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Abstract 
In this project, we developed essential modules for achieving the proposed autonomous 
emergency navigation function for an automated vehicle. We investigated and designed 
sensing solutions for safe roadside location identification, as well as control solutions for 
autonomous navigation to the identified location. Sensing capabilities are achieved by 
advanced fusion algorithms of 3D Lidar and stereo camera data.  A novel control design, 
based on dynamic differential programming, was developed to efficiently plan navigation 
trajectories while dealing with computation delay and modelling errors. Preliminary 
validation of proposed solutions was carried out in a simulated environment. The results 
show strong potential for success, especially for the control module. Hardware integration 
in a real vehicle has been ongoing in a parallel fashion to enable field tests of developed 
modules in future work. Key sensing equipment was installed and calibrated and used to 
collect data for offline analysis. The retrofitting of the vehicle’s actuation mechanism was 
finished with the whole drive-by-wire system in place. Future work will involve road testing 
the developed systems. 
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1.Introduction 
Today’s prototype automated vehicles can track lanes effectively in normal operation, but when 
road emergencies such as system malfunction, automotive breakdown, etc. occur, these vehicles 
(for example, the Cadillac Super Cruise CT6 and Tesla Model S) simply stop in the lane, creating 
a potential safety risk for themselves and other vehicles. And for non-automated vehicles, 
emergency situations requiring safe stopping can occur as a result of medical incapacitation, 
seizures, or falling asleep. Whatever the case for the emergency stop, the safety need is for the 
vehicle to have the ability to navigate itself to stop at a safe roadside location. Our research 
objective is to develop Autonomous Emergency Navigation by perceiving the surrounding 
environment and road conditions, determining a safe roadside location to stop, specifying a 
trajectory, and applying proper steering and braking to autonomously drive the vehicle to the safe 
location outside the lane. 

Original Research Proposal 
As shown in Figure 1, our original plan was to design two modules for road perception: a 
localization and mapping module for far-field environment perception and a road surface 
estimation module for near-field road details profiling. The proposed approach would integrate the 
Simultaneous Localization and Mapping (SLAM) technology for autonomous driving and the road 
surface estimation technology for road condition monitoring, both of which were recently 
developed by Principal Investigator Tomonari Furukawa [1].  For the sake of real-time navigation, 
the localization and mapping technology performs its functions separately using a different set of 
sensors and numerical techniques. Here, it was proposed that the environment map be constructed 
using stereovision and robotic computer vision techniques.  These techniques include Structure 
from Motion (SfM), which consists of feature tracking, outlier rejection, and data association.  The 
use of vision data up to the maximal range is desired since the vehicle moves 29 m/s at 65 
mph.  The environment map was constructed for a range of 80 m. The map of the road, similar to 
the environment map, was constructed using stereovision and robotic computer vision 
techniques.  The estimated road surface conditions include 3D geometry, friction coefficients, and 
any presence of defects such as potholes and cracks.  For these features, the range was constrained 
to a shorter distance of 15–25 m where visibility was sufficient for measurement.   
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Figure 1. Overall system architecture. 

Once the environment and the road surface can be measured, the remaining tasks are to identify a 
safe roadside location, determine the entire trajectory through a complete stop, and apply closed-
loop control methods to execute the planned trajectory.  While the identification of a safe roadside 
location can be considered equivalent to finding the first feasible location, the trajectory will be 
optimized by having the value function determined a priori. Since the autonomous vehicle shares 
the right-of-way with other objects, the trajectory generation needs to avoid collision with others 
(i.e., “the trajectory generation will be formulated as a non-holonomic motion planning problem 
with dynamic obstacles”). The pose and motion of the host vehicle and other objects will be 
predicted in a prediction horizon, based on the real-time identification of surrounding 
environments, including moving or standing vehicles and pedestrians. The Time-to-Collision 
between the host vehicle and other traffic participants will then be estimated and the host vehicle’s 
position will be modified accordingly.  

The vehicle control in this collision free evasion maneuver will be closely and dynamically 
coupled with the trajectory planning. Both the longitudinal and lateral vehicle dynamics control 
will be integrated to track the trajectory reference, while the vertical control will maintain the 
vehicle’s comfort and stability. In the case of an evasive maneuver, the steering wheel and braking 
(accelerating) pedals will be controlled simultaneously to realize the dynamic trajectory, while 
taking into account the road cohesion coefficient and road conditions estimated by the road-profile 
measurement technology. The feedforward control will also be integrated for fast response.  

Research Problems Summarization 
1. Can the proposed localization and mapping provide the means to correctly identify a safe 

roadside harbor by: 
a. Processing conventional camera images to yield an accurate, rich, 3D road profile 

within a 15–25 m radius 
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b. Integrating localization and mapping with the road profile information 
2. With the identification of safe roadside harbor, is it possible to: 

a. Plan a suitable vehicle path trajectory 
b. Accomplish low-level (feedback) steering and braking control for the vehicle 

navigation 

2. Environment Perception Solutions 
In this work, we aimed to detect a safe roadside location for parking in emergency situations. We 
defined a safe roadside area as the area outside of the rightmost solid lane marking with the same 
ground level as that of the main road. Using this definition, the problem of safe roadside location 
detection boils down to two sub-problems of solid lane detection and road obstacle detection. We 
need to first detect the rightmost solid lane, find any obstacles on the right side of that lane, and 
then calculate the available space between them. Finally, we need an optimal selection strategy to 
find a location that has enough space to park and also enough distance for our vehicle to pull in. 

Related Work 
Lane marking detection has been extensively studied in the context of lane tracking. Wang et al. 
[2] developed a B-snake based algorithm to extract lane markings from monocular images. Since 
the processing is all performed in the image domain, this method doesn't require camera 
parameters. Nedevschi et al. [3] adopted stereo-vision to recover real world dimensions, which 
are encoded in a lane model. This lane model is tracked by a Kalman filter and new lane 
markings are searched in a small region proposed by the Kalman prediction model. Later, 
Danescu et al. [4] extended this work by using particle filters to accommodate more challenging 
situations like lane discontinuity. While lane markings generally follow certain rules, and hence 
can be modelled and tracked, road obstacles can be more random and thus their detection 
requires more efforts. Kubota et al. [5] used dynamic programming to do a global segmentation 
between the road and the obstacles. Their technique is based on the v-disparity map [6] 
constructed from stereovision. Badino et al. [7] extended their work by introducing stochastic 
occupancy grids to track detected obstacles across frames. Wedel et al. [8] further extended their 
work by considering the road undulation in the v-disparity map construction. While these works 
were concerned more with global navigable space segmentation, other works placed more 
emphasis on road boundary detection. Li et al. [9] fused Lidar and image information to detect 
road curbs and proposed optimal drivable regions. Zhang et al. [10] used stereo-vision to find the 
road horizon and vanishing point, then used a graph cut method to find the road boundary by 
calculating the two shortest paths from the vanishing point to the image bottom. 

These previous works have established mature methods for the detection and tracking of 
important road features, including lane markings and road obstacles. However, when it comes to 
roadside estimation for the vehicle emergency stop purpose, additional efforts need to be taken to 
integrate lane detection and road boundary detection techniques under a unified framework. 
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Estimation Objective 
Figure 2 shows the estimation objective of the designed perception module. The vehicle is driven 
on the righthand side as required in the U.S. and thus focuses on navigable roadside on the right. 
As the lane change is not the problem of concern within this paper, we assume that the vehicle 
has already changed to the rightmost lane of the road prior to activation of the subject logic.  

 
Figure 2. Roadside space estimation illustration. 

