] . Specifically, the contributions of our work are as 
follows:  

1. We implemented two frameworks for identifying, classifying and tracking EVs in 
real-time using datasets collected at the Texas A&M Rellis campus.  

2. Several well-known classifiers were implemented to identify the best algorithm that 
would provide a good tradeoff between classification performance and computation 
time.  

3. As soon as an EV is identified, the autonomous vehicle maneuvers to park itself on 
the curbside. The novel aspects of the control algorithm developed for this parking 
action are as follows: (a) a fast “least-squares'' technique is used to fit a trajectory 
consisting of circular arc and straight line segments to form a reference trajectory 
for the autonomous vehicle to follow from its current position, (b) the reference 
trajectory is used in the computation of the feed-forward control of the autonomous 
vehicle, and (c) a feedback controller is developed (based on a fixed structure 
controller concept) to account for any real-time errors that occur when the 
autonomous vehicle deviates from the reference trajectory. The developed control 
technique is generic and can be used in other platooning and emergency 
maneuvering scenarios. 

Methods 

Response of Autonomous Vehicles to Emergency Response 
Vehicles (RAVEV) Dataset Collection 
A large set of videos containing emergency responders in action was collected at Rellis to test and 
benchmark the performance of the vision algorithms used in this project. The original plan was to 
collect these videos in collaboration with members from Texas A&M Engineering Extension 
Service (TEEX). However, as scheduling operations ahead of time with the TEEX members was 
challenging, the research team purchased emergency lights and installed them on personal cars to 
perform data collection. Image frames were extracted from these videos and annotated to locate 
all objects of interest in the images. The dataset was separated into two sets. The first set (Dataset 
I) was used for detection, and a second set (Dataset II) was used for the classification tasks. For 
the detection dataset, 1,070 images were annotated, listing all the EVs and non-EVs in each image. 
For the classification dataset, the images inside the bounding boxes of the annotated images were 
extracted and grouped into two parts: (1) a training set (Dataset II.1) with 1,000 images, each of 
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which contained an EV and a non-EV, (2) a validation set (Dataset II.2) with 350 images, each of 
which contained an EV and a non-EV. The training set was used for the learning algorithms while 
the validation set served as the ground truth to evaluate the performance of the classification 
algorithms. 

Vision Based Identification of EVs 
Two independent EV identification frameworks were investigated: (1) In Framework 1, the EVs 
and non-EVs in each image were directly identified using a machine learning algorithm and 
tracked across frames; (2) In Framework 2, all the moving objects were first identified using a 
neural network, and then classified into EVs and non-EVs using an object detector.  

Framework 1 
In Framework 1, an object detection framework was selected and trained using the RAVEV 
Dataset I containing images with both EVs and non-EVs. The training weights generated by the 
detection model were subsequently used to detect EVs in the input video feed and generate object 
region proposals. The region proposals generated, along with the object class labels, served as 
input to a detection-based tracking algorithm, which yielded tracked trajectories of the object in 
the video. The overview of framework 1 is illustrated in Figure 1. 

 
Figure 1. Flowchart representation of the sequence of steps for EV detection in Framework 1. 

For object detection, we chose the You Look Only Once (YOLO) [11] algorithm due to its superior 
performance and speed compared to other state-of-the-art object detectors. The YOLOv3 object 
detector was trained on the RAVEV Dataset I, with a learning rate of 0.001 and learning 
momentum of 0.9, in batches of 64 images to generate testing weights. During testing, the video 
feed was passed on as input to the trained YOLOv3 object detector. The region proposals generated 
for objects of interest (EVs and non-EVs) in each frame, along with the detection labels, were sent 
to an object tracker to obtain continuously tracked object coordinates in the video feed. We used 
the simple online real-time tracker (SORT) algorithm developed by Bewley et al. [12] for tracking. 
This algorithm uses a combination of Kalman Filtering and the Hungarian algorithm for estimation 
and association of object bounding boxes between frames, as compared to the use of appearance 
features. Using these computationally inexpensive methods, the tracker was reported to update at 
a rate of 260 Hz, which is over 20 times faster than other state-of-the-art online trackers while 
achieving similar accuracy levels.  

Limitations of Using Framework 1 
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Since Framework 1 is based on the tracking-by-detection framework, the tracking performance 
was dependent on the detection accuracy of the object detector throughout the video sequence 
containing the object to be tracked. It was essential for the object detector to accurately identify 
the object class throughout the video sequence, as this was required for the tracker to associate the 
detections in the subsequent image frames with the same object ID. Whenever there was a false 
detection or lack of detection in one of the intermediate frames, the tracer history was reset, and 
the subsequent detections were attributed to a new object ID. The distinguishing feature between 
an EV and a regular vehicle is the EV’s flashing lights. In the absence of flashing lights, both 
object classes look similar and thus have similar visual features. Accordingly, there existed a 
possibility of an EV being wrongly identified as a regular vehicle in some of the intermediate 
frames where the visual features from the flashing lights were not very pronounced. 