Since the vehicle’s geolocation is irrelevant to the automated control for an emergency stop, the 
inertial coordinate frame is set to align with the vehicle body frame where the emergency stop 
starts. This beginning time is set as time step 0. Our goal is to estimate the roadside space at a 
distance d ahead of the car.  The distance should be sufficient to allow the car to perform a 
complete stop. Assume that the car can perform a complete stop after the travel distance in the 
Kth time step. Let the distance between the car center and the rightmost lane marking and the 
distance between the car center and the right road border be 𝑙𝑙𝐾𝐾𝑚𝑚 and 𝑙𝑙𝐾𝐾𝑏𝑏  respectively. The width of 
the roadside at time step 𝐾𝐾, 𝑙𝑙𝐾𝐾𝑤𝑤 is given by: 

 lKw = lKb − lKm  (1) 

As a result, the problem is equivalent to estimating xko at time step k ∈ 1, … , K via a sequence of 
given observations: p(𝑥𝑥𝑘𝑘𝑡𝑡 |𝑧𝑧1:𝐾𝐾

𝑡𝑡 ), where 𝑝𝑝(⋅) is a probability density function, 𝑥𝑥𝑘𝑘𝑡𝑡 ≡ [𝑙𝑙𝑘𝑘𝑏𝑏 , 𝑙𝑙𝑘𝑘𝑚𝑚]⊤is the 
state to estimate, and 𝑧𝑧1:𝑘𝑘 ≡ {𝑧𝑧1:𝑘𝑘

𝑏𝑏 , 𝑧𝑧1:𝑘𝑘
𝑚𝑚 } is the observation of the road border and the lane 

marking from time step 1 to K. 

System Configuration 
Figure 3 shows our perception module configuration. The key idea is to fuse information from 
different sensors under one Bayesian estimation framework so that we can make the most of the 
strengths of each type of sensor installed in the vehicle. Instead of having a separated road 
profiling subsystem as we originally proposed, we switched to a 3D Lidar based quick profiling 
approach which requires fewer computation resources and thus allows robust real-time 
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performance. Our system can handle the strict requirement of estimating up to 80 m ahead when 
the vehicle is traveling at over 55 mph through such a fusion structure.  

 
Figure 3. Roadside perception system configuration. 

Specifically, the stereovision subsystem will be responsible for far-field (> 20 m) environment 
mapping, which gives us a preliminary roadside space estimation allowing feedforward 
prediction planning and control. The 3D Lidar and stereovision system combined will generate a 
detailed roadside profile in the near-field (< 20 m) for a vehicle to accurately park itself at the 
end of the maneuver. The major challenges here are to develop efficient image processing 
techniques for the stereovision subsystem to simultaneously detect boundary lane markings and 
road border obstacles. This places demanding requirements on enabling new reasoning 
capabilities beyond conventional stereovision algorithms; it is necessary not only to triangulate 
points, but also to determine if the points are above road surface and located on the right side of 
the lane demarcation. Our novel stereovision reasoning components help address this problem.  

Roadside Detection and Tracking Using Stereovision 
As we define the right boundary of the roadside to be an area where surfaces rise above the road 
height (such as areas with guard rails, retaining walls and utility poles, etc.), we proposed a novel 
stereo-vision based boundary detection technique to detect the right boundary. Then, combining 
this technique with an image-based lane marking detection method for left boundary detection, 
we can measure the roadside area with a pair of calibrated stereo cameras. The technique we 
propose first constructs a vertical road profile using a B-spline model, which is later used to 
generate a road surface depth map. Then, based on the depth map, boundary objects are detected 
and tracked in an occupancy grid. The technique overview is shown as a block diagram in Figure 
4. 
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Figure 4. Stereovision based roadside area detection and tracking block diagram. 

B-Spline Principles 
B-spline curves are a general way of modeling 2D curves. Theoretically, B-spline curves can 
represent any polynomial functions using a set of predefined base functions and an adjustable 
control vector. The advantage of B-spline curves over other quadratic or cubic curves is their 
versatility for handling inflections and discontinuity. This quality is especially useful when we 
need to model a long distance ahead. A B-spline is defined as a linear combination of a set of 
base functions defined by a knot vector and the order of the curve. A knot vector 
�t1, t2, … , tk+(n+1)� defines the non-zero intervals of each base function at zero-order. 
Specifically, zero-order base function Ni,0(t) is defined as: 

 𝑁𝑁𝑖𝑖,0(𝑡𝑡) = {1, 𝑡𝑡𝑖𝑖 ≤ 𝑡𝑡 < 𝑡𝑡𝑖𝑖+1
0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  (2) 

Higher order base functions are calculated recursively from zero-order functions: 

 𝑁𝑁𝑖𝑖,𝑘𝑘(𝑡𝑡) = 𝑡𝑡−𝑡𝑡𝑖𝑖
𝑡𝑡𝑖𝑖+𝑘𝑘−𝑡𝑡𝑖𝑖

𝑁𝑁𝑖𝑖,𝑘𝑘−1(𝑡𝑡) + 𝑡𝑡𝑖𝑖+𝑘𝑘+1−𝑡𝑡
𝑡𝑡𝑖𝑖+𝑘𝑘+1−𝑡𝑡𝑖𝑖+1

𝑁𝑁𝑖𝑖+1,𝑘𝑘−1(𝑡𝑡)  (3) 

The coefficients for the linear combination form the control vector are [𝐶𝐶0,𝐶𝐶1, . . . ,𝐶𝐶𝑛𝑛], and the 
final curve function is given as: 

 𝐵𝐵(𝑡𝑡) = ∑ 𝑁𝑁𝑖𝑖,𝑘𝑘𝑛𝑛
𝑖𝑖=0 (𝑡𝑡)𝐶𝐶𝑖𝑖, 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑡𝑡 ≤ 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚  (4) 

Since we are dealing with an open loop spline, we also need to satisfy the following conditions: 
𝑡𝑡1 = 𝑡𝑡2 =. . . = 𝑡𝑡𝑑𝑑, 𝑡𝑡𝑑𝑑 < 𝑡𝑡𝑑𝑑+1 <. . . < 𝑡𝑡𝑛𝑛+1 and 𝑡𝑡𝑛𝑛 + 1 = 𝑡𝑡𝑛𝑛+2 =. . . = 𝑡𝑡𝑛𝑛+𝑑𝑑 where 𝑑𝑑 is the order of 
the basis function. 

3D Roadside Surface Modeling 
From our definition of roadside, we know that we only need two 3D curves to fully define the 
roadside area. If we have a fixed knot vector, our B-spline functions will be fixed and can be pre-
computed. All that remains to be estimated are the control points. However, estimation in 3D space 
boosts the state vector dimension and thus is unfavorable in terms of online performance. To 
minimize the state dimension, we decided to project the 3D curves onto two orthogonal planes and 
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represent the resulting 2D curves as a 1-dimension B-spline. This is based on the assumption that 
the road always extends forward and will not turn back. So, we can use the depth coordinate as the 
independent parameter t of the B-spline formulation and reduce the 2D control points to 1D control 
coefficients. 