Framework 2 
Framework 2 aimed to address the limitations of Framework 1. In Framework 1, an EV’s proposed 
regions were being classified as non-EVs in some of the intermediate frames, which re-initialized 
the object ID in the tracker. This was prevented by considering both EVs and non-EVs as a single 
object class of vehicle during the object detection step. The region proposals generated for all the 
vehicles in the image frame served as an input to the SORT tracking algorithm. Once the tracker 
made a frame-by-frame prediction and associated the frames with an object ED, all the tracked 
objects were passed on to the image classification pipeline to be marked as an EV or a non-EV. 
The part of the image inside the bounding boxes proposed by the object detector was processed to 
extract feature vectors that served as input to the EV classifier.  

The advantage of this approach was that we could afford some false detections in the intermediate 
frames. Since all the objects of interest were grouped under the vehicle class, object IDs were 
preserved throughout the tracking stage. Figure 2 shows the flowchart of the overall architecture 
of Framework 2.  

 
Figure 2. Flowchart representation of the sequence of steps for EV detection in Framework 2. 
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Framework 2 also used a combination of the YOLOv3 object detector and the SORT object tracker. 
Since the object detection and the object classification steps were clearly delineated in framework 
2, the YOLOv3 could be trained on any of the popular datasets to identify a vehicle’s object class. 
We used the YOLOv3 trained on RAVEV Dataset II.1 for object detection. YOLOv3 exhibited an 
accuracy score of 86% and a precision score of 95% on the RAVEV Dataset II.1. The models and 
the feature vectors used to further classify the vehicles will be discussed in the following sections. 

EV Classification 
A classification algorithm can be implemented in two steps. In the first step, the key features that 
characterize the given region of the image are extracted and stored as a feature vector. In the second 
step, a classification algorithm uses the feature vector to identify whether the given region 
corresponds to an EV or a non-EV. 

Feature Descriptors and Feature Arrays 
A feature vector consists of unique attributes extracted from the images of objects that will be used 
by the models to classify them into different classes. Some of the features we used in our feature 
arrays included the image pixel array, histogram of oriented gradients (HOG) descriptor, and color 
histogram. The array of bounding boxes associated with a single object ID was obtained from the 
object tracker and its corresponding image information was extracted from the video frame. The 
obtained image was processed to extract features or feature descriptors. This processed image was 
converted into a feature vector, which was then used as an input to the image classifier. 

We explored three of the commonly used feature vectors for image classification (numbers 1–3 
below) and developed one custom-feature vector (number 4 below) consisting of specific features 
to identify EVs.  

1. Image Pixel Array: Image pixel array as a feature vector refers to using a raw image of 
the object as an input for classification. The image inside the bounding box is extracted 
using the data received from the object tracker and reshaped into a 128*128 image (using 
the reshape function in OpenCV). This is done to maintain parity of dimensions between 
different images. This reshaped image is then converted into a ({128*128} x 1) feature 
vector, which is used as input to the classification model. 

2. HOG (histogram of oriented gradients): HOG is a feature descriptor commonly used 
for object detection tasks in computer vision research [13]. HOG features have also found 
extensive applications for vehicle detection tasks [14] in transportation research. HOG 
features are extracted by computing f gradient orientation of the image’s pixel intensities. 
These orientations are discretized and binned into a histogram. The histogram is then 
converted into a linear array and used as the feature vector for classification. In our 
analysis, we discretized the gradients into nine orientations. 

3. Color Histograms: A color histogram of an image is a plot of the range of pixel 
intensities vs the number of pixels. Color histograms are widely used in image 
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classification tasks, as they have been found to perform better on classification models, 
which perform poorly on high dimensional feature vectors [15]. For our application, a 3D 
color histogram was extracted from an image by dividing the RGB pixel values (range: 
[0, 255]) into 32 bins and plotting the number of pixels belonging to each of those bins. 
We used the cv2.calcHist() function from OpenCV [16] for our implementations. The 
histogram array containing the value of pixel quantities that belongs to the bin of each of 
the three colors was flattened into a linear vector of size ((32*32*32)x1) and supplied to 
the classification pipeline. It was observed that reducing the number of bins deteriorated 
the accuracy levels of the classification model, whereas an increase in the number of bins 
showed no significant improvement. 