The coordinate system we used here has the origin at the middle of the front footprint of the ego 
vehicle, with the X-axis pointing toward the right of the vehicle, the Y-axis pointing upwards from 
the ground, and the Z-axis pointing forward. The two projection planes are the YZ plane for 
vertical profile projection and the XZ plane for horizontal profile projection. Here, we assume the 
two boundary curves share the same vertical profile; that is, their projection on the YZ plane is the 
same. This means we didn’t consider the road shoulder’s banking angle, which was negligible in 
most situations we evaluated. Then we can set the horizontal equation of the left boundary as: 

 𝑋𝑋𝑙𝑙(𝑧𝑧) = ∑ 𝑁𝑁𝑖𝑖,𝑘𝑘𝑙𝑙𝑛𝑛
𝑖𝑖=0 (𝑧𝑧)𝐶𝐶𝑙𝑙𝑙𝑙, 𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑧𝑧 ≤ 𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚  (5) 

The horizontal equation of the right boundary as: 

 𝑋𝑋𝑟𝑟(𝑧𝑧) = ∑ 𝑁𝑁𝑖𝑖,𝑘𝑘𝑟𝑟𝑛𝑛
𝑖𝑖=0 (𝑧𝑧)𝐶𝐶𝑟𝑟𝑟𝑟, 𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑧𝑧 ≤ 𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚  (6) 

And the shared vertical profile equation as: 

 𝑌𝑌(𝑧𝑧) = ∑ 𝑁𝑁𝑖𝑖,𝑘𝑘
𝑦𝑦𝑛𝑛

𝑖𝑖=0 (𝑧𝑧)𝐶𝐶𝑣𝑣𝑣𝑣, 𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑧𝑧 ≤ 𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚  (7) 

Note that each of these three curves can have a different B-spline function due to both inherent 
differences and measurement availability. For example, the right boundary allows larger and more 
irregular curvature than the left boundary and thus requires a higher polynomial degree. And 
because stereovision has more resolutions in the near field, the knots at the front need to be more 
closely spaced compared to those at the rear. We will discuss this in more detail in following 
sections. 

Road Vertical Profile Estimation 
The reason for first estimating the vertical curve Y(z) is that we need to know the ground level of 
the road surface in order to calculate the height map, which is the height relative to the road 
surface. When the road ahead is flat, there is a technique called v-disparity, which can be used to 
efficiently calculate the road surface height. However, a flat road assumption doesn't always 
hold, especially when we want to estimate a long range ahead. Therefore, our solution is to fit a 
curve to the detected road surface points and use the fitted curve to generate the road height map. 

Specifically, when we have M measurements from the stereo image matching, we can calculate 
the depth Z of these points from the disparity and then use a camera projection matrix to get their 
height Y. After that, we have m independent measurements {Ym, Zm}m=1M  with corresponding 
standard deviations σm. 

With these measurements, the curve fitting problem becomes an optimization problem: 

 𝐶𝐶∗ = min
𝑐𝑐
�∑ 1

𝜎𝜎𝑚𝑚2𝑚𝑚 (𝑌𝑌(𝑍𝑍𝑚𝑚) − 𝑌𝑌𝑚𝑚)2�  (8) 
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After substituting equation (7) in (8), the problem reduces to finding the optimal control 
coefficients 𝐶𝐶𝑣𝑣𝑣𝑣∗  that minimize the weighted sum: 

 𝐶𝐶∗ = min
𝑐𝑐
�∑ 1

𝜎𝜎𝑚𝑚2𝑚𝑚 (∑ 𝑁𝑁𝑖𝑖,𝑘𝑘
𝑦𝑦𝑛𝑛

𝑖𝑖=0 (𝑍𝑍𝑚𝑚)𝐶𝐶𝑣𝑣𝑣𝑣 − 𝑌𝑌𝑚𝑚)2�  (9) 

This then becomes a least-square problem: 

 𝐶𝐶∗ = min
𝑐𝑐
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⎥
⎥
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𝐶𝐶 − �

𝑌𝑌1
⋮
𝑌𝑌𝑀𝑀
�

⎭
⎬

⎫
  (10) 

where 𝑁𝑁𝑌𝑌(𝑍𝑍𝑚𝑚)𝑇𝑇 is the vector [𝑁𝑁0,𝑘𝑘
𝑦𝑦 ,𝑁𝑁1,𝑘𝑘

𝑦𝑦 , … ,𝑁𝑁𝑛𝑛,𝑘𝑘
𝑦𝑦 ]. 

After the coefficients are estimated, we have a curve for the vertical coordinates of the road, 
which we can use to calculate a road surface depth map combining with the camera model. 

Road Surface Depth Map Construction 
Now we construct a depth map for the road surface similar to the familiar v-disparity map. That 
is, we want to know the disparity (depth) of the road projected on the vth row of the image. In order 
to do this, we trace back a ray of light incident at the vth row and calculate its intersection with the 
vertical B-spline profile. Let 𝑓𝑓 be the camera focal length, 𝛼𝛼 be the camera pitch angle, 𝑅𝑅 be the 
image row number, 𝑝𝑝𝑣𝑣 be the pixel height, 𝐻𝐻, and 𝛥𝛥ℎ be the camera height and height offset. We 
can see the incident coordinate at the image screen is: 

  incident point = � 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
−𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐� �

𝑓𝑓
−𝑅𝑅

2
𝑝𝑝𝑣𝑣 + 𝑝𝑝𝑣𝑣𝑣𝑣

� + � 0
𝐻𝐻 + 𝛥𝛥ℎ

�  (11) 

Since the camera center is located at (0,𝐻𝐻 + 𝛥𝛥ℎ),we can calculate the resulting line function of 
the light ray as: 

 𝑌𝑌 =
−𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓+𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑝𝑝𝑣𝑣𝑣𝑣−

𝑅𝑅
2𝑝𝑝𝑣𝑣)

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓+𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑝𝑝𝑣𝑣𝑣𝑣−
𝑅𝑅
2𝑝𝑝𝑣𝑣)

𝑍𝑍 +𝐻𝐻 + 𝛥𝛥ℎ  (12) 

Because the pitch angle of the camera may influence the results, it is necessary to have a good 
estimate of the pitch, especially for accurate depth calculation in the far field. Danescu et al. [4] 
designed a method for pitch estimation based on a polar histogram. Their approach is based on 
two important assumptions: 

1. The road points should be on a horizontal plane in the near field (typically ≤ 15 m) 
2. Most of the points in the 3-D space are above the road surface.  

We built our estimation method based on the same assumptions. However, unlike the methods 
used by Danescu et al. [4], we simultaneously estimated the camera pitch angle and height offset, 
since vehicle vibrations tend to result in both kinds of movement of the camera. We adopted a 
robust fitting method called Hough transformation and constructed a 2D Hough space for 
parameter estimation. Specifically, we set the domain for pitch angle from -2 degrees to 2 degrees 
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and the domain for height offset from -2 cm to 2 cm. Then we discretized the parameter space into 
bins of 0.1 degree and 0.1 cm for parameter voting. The algorithm for Hough transformation is 
outlined below: 

First initialize all 𝐻𝐻(𝛼𝛼,𝛥𝛥ℎ) to 0 
For each triangulated 3D point (𝑥𝑥,𝑦𝑦, 𝑧𝑧), 
        If 𝑧𝑧 ≥ 15𝑚𝑚, go to the next point; 

        For 𝛥𝛥ℎ = −2𝑐𝑐𝑐𝑐: 0.1𝑐𝑐𝑐𝑐: 2𝑐𝑐𝑐𝑐 
                𝛼𝛼 = 𝑡𝑡𝑡𝑡𝑛𝑛−1(𝑦𝑦 + 𝛥𝛥ℎ)/𝑧𝑧 

    If α < −2° or α > 2° 
    go to next point; 
    Else 𝐻𝐻(𝛼𝛼,𝛥𝛥ℎ) = 𝐻𝐻(𝛼𝛼,𝛥𝛥ℎ) + 1 (need to first find the index of corresponding bin) 