4. Custom Array: The distinguishing factor between a non-EV and EV in terms of visual 
features are the lights mounted on the EV. We identified features from the EV image that 
would capture details of these lights. Assuming that the lights on the EV are a 
combination of red and blue, the following eight features were used in the input feature 
vector for classification: 

F1 – HSV_Blue (Total area corresponding to blue in the HSV Color space) 
F2 – HSV_Red (Total area corresponding to red in the HSV Color space) 
F3 – Max Contour Blue (Area of the largest blue contour) 
F4 – Max Contour Red (Area of the largest red contour) 
F5 – Centroid Blue X (X-coordinate of the max blue contour as a ratio to image width) 
F6 – Centroid Blue Y (Y-coordinate of the max blue contour as a ratio to image height) 
F7 – Centroid Red X (X-coordinate of the max red contour as a ratio to image width) 
F8 – Centroid Red Y (Y-coordinate of the max red contour as a ratio to image height) 

 
The above features were extracted from all the images in the classification dataset and used 
as a 8*1 feature vector to train the classification models. 

Classification Models 
The feature vectors obtained by processing the vehicle images were used as input to the 
classification models trained on the RAVEV Dataset II.1. We compared the performances of some 
of the most commonly used classifiers, such as SVM, K-Nearest neighbors, and Adaboost, on each 
of these feature vectors. We also developed a three-stage neural-network classifier and tested the 
performance of the XGBoost package for EV classification tasks. We list the classification results 
below. Based on the stream of the tracked objects classified as EVs, we were able to process the 
data for tasks of object localization, motion planning, etc. 

1. scikit-learn Classification models: The scikit-learn package for Python [17] consists of a 
wide range of machine learning algorithm implementations for solving supervised and 
unsupervised problems. We trained some of the object classification models on the 
RAVEV Dataset II.1. The trained model was then tested on the RAVEV Dataset II.2. The 
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object classification models from scikit-learn that we evaluated during this study included 
support vector machines (SVM) [18], K-nearest neighbors (KNN) [19], random forests 
[20], Adaboost [21] and gradient boosting [22]. 

 

2. XGBoost: XGBoost is an optimized python implementation of gradient boosted decision 
tree algorithms designed for high efficiency and performance. XGBoost performs 
extremely well on most regression and classification tasks.  

3. Neural Network Classifier: Neural networks have time and again proven to produce the 
best-in-class results for computer vision applications. We used the Keras [23] library in 
python to construct a neural network-based binary classifier for classifying EVs and non-
EVs. For generating the feature maps, we used a three-layer stack made of 2D 
convolution layers with ReLU activation followed by max-pooling layers. On top, we 
used a fully connected ReLU activation layer. We used a single unit sigmoid activation 
function as the final layer for binary classification into EV or non-EV categories. The 
neural network architecture is depicted in Figure 3. Plots of accuracy vs epoch and loss vs 
epoch for the neural network during training on the RAVEV dataset are shown below in 
Figure 4 and Figure 5. We see that the neural network reaches an accuracy level of about 
97% and loss of about 5% after 50 training epochs. 

 
Figure 3. Neural network architecture of EV 

classifier. 

 

 
Figure 4. Accuracy vs epochs plot during training 

the neural network classifier. 
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Figure 5. Loss vs epochs plot during training the neural network classifier. 

Control Algorithm 
In this section, we present the control algorithm that we developed to maneuver the vehicle from 
its current position to a safe location on the curbside. This algorithm is generic and can also be 
used in platooning and other emergency scenarios. The main structure of the controller is presented 
in Figure 6. The input to this controller is a set of reference data for the vehicle to follow. This data 
could be generated a-priori or be communicated to the autonomous vehicle in real-time. If the data 
is generated a-priori, its coordinates are transformed relative to the current position of the 
autonomous vehicle. Prior to discussing the details of the control algorithm, we refer the reader to 
the Appendix (Nomenclature) for an explanation of all the symbols used in this section. 

 
Figure 6. Structure of the controller. 

This controller consists of three main parts: curve fitting/error computation block, feedforward 
block, and feedback block. The curve fitting block uses a collection of arcs and straight lines to 
accurately fit the given data with a reference trajectory for the vehicle to track. This block also 
computes the lateral and longitudinal errors, which quantifies the deviation of the autonomous 
vehicle’s position from the reference trajectory. The feedforward block estimates the steering 
command based on vehicle speed, 𝑣𝑣𝑥𝑥, and reference path radius of curvature, 𝑅𝑅. To account for 
any other disturbance or model uncertainties and initial position errors, we also include a feedback 
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block to the control, which compensates for the lateral error, elat , yaw error 𝜃𝜃� , and yaw rate 
error, 𝜃𝜃�̇. In the ensuing discussion, we briefly cover the key aspects of each of the blocks.  

Curve Fitting and Error Calculation 
A curve fitting algorithm is first used to find the radius of path curvature that the vehicle must 
track and the error signals used in the feedforward and feedback controller design. The flowchart 
for this procedure is illustrated in Figure 7.  

All the data are separated into two types: a line segment or a curve segment. The data fits a straight 
line if the deviation of (𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖) from the line joining  (𝑥𝑥1,𝑦𝑦1) and (𝑥𝑥𝑁𝑁 ,𝑦𝑦𝑁𝑁) is within a threshold. 
Otherwise, we find the center (𝑥𝑥𝑐𝑐,𝑦𝑦𝑐𝑐), radius R of the “least mean square (LMS) fit” circular arc 
through these points. Using this information, we determine the feedback signals: 𝑒𝑒𝑙𝑙𝑙𝑙𝑙𝑙, 𝜃𝜃�, and  𝜃𝜃�̇. 
An outline of the formulation and the method used to find the circular arc is as follows: given 
(𝑥𝑥1,𝑦𝑦1), (𝑥𝑥2,𝑦𝑦2) , …,  (𝑥𝑥𝑁𝑁 ,𝑦𝑦𝑁𝑁), the problem is to find a "least squares fit" of a circular arc; i.e., 
find the center (𝑥𝑥𝑐𝑐, 𝑦𝑦𝑐𝑐) and radius 𝑅𝑅 so that the error J is minimized. 

𝐽𝐽 =  �(𝑅𝑅2 − (𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑐𝑐)2 − (𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑐𝑐)2)
𝑁𝑁

𝑖𝑖=1

 

 
Figure 7. Curve fitting and error calculation. 
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The reasons for choosing the least square form of the error are as follows: first, when the points in 
the data are exactly on the circular arc, the error is zero. Second, this form is relatively easier to 
optimize, as the partial differentials with respect to the center (𝑥𝑥𝑐𝑐,𝑦𝑦𝑐𝑐) and radius 𝑅𝑅 are easy to 
compute. As the curve fitting is implemented in real time, this formulation enabled us to compute 
the parameters quickly.  

An illustration of the errors is shown in Figure 8 and Figure 9. If the given data is an arc, the lateral 

error is 𝑒𝑒𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑅𝑅−  �(𝑋𝑋𝑣𝑣 − 𝑋𝑋𝑐𝑐)
2 + (𝑌𝑌𝑣𝑣 − 𝑌𝑌𝑐𝑐)

2 . If the given data fits a straight line better, the 

lateral error is 𝑒𝑒𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑦𝑦𝑣𝑣−𝑚𝑚𝑥𝑥𝑣𝑣−𝑐𝑐
�1+𝑚𝑚2

, where y = mx + c is the equation of the straight-line. The yaw 

error and yaw rate error can be represented as 𝜃𝜃� =  𝜃𝜃 −  𝜃𝜃𝑅𝑅, 𝜃𝜃�̇ =  �̇�𝜃 − 𝑣𝑣𝑥𝑥
𝑅𝑅 . 

Once the error signals and radius of curvature for path are derived, we design the feedforward and 
feedback controller for the autonomous vehicle. Prior to that, we describe the vehicle model and 
the assumptions we used to derive the equations. 

 
Figure 8. Illustration of lateral error for an arc. 

 

 

 
Figure 9. Illustration of lateral error for a straight 

line. 

Feedforward and Feedback Controllers  
Vehicle model 
In this work, the autonomous vehicle is modeled as a bicycle (refer to Figure 10). The following 
assumptions must be followed for using this vehicle model: 

• The radius of turn, R, is far larger than wheelbase L. 
• The left and right steer angle must be approximately the same. 
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• The side slip angle of front wheels 𝛼𝛼𝑓𝑓 is equal, as is the slip angle of rear wheel side slip 
angle 𝛼𝛼𝑟𝑟. 

• Side slip angles are small: 𝛼𝛼𝑓𝑓 ≈  𝛿𝛿𝑓𝑓 − �
𝑣𝑣𝑦𝑦+𝑙𝑙𝑑𝑑𝜃𝜃𝑑𝑑𝑙𝑙
𝑣𝑣𝑥𝑥

�   𝛼𝛼𝑟𝑟 ≈  −�
𝑣𝑣𝑦𝑦−𝑏𝑏

𝑑𝑑𝜃𝜃
𝑑𝑑𝑙𝑙

𝑣𝑣𝑥𝑥
�. 

• Linear Model for Cornering Forces: 𝐹𝐹𝑟𝑟 = 𝐶𝐶𝑟𝑟𝛼𝛼𝑟𝑟 𝐹𝐹𝑓𝑓 = 𝐶𝐶𝑓𝑓𝛼𝛼𝑓𝑓. 