        End 
End 

After the transformation, we just need to find the values of (𝛼𝛼,𝛥𝛥ℎ) where 𝐻𝐻(𝛼𝛼,𝛥𝛥ℎ) is a local 
maximum. For each image row 𝑣𝑣, we can calculate the depth 𝑍𝑍𝑣𝑣 of the road surface at that row as: 

 
−𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓+𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑝𝑝𝑣𝑣𝑣𝑣−

𝑅𝑅
2𝑝𝑝𝑣𝑣)

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓+𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑝𝑝𝑣𝑣𝑣𝑣−
𝑅𝑅
2𝑝𝑝𝑣𝑣)

𝑍𝑍𝑣𝑣 + 𝐻𝐻 + 𝛥𝛥ℎ = ∑ 𝑁𝑁𝑖𝑖,𝑘𝑘
𝑦𝑦𝑛𝑛

𝑖𝑖=0 (𝑍𝑍𝑣𝑣)𝐶𝐶𝑣𝑣𝑣𝑣∗   (13) 

After all 𝑍𝑍𝑣𝑣 values are obtained, the v-disparity map for the road surface follows easily as: 

 𝑑𝑑(𝑣𝑣) = 𝐵𝐵∗𝑓𝑓
𝑍𝑍𝑣𝑣

  (14) 

where 𝐵𝐵 is the baseline length of the stereo rig. 

Boundary Objects Detection and Tracking in Stochastic Occupancy Grids 
As previously defined, the right roadside boundary is marked by objects rising above road surface. 
One typical feature of those objects is that they usually form a vertical surface perpendicular to the 
ground (e.g., buildings and billboard poles). This feature provides a powerful cue for detecting 
these objects using stereo-vision, since such vertical surfaces display the same disparity values in 
a column of the disparity image. 

Our detection algorithm is as follows: 

While 𝑖𝑖 < 𝑅𝑅 
        If 𝑑𝑑(𝑖𝑖, 𝑢𝑢) > 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚,  𝑖𝑖 = 𝑖𝑖 + 1; 
        Else 𝑡𝑡 = 𝑉𝑉𝑉𝑉𝑉𝑉[𝑑𝑑(𝑖𝑖,𝑢𝑢),𝑑𝑑(𝑖𝑖 + 1,𝑢𝑢), . . . ,𝑑𝑑(𝑖𝑖 +𝑁𝑁1,𝑢𝑢)], 

If 𝑡𝑡 > threshold 
    𝑖𝑖 = 𝑖𝑖 + 𝑁𝑁2; 
Else find 𝑁𝑁 > 𝑁𝑁1 such that 𝑁𝑁 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝑁𝑁
{𝑉𝑉𝑉𝑉𝑉𝑉[𝑑𝑑(𝑖𝑖,𝑢𝑢),𝑑𝑑(𝑖𝑖 + 1,𝑢𝑢), . . . ,𝑑𝑑(𝑁𝑁,𝑢𝑢)] < threshold}            

        𝑑𝑑 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀[𝑑𝑑(𝑖𝑖,𝑢𝑢),𝑑𝑑(𝑖𝑖 + 1,𝑢𝑢), . . . ,𝑑𝑑(𝑁𝑁,𝑢𝑢)]; 
        If 𝑁𝑁 > 𝑅𝑅 − 𝑣𝑣(𝑑𝑑) + 𝑁𝑁3, 𝑖𝑖 = 𝑖𝑖 + 𝑁𝑁2; 
        Else for 𝑗𝑗 = 𝑁𝑁 to 𝑅𝑅 − 𝑣𝑣(𝑑𝑑) + 𝑁𝑁3 count the number 𝐶𝐶 of 𝑑𝑑(𝑗𝑗,𝑢𝑢) < 𝑑𝑑; 
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    If 𝐶𝐶 > threshold,𝑖𝑖 = 𝑖𝑖 + 𝑁𝑁 + 1; 
    Else M(k)=(u,d), k=k+1; 

End While 

Here, 𝑅𝑅 is the row number of the disparity image, 𝑑𝑑(𝑖𝑖,𝑢𝑢) is the disparity of the pixel at the 𝑖𝑖th row 
and the 𝑢𝑢 th column. The detection algorithm tries to find a vertical surface by continuously 
searching for segments of the same disparity in a column. The detection is initialized by observing 
a minimal number of consistent disparity values 𝑁𝑁1 and extends to all following similar values. 
The road surface depth map built in section B serves as a strong constraint for rejecting possible 
outliers, since any visible vertical surface should be above road surface. A final check comes from 
the concerns of hanging objects. While our algorithm is robust to partial occlusions since we only 
need parts of the object surface as the detection evidence, there are cases when this assumption 
fails. For example, in urban environments, crossovers and billboards hanging in the air could be 
mistakenly detected as boundary objects. In order to address this problem, we enforce a check on 
the disparity values of the pixels between the lower end of a detected surface and the road surface. 
If the number of pixels with smaller disparity than the detected surface exceeds a threshold, we 
can deduce that this is a hanging surface.  

After detection, we get measurement data stored in 𝑀𝑀  where each entry (𝑢𝑢,𝑑𝑑)  represents a 
possible object in a grid cell (𝑢𝑢𝑖𝑖𝑖𝑖,𝑑𝑑𝑖𝑖𝑖𝑖). We constructed the grids in terms of image columns and 
disparity values because of the efficiency advantages provided by such configurations. 
Specifically, since we don’t need to go through projection transformation when updating the grids, 
the correction implementation can be much faster. We also only need to update a quarter of the 
grid cells that conventional Cartesian grids use because of the symmetry about both axes. 
However, the cost of this is a significant drop of resolution in the far field. A trade-off has to be 
made between far-field detection accuracy and real-time computation performance. 

Roadside Tracking and Smoothing using Kalman Filter 
After the boundary measurements are obtained, the curve fitting process is exactly the same as that 
of vertical profile fitting discussed in section 2.4.3. However, curve coefficients estimated in this 
way are susceptible to noises or incorrect measurements and can change abruptly in continuous 
frames. Therefore, we embedded the curve fitting problem in a Kalman filter framework to track 
the curves across frames and filter out any outliers. In this sense, the Kalman filter correction step 
is a variation of equation (10) and the prediction is performed by taking vehicle odometry data and 
projecting the coefficients of old B-splines to new B-splines. 

Results from Offline Analysis 
In this project we were able to load a vehicle with all the sensing equipment mentioned above. See 
Appendix A for a detailed description of all the equipment installed and the wiring and 
configuration around the vehicle. Using the installed equipment, we were able to collect real data 
and test our algorithms in different real scenarios. Real data also comes with a lot of problems and 
corner cases where our detection algorithm may fail. To mitigate these issues, we leverage the 
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accuracy of Lidar points in the near field to prefilter the stereo image data and take several 
preprocessing steps before running the main program. Specifically, before using the 2D edge 
detector for point cloud intensities, we first perform a plane segmentation to cluster out all those 
points belonging to the road. This step proves to be essential for the success of subsequent 
detection and tracking. In order to segment out the points, we first use a bilateral filter to remove 
noise points and then use a sample consensus-based surface normal Euclidean cluster extraction 
method to obtain the road surface plane. We use the prior knowledge of road markings to search 
for the boundary of the road shoulder where no marking is detected. Here, the primary cue for 
boundary detection is road surface roughness, which we quantified using a histogram of surface 
normal. Basically, we first use an octree-based k nearest neighbor searching algorithm to determine 
a unique neighborhood for each point and then compute the surface curvature and normal of the 
points in that neighborhood. Next, variance of surface normal is calculated based on predetermined 
neighborhoods and a certain threshold is applied for unpaved area detection. 