The equations of motion of the vehicle using the bicycle model can be described as: 

m�
𝑑𝑑𝑣𝑣𝑦𝑦
𝑑𝑑𝑙𝑙

+ 𝑣𝑣𝑥𝑥�̇�𝜃� = 𝐶𝐶𝑓𝑓𝛿𝛿𝑓𝑓 −
𝐶𝐶𝑓𝑓 + 𝐶𝐶𝑟𝑟
𝑣𝑣𝑥𝑥

𝑣𝑣𝑦𝑦 −
𝑙𝑙𝐶𝐶𝑓𝑓 − 𝑏𝑏𝐶𝐶𝑟𝑟

𝑣𝑣𝑥𝑥
�̇�𝜃 

I�̈�𝜃 = 𝑙𝑙𝐶𝐶𝑓𝑓𝛿𝛿𝑓𝑓 −
𝑙𝑙𝐶𝐶𝑓𝑓 − 𝑏𝑏𝐶𝐶𝑟𝑟

𝑣𝑣𝑥𝑥
𝑣𝑣𝑦𝑦 −

𝑙𝑙2𝐶𝐶𝑓𝑓 + 𝑏𝑏2𝐶𝐶𝑟𝑟
𝑣𝑣𝑥𝑥

�̇�𝜃 

where m, I, a and b are the vehicle mass, inertia and distance from the center of mass to vehicle 
front and rear tire, 𝛼𝛼𝑓𝑓 and 𝛼𝛼𝑟𝑟 are side slip angles of tires & 𝐶𝐶𝑓𝑓 and 𝐶𝐶𝑟𝑟 are the cornering stiffness of 
vehicle.  

 
Figure 10. Bicycle model used solve dynamics of the autonomous vehicle. 

Controller Design 
The feedforward part provides a control command, 𝛿𝛿𝑓𝑓𝑓𝑓,  based on the vehicle speed and previewed 
path’s curvature. At a constant speed, no initial error and no disturbances/model uncertainties, the 
vehicle should track the circular arc without any error. However, errors are common and inevitable 
due to modeling assumptions and practical uncertainties. To handle these errors, a feedback 
controller is also required. 
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The feedback controller contributes control command, 𝛿𝛿𝑓𝑓𝑏𝑏 , based on the lateral error, elat, yaw 

error, 𝜃𝜃�, and yaw rate error, 𝜃𝜃�̇ . The summation of feedback and feedforward is the final control 
input to the vehicle. The feedforward, feedback and final control command, 𝛿𝛿𝑓𝑓 , can be described 
as: 

𝛿𝛿𝑓𝑓𝑓𝑓 =  
𝐿𝐿
𝑅𝑅+

𝑚𝑚
𝐿𝐿 �

𝑏𝑏
𝐶𝐶𝑓𝑓
−
𝑙𝑙
𝐶𝐶𝑟𝑟
�
𝑣𝑣𝑥𝑥2

𝑅𝑅
 

𝛿𝛿𝑓𝑓𝑏𝑏 = −𝑘𝑘𝑒𝑒𝑒𝑒𝑙𝑙𝑙𝑙𝑙𝑙 − 𝑘𝑘𝜃𝜃 𝜃𝜃� − 𝑘𝑘𝜔𝜔𝜃𝜃�̇ 

𝛿𝛿𝑓𝑓 = 𝛿𝛿𝑓𝑓𝑓𝑓 + 𝛿𝛿𝑓𝑓𝑏𝑏 

Results 

Results of Vision-Based Identification of EVs 
Performance of Framework 1 
Figure 11 shows an image with EV detections made by YOLOv3 using the trained weights. Table 
1 contains the confusion matrix for the predictions made by the trained YOLOv3 detector on a 
sequence of 13,429 detections from video sequences.  

 
Figure 11. Detection outputs from YOLOv3 implemented on the RAVEV Dataset I. 



13 

 

 

Table 1. Confusion Matrix for 2 Class Classification Corresponding to 13,429 Detections in 4 Video 
Sequences 

 

Performance of Framework 2 
We first quantify the classification results of Framework 2 in terms of accuracy, precision and 
recall scores to help us select the best classifier. By definition, 

𝐴𝐴𝑐𝑐𝑐𝑐𝐴𝐴𝑟𝑟𝑙𝑙𝑐𝑐𝑦𝑦 𝑆𝑆𝑐𝑐𝑆𝑆𝑟𝑟𝑒𝑒 =  
𝑇𝑇𝑃𝑃 + 𝑇𝑇𝑇𝑇

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇
=  
𝑇𝑇𝑆𝑆𝑙𝑙𝑙𝑙𝑙𝑙 𝑐𝑐𝑆𝑆𝑟𝑟𝑟𝑟𝑒𝑒𝑐𝑐𝑙𝑙 𝑝𝑝𝑟𝑟𝑒𝑒𝑑𝑑𝑝𝑝𝑐𝑐𝑙𝑙𝑝𝑝𝑆𝑆𝑝𝑝

𝑇𝑇𝑆𝑆𝑙𝑙𝑙𝑙𝑙𝑙 𝑃𝑃𝑟𝑟𝑒𝑒𝑑𝑑𝑝𝑝𝑐𝑐𝑙𝑙𝑝𝑝𝑆𝑆𝑝𝑝𝑃𝑃
 

𝑃𝑃𝑟𝑟𝑒𝑒𝑐𝑐𝑝𝑝𝑃𝑃𝑝𝑝𝑆𝑆𝑝𝑝 𝑆𝑆𝑐𝑐𝑆𝑆𝑟𝑟𝑒𝑒 =  
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃
=  

𝑇𝑇𝑆𝑆𝑙𝑙𝑙𝑙𝑙𝑙 𝑃𝑃𝑆𝑆𝑃𝑃𝑝𝑝𝑙𝑙𝑝𝑝𝑣𝑣𝑒𝑒
𝑇𝑇𝑆𝑆𝑙𝑙𝑙𝑙𝑙𝑙 𝑃𝑃𝑟𝑟𝑒𝑒𝑑𝑑𝑝𝑝𝑐𝑐𝑙𝑙𝑒𝑒𝑑𝑑 𝑃𝑃𝑆𝑆𝑃𝑃𝑝𝑝𝑙𝑙𝑝𝑝𝑣𝑣𝑒𝑒

 

𝑅𝑅𝑒𝑒𝑐𝑐𝑙𝑙𝑙𝑙𝑙𝑙 𝑆𝑆𝑐𝑐𝑆𝑆𝑟𝑟𝑒𝑒 =  
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑇𝑇
=  

𝑇𝑇𝑆𝑆𝑙𝑙𝑙𝑙𝑙𝑙 𝑃𝑃𝑆𝑆𝑃𝑃𝑝𝑝𝑙𝑙𝑝𝑝𝑣𝑣𝑒𝑒
𝑇𝑇𝑆𝑆𝑙𝑙𝑙𝑙𝑙𝑙 𝐴𝐴𝑐𝑐𝑙𝑙𝐴𝐴𝑙𝑙𝑙𝑙 𝑃𝑃𝑆𝑆𝑃𝑃𝑝𝑝𝑙𝑙𝑝𝑝𝑣𝑣𝑒𝑒

 

where, 

TP = True Positive  
TN = True Negative 

FP = False Positive 
FN = False Negative 

 

Accuracy, precision and recall values of each of the classification models against the different 
feature vectors are listed in Table 2. 

Table 2. Classification Results (in %) of Different Classification Models Against the Feature Vectors 

Feature Score SVM Adaboost Random 
Forrest 

Gradient 
Boosting XGBoost KNN-3 

HOG Accuracy 58.02 99.51 95.06 95.31 97.53 76.79 
HOG Precision 53.3 99.48 96.77 93.10 97.42 67.48 
HOG Recall 100 99.48 92.78 97.42 97.42 99.48 
Color Histogram Accuracy 47.90 99.51 98.52 97.28 99.75 92.48 
Color Histogram Precision 47.90 99.48 98.96 96.92 100 89.10 
Color Histogram Recall 100 99.48 97.94 97.42 99.48 96.91 
Pixel Array Accuracy 85.19 96.54 95.56 94.32 98.27 94.32 
Pixel Array Precision 100 96.88 97.83 93.85 99.47 100 
Pixel Array Recall 69.07 95.88 92.78 94.33 96.91 88.14 
Custom Array Accuracy 83.98 93.20 92.62 92.23 94.82 89.71 
Custom Array Precision 95.50 86.36 85.71 85.55 90.78 82.74 
Custom Array Recall 53.00 93.25 92.02 90.80 93.5 85.28 
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Overall, XGBoost and Adaboost performed better than the other classification models on the tested 
data. This can be attributed to the fact that, during training, boosting algorithms, unlike neural 
networks and SVMs, combine many relatively weak learners to create a highly accurate prediction 
rule, reducing the curse of dimensionality and potentially improving execution time. SVM 
inherently performs poorly on high dimensional vectors and we can see a similar result with HOG 
and color histogram feature vectors. XGBoost performs better than the scikit-learn implementation 
of gradient boosting when trained on RAVEV dataset for EV classification. XGBoost performs 
best with color histogram/pixel array, whereas HOG descriptor works best on Adaboost. The 
custom array that the research team defined has a worse performance rate compared to the other 
feature vectors. 

In addition to the above classifiers, we also tested the neural network classifier directly on the pixel 
array, since finding the HOG and color histogram features required computation times in the order 
of a second. The results from the neural network classifier provided an accuracy of 98.57%, 
precision of 96.89%, and recall of 97.35%. In addition, the neural network classifier in combination 
with the pixel array ran approximately three times faster than the XGBoost classifier in 
combination with the color histogram or other feature vectors. Therefore, for real-time 
implementation, we used the neural network classifier on the pixel array to differentiate between 
an EV and a non-EV. Once an EV was identified by the vision software onboard the autonomous 
vehicle, the control algorithms were invoked to safely park that vehicle.  

Performance of the Control Algorithms 
The combined sensing and control algorithms were tested multiple times at the Texas A&M Rellis 
Campus. The results from a commonly repeated test of lane changing and parking when an EV  
was detected are discussed below. More details on the algorithm and its implementation at multiple 
speeds can be found in [24]. 