We validated our approach using the vehicle equipped with stereo cameras and 3D Lidar. The test 
was performed in highway scenarios. The vehicle began traveling in the right lane at 45 mph (20 
m/s), then began to decelerate after identifying a roadside stopping place 80 meters away. After 
decelerating, at 30 m away from the identified stopping place, the vehicle turned right into the 
emergency lane. Here, Figure 5 shows both lane offsets and the road boundary in the image domain 
are detected and tracked while only the road boundary is detected in the Lidar point cloud. The 
two sources of information were fused in the Extended Kalman filter (EKF) correction phase to 
enhance accuracy. Figure 6 shows reduced variance of the roadside width estimation as the vehicle 
slows down to the roadside location.  

 

Figure 5. Detected boundary points and roadside width as the vehicle slows down. 



12 
 

 
Figure 6. The estimated mean roadside width and its 3σ errors as the vehicle slows down. 

3.Trajectory Planning and Control Solutions 
While there have been limited focused efforts on developing planning and control solutions for 
autonomous emergency navigation, many other works have been performed dealing with vehicle 
control for automated overtaking and collision avoidance. These works deal with similar technical 
challenges as ours, such as simultaneous lateral and longitudinal control, prediction control with 
uncertain destinations, and fast computation for real-time implementation. Among these works 
there are two main strategies to address these challenges. One is to break the task into two subtasks 
of trajectory generation and trajectory tracking. For example, Petrov et al. [11] designed an 
adaptive nonlinear controller to track polynomial trajectories generated in real time for overtaking 
maneuver. In [12], He. et al developed a robust lateral motion controller to stably track a collision-
free path during an emergency collision avoidance maneuver. Such strategies are usually 
computationally efficient since there exist many fast trajectory generation methods, like that 
proposed by Werling et al. [13]. This two-layer design can also draw on the abundant existing 
works on nonlinear feedback controllers. However, the main drawback of this strategy in real 
application centers on the difficulties encountered during feedback calculation. Specifically, the 
feedback controller needs to continuously measure the difference between current state and 
reference state, the so-called tracking error. This requires the vehicle to possess a high-precision 
self-localization and mapping capability, which is hard to achieve, especially in high-speed 
scenarios and in scenarios where landmark references are scarce. Our targeted scenario, an 
emergency stop on a highway, will involve both high-speed movement and scarce landmarks in 
the surrounding environment, thus making this strategy undesirable.  

Another strategy is to leverage model predictive control (MPC) and cast the control problem into 
an optimization problem over a look-ahead time horizon. In this way, the prediction requirements 
are handled in a model-based feedforward manner without the need to generate predictive 
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trajectories. For instance, in [14], Dixit et al. propose an autonomous overtaking framework in 
highway speed using tube-based robust MPC as the control commands generation method. 
Sotoudeh et al. [15] use a similar method to ensure collision avoidance in uncertain environments. 
In [16] Liu et al. use MPC to simultaneously optimize speed and steering angle for obstacle 
avoidance maneuver in high speed while considering the handling limits of vehicle dynamics.  

The optimization algorithms used in these works, however, have limitations in the length of 
planning horizon, so intermediary references are needed. For example in [14], the controller will 
generate reference points as intermediary destination states along the overtaking maneuver by 
measuring the states of the overtaken vehicle. For automated emergency stops, such references 
don’t exist. We only have a rough estimation of the final location our vehicle may pull into, which 
is usually far from our current position and may be subject to further changes due to insufficient 
roadside space. Therefore, we cannot use the standard collocation-style MPC algorithms for our 
system. 

To address the unique requirements of the automated emergency stop system, we propose a novel 
control system design based on a modified differential dynamic programming (DDP) technique 
that is shown to be able to control the vehicle to stop at a safe roadside location as determined on 
the fly. The backbone of the computation leverages the DDP method, which allows our system to 
plan over a much longer horizon compared to standard MPC techniques, thus solving the challenge 
of not having references along the way. 

Control Problem Statement 
In this section we state the mathematical formulation of the emergency pull over motion control 
problem and present the essential assumptions we adopted for addressing this problem. Figure 7 
shows the automated roadside emergency stop problem addressed in this report where the vehicle 
is driven on the righthand side as required in the United States, and thus focuses on the navigable 
roadside on the right. As the lane change is not the area of concern within this paper, we assume 
that the vehicle has already changed to the rightmost lane of the road prior to activation of the pull 
over logic. Since the geolocation of the vehicle is irrelevant to the automated control for emergency 
stop, the coordinate frame to be used for the motion control is chosen along the right lane marking, 
which is shown in blue in Figure 7. 
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Figure 7. Illustration of emergency stop navigation control problem 

The goal of the emergency stop problem is to find a set of control sequences that can drive the 
vehicle from the current location (𝑥𝑥𝑣𝑣, 0) to a complete stop at the identified roadside position 
(𝑥𝑥𝑠𝑠,𝑑𝑑) with the vehicle heading aligned with the road direction, which is the 𝑦𝑦 axis in this case. 
We formulate this problem as a discrete optimal control problem. The vehicle state at step 𝑖𝑖 is 
represented as 𝐱𝐱𝑖𝑖. The control action of vehicle at step 𝑖𝑖 is represented as 𝐮𝐮𝑖𝑖, which comprises a 
physical control term and a time increment term to allow for flexibility of control duration and 
thus total time to stop. The state transition dynamics at each step is represented by 𝐟𝐟𝑖𝑖(𝐱𝐱𝑖𝑖,𝐮𝐮𝑖𝑖), 
which is assumed to be continuously differentiable in its arguments. The full problem 
formulation is shown as (15): 

 

min
(𝐮𝐮0,𝐮𝐮1,...𝐮𝐮𝐾𝐾−1)

 ∑ 𝑙𝑙𝑖𝑖𝐾𝐾−1
𝑖𝑖=0 (𝐱𝐱𝑖𝑖 ,𝐮𝐮𝑖𝑖) + 𝑙𝑙𝐾𝐾(𝐱𝐱𝐾𝐾)

𝑠𝑠. 𝑡𝑡. :  𝐱𝐱𝑖𝑖+1 = 𝐟𝐟𝑖𝑖(𝐱𝐱𝑖𝑖,𝐮𝐮𝑖𝑖), 𝑖𝑖 = 0,1, . . . ,𝐾𝐾 − 1
𝐱𝐱0 = 𝐱𝐱𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝐱𝐱𝑖𝑖 ∈ 𝒳𝒳𝑖𝑖
𝐮𝐮𝑖𝑖 ∈ 𝒰𝒰𝑖𝑖

  (15) 

Here 𝑙𝑙𝑖𝑖  and 𝑙𝑙𝐾𝐾  are integral and terminal objectives, respectively, and both are continuously 
differentiable in their arguments. 𝐾𝐾 is the step at which the vehicle should stop. The initial state of 
vehicle 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is given as the state when the emergency stop maneuver starts. All other states are 
determined by the control sequence (𝐮𝐮0,𝐮𝐮1, . . .𝐮𝐮𝐾𝐾−1). 𝒳𝒳𝑖𝑖  and 𝒰𝒰𝑖𝑖  are the constraints space for 
vehicle state and control action at step 𝑖𝑖. Note that the terminal constraint is introduced in the 
terminal objective 𝑙𝑙𝐾𝐾. 
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Emergency Stop Autonomous Control System 

 
Figure 8. Overall control system diagram. 

In this section, we present our control system implementation based on the DDP method. Figure 8 
shows the overall system architecture. There are two main computation modules: the DDP 
Iteration module and the Recursive EKF module. The Recursive EKF module is the high frequency 
vehicle self-localization module based on inertial measurement unit (IMU) and EKF methods. 
Another important module is the storage data structure of grid-discretized state space for hosting 
control commands to be taken at each state. During a DDP forward pass, this storage structure 
updates itself based on new control sequences computed. The real-time control thread will first 
obtain information about current states from the EKF module and then send a request to the storage 
structure to fetch the control commands at its interrupt time. 

3.2.1 DDP Iteration 
The reason we are maintaining a storage data structure to host control commands is because we 
cannot ensure real-time DDP convergence. In other words, the time it takes for one DDP iteration 
to converge is unpredictable and thus we cannot guarantee the control thread always gets the newly 
computed control commands when the interrupt happens. When the iteration hasn’t returned, the 
control thread will have to reuse previous control commands. However, due to modeling errors, 
current estimated states may not be the same as the states predicted from the control horizon. In 
fact, current states may not equal any states in the trajectory computed by the previous DDP 
iteration. One possible solution is to calculate its nearest neighbor in the state space, but that may 
lead to unfavorable or even unsafe motion when the control trajectory is rapidly changing. 
Therefore, we instead leverage all forward pass trajectories that have a cost below a threshold. 
During DDP iteration, usually the cost drops quickly and stays within an acceptable range before 
converging to the optimal. In an original DDP implementation, those trajectories before 
converging are discarded (or overwritten by new trajectories). In our implementation, we record 
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those trajectories, as they represent feasible solutions and cover a wider state space. We accomplish 
this recording by discretizing the state space into grids. When a new trajectory is confirmed to be 
acceptable, states along the trajectory are matched to the corresponding grid cells and update the 
control values stored in those cells. In this way we can provide back-up control for any states the 
vehicle is currently in. 

3.2.2 Recursive EKF 
During the emergency stop maneuver, the vehicle constantly estimates its current states based on 
the EKF recursive fusion scheme. The EKF is a kind of Bayesian estimation method that 
recursively predicts a system’s state based on its dynamics and corrects the predicted states based 
on sensor measurements. It assumes Gaussian noises so that stochastic state estimation can be 
represented by their mean and covariance. Specifically, we assume the system dynamics has the 
form: 

 𝐱𝐱𝑖𝑖 = 𝐟𝐟(𝐱𝐱𝑖𝑖−1,𝐮𝐮𝑖𝑖−1) + 𝐰𝐰𝑖𝑖−1 (16) 

where 𝐰𝐰𝑖𝑖−1 ∼ 𝐍𝐍(𝐰𝐰𝑖𝑖−1,𝛴𝛴𝐰𝐰𝑖𝑖−1) is Gaussian dynamics noise. And sensor measurement is assumed 
to have the form: 

 𝐳𝐳𝑖𝑖 = 𝐡𝐡(𝐱𝐱𝑖𝑖) + 𝐯𝐯𝑖𝑖 (17) 

where 𝐯𝐯𝑖𝑖 ∼ 𝐍𝐍(𝐯𝐯𝑖𝑖,𝛴𝛴𝐯𝐯𝑖𝑖) is Gaussian measurement noise. The estimated states 𝐱𝐱𝑖𝑖|𝑖𝑖 ∼ 𝐍𝐍(𝐱𝐱𝑖𝑖|𝑖𝑖,𝛴𝛴𝐱𝐱𝑖𝑖|𝑖𝑖) 
are fully represented by its mean 𝐱𝐱𝑖𝑖|𝑖𝑖 and covariance 𝛴𝛴𝐱𝐱𝑖𝑖|𝑖𝑖 , which are updated recursively as: 

 

𝐱𝐱𝑖𝑖|𝑖𝑖−1 = 𝐟𝐟(𝐱𝐱𝑖𝑖−1|𝑖𝑖−1,𝐮𝐮𝑖𝑖−1)
𝛴𝛴𝐱𝐱𝑖𝑖|𝑖𝑖−1 = 𝐀𝐀𝑖𝑖−1𝛴𝛴𝐱𝐱𝑖𝑖−1|𝑖𝑖−1𝐀𝐀𝑖𝑖−1

𝑇𝑇 + 𝛴𝛴𝐰𝐰𝑖𝑖−1

𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒:  𝐀𝐀𝑖𝑖−1 = 𝜕𝜕𝐟𝐟
𝜕𝜕𝐱𝐱

|𝐱𝐱=𝐱𝐱𝑖𝑖−1|𝑖𝑖−1

  (18) 

 

𝐱𝐱𝑖𝑖|𝑖𝑖 = 𝐱𝐱𝑖𝑖|𝑖𝑖−1 + 𝐊𝐊𝑖𝑖(𝐳𝐳𝑖𝑖 − 𝐡𝐡(𝐱𝐱𝑖𝑖|𝑖𝑖−1))
𝛴𝛴𝐱𝐱𝑖𝑖|𝑖𝑖 = (𝐈𝐈 − 𝐊𝐊𝑖𝑖𝐂𝐂𝑖𝑖)𝛴𝛴𝐱𝐱𝑖𝑖|𝑖𝑖−1

𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒:  𝐂𝐂𝑖𝑖 = 𝜕𝜕𝐡𝐡
𝜕𝜕𝐱𝐱

|𝐱𝐱=𝐱𝐱𝑖𝑖|𝑖𝑖−1
𝐊𝐊𝑖𝑖 = 𝛴𝛴𝐱𝐱𝑖𝑖|𝑖𝑖−1𝐂𝐂𝑖𝑖

𝑇𝑇(𝐂𝐂𝑖𝑖𝛴𝛴𝐱𝐱𝑖𝑖|𝑖𝑖−1𝐂𝐂𝑖𝑖
𝑇𝑇 + 𝛴𝛴𝐯𝐯𝑖𝑖)

−1

 (19) 

Here, (18) is often called the EKF prediction step, which requires a dynamics prediction model 𝐟𝐟. 
We use a different model than the one used in our DDP control algorithm to fully take advantage 
of the high-frequency measurement capability provided by the IMU installed on the vehicle. The 
model is based on a 3 degree of freedom bicycle kinematics model but replaces control terms 
with actual measurements, as below: 

 

𝐯̇𝐯𝜖𝜖 = 𝛼𝛼𝜖𝜖 − 𝐯𝐯𝜂𝜂𝜔𝜔
𝐯̇𝐯𝜂𝜂 = 𝛼𝛼𝜂𝜂 − 𝐯𝐯𝜖𝜖𝜔𝜔
𝐱̇𝐱 = −𝐯𝐯𝜖𝜖sin𝜃𝜃 + 𝐯𝐯𝜂𝜂cos𝜃𝜃
𝐲̇𝐲 = 𝐯𝐯𝜖𝜖cos𝜃𝜃 + 𝐯𝐯𝜂𝜂sin𝜃𝜃
𝜃̇𝜃 = 𝜔𝜔

 (20) 
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where 𝐯𝐯𝜖𝜖, 𝐯𝐯𝜂𝜂 are the vehicle’s lateral and longitudinal velocity, as shown in Figure 9; 𝐱𝐱, 𝐲𝐲 and 𝜃𝜃 
are the vehicle’s coordinates in an inertial frame set at each reinitialization point ; 𝛼𝛼𝜖𝜖 and 𝛼𝛼𝜂𝜂 are 
the acceleration along the lateral and longitudinal direction of the vehicle body; and 𝜔𝜔 is the yaw 
rate of the vehicle body. 𝛼𝛼𝜖𝜖,𝛼𝛼𝜂𝜂 and 𝜔𝜔 are all measured by the on-board IMU at 100 Hz.  