The test vehicle was autonomously driven in a straight line at 30 mph (13.4 m/s). An EV was 
driven behind this autonomous vehicle without triggering the emergency lights. After a brief 
period, the lights in the EV were turned on. On detecting the EV using the vision algorithm 
presented in the previous section, the controller slowed the test vehicle and followed a lane 
changing path. The autonomous vehicle was finally stopped at one lane right of the original path. 
The original path and lane change path are shown in Figure 12. 
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Figure 12. The original and lane changing path 

with detection point. 

 

 
Figure 13. Vehicle speed variations during the 

lane change maneuver. 

During the 26th second of the test, the autonomous vehicle detected the EV. The autonomous 
vehicle’s speed then decreased with time and the vehicle moved one lane to the right (to the safety 
zone). Slowly, the vehicle finished the lane changing maneuver and came to a complete stop. 
Vehicle speed variation with time is displayed in Figure 13. The vehicle’s lateral error along the 
lane changing path is shown in Figure 14. The maximum error occurred when the vehicle was 
undergoing the lane changing maneuver, at around 0.55 meters. The lateral error then decreased 
with time to around 10 centimeters. The vehicle yaw error and yaw rate error are illustrated in 
Figure 15 and Figure 16, which are all bounded in -0.05~+0.01 rad and -0.08~+0.06 rad/sec. This 
implies that the vehicle was not only following the lane changing path but was also within 
reasonable margins of error with respect to its heading angles. 

 
Figure 14. Lateral error measurements during the 

lane change maneuver. 

 
Figure 15. Yaw error measurements during the 

lane change maneuver. 
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Figure 16. Yaw rate error measurements during the lane change maneuver. 

Conclusions and Recommendations 
With respect to control algorithms, our proposed approach is generic and can be extended to other 
applications where vehicles may have to follow trajectories and also avoid obstacles. The main 
contribution of our methods to the body of transportation research is in the formulation of the 
problem and in the development of a systematic procedure for identifying the gains of the 
controllers [24]. This approach is currently being extended to platooning applications. 

The vision framework that worked the best for identifying EVs involved two steps. In the first 
step, we identified all vehicles and tracked them using YOLOv3 and SORT algorithms. In the 
second step, a classifier was used to identify whether each tracked vehicle was an EV or a non-
EV. We also found that using a neural network-based classifier worked well for real-time 
implementations in our autonomous test vehicle. 

The work presented in this report can be extended in several directions to include more realistic 
scenarios encountered in practice. For example, the parking operation of the autonomous vehicle 
could also use information from LiDAR and other sensors to avoid obstacles in real-time. There 
may also be scenarios where the brake lights from an EV may be similar in color (red) to the EV’s 
emergency lights. One way to address this issue is to also use the location of the emergency lights 
on an EV as an input during classification. For nighttime conditions, we observed that the 
developed algorithms did not perform well primarily because identifying the vehicles and tracking 
them was challenging in and of itself. Though we also did some preliminary work on identifying 
EVs based on sound data, we observed that the sound signals had more noise in urban settings and 
led to many false positives/negatives. A better alternative would be to fuse the communicated data 
(typically broadcasted by the EVs) with vision data.  
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Additional Products 
The Education and Workforce Development (EWD) and Technology Transfer (T2) products 
created as part of this project can be downloaded from the Safe-D website here. The final project 
dataset is located on the Safe-D Collection of the VTTI Dataverse. 

Education and Workforce Development Products 
Graduate student Abhishek Nayak’s M.S. thesis on vision algorithms for identifying emergency 
vehicles was completely supported by this project. Nayak received his M.S. degree in Fall of 2019. 
A significant part of doctoral student Mengke Liu’s Ph.D. dissertation of on the development of 
control algorithms for parking the car was funded by this Safe-D project. The following other 
graduate students also worked part-time or for a short span conducting the demonstrations during 
the project: Kenny Chour, Nishat Mehta, Saipraneeth Devunuri, Mani Deep Ankem, Aditya 
Gujrar. 

It is expected that the data collected during this project will be used in a course module for a Math 
course taught at Texas A&M University in Fall 2020. This module will be made available to the 
public via the project page on the Safe-D website. 

Technology Transfer Products 
The following paper was published by graduate student Abhishek Nayak as part of his M.S. thesis. 
His thesis work was completely supported by this project. 

Nayak, Abhishek, Swaminathan Gopalswamy, and Sivakumar Rathinam. Vision-Based 
Techniques for Identifying Emergency Vehicles. No. 2019-01-0889. SAE Technical Paper, 
2019.  https://www.sae.org/publications/technical-papers/content/2019-01-0889/ 

The following paper was published by graduate student Mengke Liu as part of his Ph.D. 
dissertation. His dissertation work was partly supported by this project. 