 

Figure 9. Model for EKF estimation. 
This ensures high-resolution localization, which is crucial at high speed. The correction step (19) 
is to fuse sensor observations to correct errors in model-based prediction. We use a speed sensor 
and cameras to correct accumulated dead-reckoning errors during the prediction process. We 
assume cameras provide fairly accurate measurements of a vehicle’s position relative to the lane 
marking, and thus can give us the (𝑋𝑋,𝜓𝜓) coordinates. The measurement model 𝐡𝐡 takes the form: 

 
𝑉𝑉 = �𝐯𝐯𝜖𝜖2 + 𝐯𝐯𝜂𝜂2

𝑋𝑋 = 𝑋𝑋′ + 𝐱𝐱
𝜓𝜓 = 𝜓𝜓′ + 𝜃𝜃

 (21) 

where 𝑋𝑋′ and 𝜓𝜓′ are vehicle’s coordinates at the last reinitialization point. Due to the camera 
frame rate limit and the CAN bus sampling rate limit, the correction frequency is 20 Hz. 
Therefore, as prediction and correction are asynchronous in our case, we will perform 5 steps 
prediction (18) before one step correction (19). 

3.2.3 Receding Horizon Reinitialization 
Our system works in a receding horizon fashion, meaning that when each DDP iteration returns, 
we will immediately begin the next round of iteration using current states as the initial state. This 
is similar to what is adopted in most MPC frameworks, essentially integrating feedback by 
constantly reinitializing the feedforward optimization process with the most recent observation. 
Another benefit of this scheme comes from the uncertainty associated with terminal state 
estimation. It’s difficult for the vehicle to estimate a roadside location available for a pull over at 
a far distance, and naturally the estimation improves as the vehicle gets closer. So, terminal state 
estimation may change and continuous reinitialization can help incorporate those changes in the 
cost function in a timely manner. In addition, continuous DDP iteration can contribute to filling 
the grid storage with control commands, which can enhance the robustness of the system by 
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providing back-up control commands whatever the vehicle’s current state. The reinitialization will 
also affect several other subsystems, and the execution sequence is important. Here we summarize 
the sequence used in our implementation: 

1. Update Grid Coordinates: When one iteration converges and returns, we first update 
the coordinate frame of the discretized storage grid by requesting current state 
information from the EKF module. 

2. Reset EKF states: Then we reset the EKF states to match the current DDP initial states. 
3. Interrupt Control Thread: Finally, we need to interrupt the real-time control thread to 

inform it of the updated control commands’ availability. The interruption is necessary 
because we use flexible time steps in our control formulation, and one control command 
can last longer than one DDP iteration. 

SIMULATION RESULTS 
To validate the efficacy of the proposed system before implementing it in a real vehicle, we 
performed tests in a simulation environment established in MATLAB/Simulink. The simulation 
setup includes four sub-modules: (1) a highly realistic dynamics simulator to serve as the ground 
truth generator, (2) a controller running DDP iterations using the simplified bicycle model, (3) an 
EKF estimator running at 100 HZ using simulated IMU signals, and (4) a grid-based control 
commands container. Since, in reality, the noises associated with camera and speed measurements 
are typically small, and their measurements are not for integration, we deemed those noises 
nonessential and assumed those measurements were accurate in our simulation. The highly 
realistic simulator ran at 100 HZ, so its output could be fed into the IMU simulator to generate 
simulated IMU signals. Camera measurements and vehicle speed acquisition were obtained 
directly from the highly realistic simulator at 20 HZ. The simulated scenario was a mid-size vehicle 
running at 20 m/s (45 mph) in the rightmost lane, and performing an emergency stop on the 
roadside ahead.  

To evaluate our system’s efficacy and its robustness to real-time computation lag and model errors, 
we tested two cases. In the first case, the roadside space was always sufficient for the vehicle to 
pull in, so there would be no identification failures. In the second case, there was a segment of 
road ahead with a narrow roadside space, but the vehicle could only determine that the roadside 
was narrow when it drove within 50 meters of that spot, in which case it had to re-identify another 
location ahead of the original and use the new location for DDP iteration. For the first case, we 
also evaluated how the system performs in the presence of DDP iteration lags. We carried out one 
simulation with the DDP iteration set to return immediately, and another simulation with a 1-
second lag, which is a reasonable assumption of real-world worst-case execution time. The 
resulting vehicle state and control trajectories for each of the cases are shown in Figure 10 to Figure 
12. The plotted vehicle states are ground truth states drawn from the highly realistic simulator. 
Note that due to the large range of the longitudinal position, we scaled all other state components’ 
values by a factor of five to make them legible in the same plot. From the results, we can see the 
control system works well in all cases in terms of bringing the vehicle to a stop at a safe roadside 
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location. By comparing Figure 10 and Figure 11, we can see the DDP iteration lag doesn’t 
negatively affect the results. As a matter of fact, the delay in DDP iteration allows control to be 
smoother because there is no need to change frequently to the new optimal policy. This smooth 
effect is deemed to be favorable, as it makes the vehicle’s yaw motion more stable as shown in the 
yaw angle plots. The only negative effects of computation lags are an increase in the time it takes 
to fully stop and an overshoot of the steering action toward the time series end. None of these 
negative effects are significant and will not affect the system’s overall performance.  

 
Figure 10. Trajectories with no lag.                           

 
Figure 11. Trajectories with 1-second lag. 

In Figure 12 we show the case with narrow roadside, which shows that our system can react 
properly when it detects a narrow roadside space and the vehicle can maintain speed with 
occasional acceleration when planning for another location ahead. 

  
Figure 12 Trajectories in cases of narrow roadside segment. 
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4.Conclusions and Recommendations 
This project aims to build a prototype system for an emergency autonomous navigation function 
that, once triggered, can autonomously navigate the automated vehicle out of the driving lane to 
pull off and park at a safe place by the roadside. We investigated and tested state-of-art robotics 
and control techniques, evaluated different solutions in real tests and a simulated environment, 
then developed algorithms and system architecture that can robustly achieve the proposed 
function. 

For the first main task of the project, the roadside environment perception and mapping, we first 
proposed using SLAM as the major technique. We installed a 64 channel 3D Lidar and tested 
several state-of-the-art point cloud processing algorithms for fast voxelization and landmark 
registration. Our attempts showed that with 64 channel Lidar running at a speed over 20 m/s, the 
point cloud density was not enough to identify and track landmarks beyond 25 m. The effective 
tracking area was reduced to under 15 meters if the vehicle was running on the highway, where 
the environment doesn’t have enough distinguishable landmarks and the algorithm can easily 
confuse similar-looking point clusters like trees and rails along the side of the road. Therefore, 
we decided to instead use stereovision and image processing to help make reasonable estimations 
for navigable roadside areas in the far field. The technique was built on classic lane and 
boundary segmentation solutions, with the added robustness brought by stereovision-based 3D 
road profile construction. Field tests showed our methods performed well in normal urban and 
highway scenarios, but in environments where there were not many vertical objects by the 
roadside, or the vertical objects were not easy to triangulate, the system may fail to find an 
acceptable parking place for miles. Once a place was identified and the stop maneuver started, 
the estimation continued to be refined by new measurements, which tended to be more accurate 
as the vehicle drove closer. And when the vehicle’s speed dropped below 10 m/s, the Lidar 
SLAM began to work, which combined with stereovision, allowed construction of a detailed 
roadside map for final parking location selection. This means that even if our far-field perception 
module fails, we can choose to let the vehicle slow down and then leverage sensor fusion for 
parking place identification. 