Liu, Mengke, Sivakumar Rathinam and Swaroop Darbha. Lateral Control of an Autonomous Car 
with Limited Preview Information. European Control Conference, 2019. 
https://controls.papercept.net/conferences/conferences/ECC19/program/ECC19_Content
ListWeb_4.html#fra7_06 

The following poster was also presented at multiple conferences throughout the course of the 
project. 

Poster presentations: 
Nayak, A., Rathinam, S., Gopalswamy, S, and Chrysler, S.T. (2019). RAVEV - Response of 

Autonomous Vehicles to Emergency Vehicles.  Poster presented at the CSCRS Safe 
Systems Summit, Durham NC, Apr 23-24, 2019. 

https://www.vtti.vt.edu/utc/safe-d/index.php/projects/response-of-autonomous-vehicles-to-emergency-response-vehicles/
https://dataverse.vtti.vt.edu/dataverse/safed
https://www.vtti.vt.edu/utc/safe-d/index.php/projects/response-of-autonomous-vehicles-to-emergency-response-vehicles/
https://www.sae.org/publications/technical-papers/content/2019-01-0889/
https://controls.papercept.net/conferences/conferences/ECC19/program/ECC19_ContentListWeb_4.html#fra7_06
https://controls.papercept.net/conferences/conferences/ECC19/program/ECC19_ContentListWeb_4.html#fra7_06
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Nayak, A., Devanuri, S., Liu, M., Rathinam, S., Gopalswamy, S, and Chrysler, S.T. (2019). 

RAVEV - Response of Autonomous Vehicles to Emergency Vehicles.  Poster presented at 
the 3rd Annual Texas A&M Transportation Technology Conference, College Station TX, 
May 8, 2018. 

Nayak, A., Rathinam, S., Gopalswamy, S, and Chrysler, S.T. (2019). RAVEV - Response of 
Autonomous Vehicles to Emergency Vehicles.  Poster presented at the 3rd Annual Texas 
A&M Transportation Technology Conference, College Station TX, April 30, 2018 

Nayak, A., Rathinam, S., Gopalswamy, S, and Chrysler, S.T. (2019). RAVEV - Response of 
Autonomous Vehicles to Emergency Vehicles.  Poster presented at the Texas Mobility 
Summit Demo Day, October 28, 2018. 

PIs Dr. S. Rathinam and Dr. S. Gopalswamy also presented a summary of the demonstrations 
performed in this project at the Autonomous Cars Conference, Brookings Institution, Washington 
D.C. on July 25, 2019. 

Data Products  
The following video and audio datasets used for training and testing the algorithms have been 
uploaded to the Safe-D Dataverse and can be found at https://doi.org/10.15787/VTT1/IVNW9L 
[25].  They can also be accessed through the project website at 
https://sites.google.com/tamu.edu/ravev/research-data: 

• Two Image Datasets that were used to develop and train EV identification and 
classification algorithms 

1. RAVEV Dataset I for vision-based detection: 1,000 images annotated with 3 
classes – EV, non-EV and pedestrians. 

2. RAVEV Dataset II for vision-based classification: An annotated dataset 
containing cropped images of EV and non EV divided into two parts—a training 
set containing 1,000 images and a validation set containing 350 images of each 
class. 

  

https://urldefense.proofpoint.com/v2/url?u=https-3A__doi.org_10.15787_VTT1_IVNW9L&d=DwMFAg&c=u6LDEWzohnDQ01ySGnxMzg&r=sDqlop34w0zlvrFIqfAwgMt9E_tsYzSEvLx2ZpImPT8&m=6qAFeGoWpFjhb-T4Q6cKZxco9hCjYFjwPvCwYhUr2Fs&s=kKo1tEZ-Pm2QKTi1YX_PgSo8QHO1Pd-k298GlAr39BA&e=
https://sites.google.com/tamu.edu/ravev/research-data
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Appendix 

Nomenclature 
Symbol Description 

  
vx Lateral velocity of the autonomous vehicle 
vy Longitudinal velocity of the autonomous vehicle 
Xv X position coordinate of the autonomous vehicle 
Yv Y position coordinate of the autonomous vehicle 
𝜽𝜽 Heading angle of the autonomous vehicle 
�̇�𝜽 Yaw rate of the autonomous vehicle 
R Radius of curvature of the desired path 
𝜽𝜽� Yaw error 

𝜽𝜽�̇ Yaw error rate 

𝜽𝜽𝑹𝑹 Desired heading angle 
𝒆𝒆𝒍𝒍𝒍𝒍𝒍𝒍 Lateral error of the vehicle 
𝒆𝒆𝒍𝒍 , 𝒆𝒆𝒏𝒏 Unit vectors of the path reference frame 
(Xc,Yc) Center of curvature of the reference path 
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