For the planning and control task, we originally intended to use a sequential path planning and 
feedback control technique. However, due to the incapability of the perception module to 
construct an accurate enough map for path tracking references, we instead used a DDP-based 
prediction control technique that can directly optimize trajectories towards the parking location. 
This technique employs an efficient second order shooting method which iteratively adjusts 
control trajectory by solving a series of small-scale quadratic programming problems. This 
method is innately suitable for “hot start,” meaning once there is an initial solution, subsequent 
computation for changed problem conditions will be significantly accelerated. This feature was 
critical since we needed to frequently reinitialize the problem conditions due to model 
inaccuracy. Our introduction of grid-based control commands storage structure further increased 
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the robustness of real-time control. Simulation results showed good performance in typical 
straight road scenarios. The reinitialization mechanism worked well in situations where the 
originally-identified roadside location turned out to be too narrow to pull in. In addition, by 
comparing cases with and without control computation time delay, we found our system 
maintained good performance in the worst case delay scenario of as long as 1 second. 

For future work, we recommend creating roadside maps and integrating map information for 
more robust perception. We also plan to implement the control system on a real vehicle for 
future field tests. Our retrofitting of the drive-by-wire system has been ongoing and the progress 
to date is reported in Appendix B.  

5.Additional Products

Education and Workforce Development Products 
During the project, the Principal Investigators engaged any students in their courses who were 
interested in the topic to participate in regular weekly discussion. Some technical challenges have 
been made as course projects and students are encouraged to modify software packages to test 
their ideas. Dr. Furukawa also supervised the Self-Driving Vehicle Team (SDVT) senior design 
team. Some undergraduate students in the team first gained experience by retrofitting a golf car 
and then contributed to the retrofitting of the real vehicle for future field tests. The skills developed 
in the project have helped these students become competitive in the job market for traditional 
vehicle manufacturers as well as emerging autonomous driving startups. 

Undergraduate students Jeronimo Cox and Cameron Miksch accumulated substantial experience 
in vehicle hardware programming during the project and successfully began their career at NASA 
thereafter. Undergraduate student Zhengdao gained experience in stereovision algorithms and was 
admitted into WPI’s graduate program. Graduate student Lisheng investigated the vehicle control 
problem in addition to working on the hardware and made steady advances towards his degree. In 
addition to presenting this material to enrolled students, there are also plans to disseminate this 
project’s material to K-12 students during summer science camps, etc. 

Technology Transfer Products 
During the 5th International Symposium on Future Active Safety Technology Toward zero traffic 
accidents (FAST-zero) in 2019 in Blacksburg VA, we presented the perception part of our work 
to both academic and industrial participants. Some company employees at the conference have 
shown interest in our technology, including Honda R&D. We will continue reaching out after we 
further increase the robustness of the system by integrating maps. 

We also summarized our planning and control work in a paper to be published at the ASME 
Dynamic Systems and Control Conference in 2020. We hope that presenting at these leading 
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conferences will expose our work more and attract external funding to help us improve algorithms 
and do field tests.  

Data Products 
A dataset was not provided since the project team’s algorithm was tested in simulation 
environments.  



23 
 

References 
1. Hu, Y. and T. Furukawa, A high-resolution surface image capture and mapping system 

for public roads. SAE International Journal of Passenger Cars-Electronic and Electrical 
Systems, 2017. 10(2017-01-0082): p. 301-309. 

2. Wang, Y., E.K. Teoh, and D. Shen, Lane detection and tracking using B-Snake. Image 
and Vision computing, 2004. 22(4): p. 269-280. 

3. Nedevschi, S., et al. 3D lane detection system based on stereovision. in Proceedings. The 
7th International IEEE Conference on Intelligent Transportation Systems (IEEE Cat. No. 
04TH8749). 2004. IEEE. 

4. Danescu, R. and S. Nedevschi, Probabilistic lane tracking in difficult road scenarios 
using stereovision. IEEE Transactions on Intelligent Transportation Systems, 2009. 
10(2): p. 272-282. 

5. Kubota, S., T. Nakano, and Y. Okamoto. A global optimization algorithm for real-time 
on-board stereo obstacle detection systems. in 2007 IEEE Intelligent Vehicles 
Symposium. 2007. IEEE. 

6. Labayrade, R., D. Aubert, and J.-P. Tarel. Real time obstacle detection in stereovision on 
non flat road geometry through" v-disparity" representation. in Intelligent Vehicle 
Symposium, 2002. IEEE. 2002. IEEE. 

7. Badino, H., U. Franke, and R. Mester. Free space computation using stochastic 
occupancy grids and dynamic programming. in Workshop on Dynamical Vision, ICCV, 
Rio de Janeiro, Brazil. 2007. Citeseer. 

8. Wedel, A., et al., B-spline modeling of road surfaces with an application to free-space 
estimation. IEEE Transactions on Intelligent Transportation Systems, 2009. 10(4): p. 
572-583. 

9. Li, Q., et al., A sensor-fusion drivable-region and lane-detection system for autonomous 
vehicle navigation in challenging road scenarios. IEEE Transactions on Vehicular 
Technology, 2013. 63(2): p. 540-555. 

10. Zhang, Y., et al., When dijkstra meets vanishing point: a stereo vision approach for road 
detection. IEEE transactions on image processing, 2018. 27(5): p. 2176-2188. 

11. Petrov, P. and F. Nashashibi, Modeling and nonlinear adaptive control for autonomous 
vehicle overtaking. IEEE Transactions on Intelligent Transportation Systems, 2014. 
15(4): p. 1643-1656. 

12. He, X., et al., Emergency steering control of autonomous vehicle for collision avoidance 
and stabilisation. Vehicle system dynamics, 2019. 57(8): p. 1163-1187. 

13. Werling, M., et al. Optimal trajectory generation for dynamic street scenarios in a frenet 
frame. in 2010 IEEE International Conference on Robotics and Automation. 2010. IEEE. 

14. Dixit, S., et al., Trajectory planning for autonomous high-speed overtaking in structured 
environments using robust MPC. IEEE Transactions on Intelligent Transportation 
Systems, 2019. 21(6): p. 2310-2323. 

15. Sotoudeh, S.M. and B. HomChaudhuri. Ensured Collision Avoidance Over a Finite Time 
Horizon for Autonomous Vehicles in Presence of Uncertainty. in Dynamic Systems and 
Control Conference. 2019. American Society of Mechanical Engineers. 



24 

16. Liu, J., et al., Combined speed and steering control in high-speed autonomous ground
vehicles for obstacle avoidance using model predictive control. IEEE Transactions on
Vehicular Technology, 2017. 66(10): p. 8746-8763.



25 
 

Appendices 
 

Appendix A: Perception Hardware Configuration 

 
Figure 13. Vehicle sensor hardware wiring configuration 
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Figure 14. Power supply configuration of onboard computer and sensors. 
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Figure 15. Equipment installation picture of the test vehicle. 

Figure 16. Golf car retrofitting architecture for slow speed tests. 

Appendix B: Control Hardware Configuration 
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Figure 17. Drive-by-wire controller wiring configuration. 

Vehicle Longitudinal Control Actuator Modification 
The brake-by-wire system has been completed. Using a stepper motor with a driver controller to 
turn a pulley wheel with a hub for attachment to the motor axle as shown in Figure 18, the brake 
is actuated using the feedback of the brake pedal position from the vehicle CAN network. 
Originally the power source intended to power the stepper driver was actually greater than its 
operating range. That leads to the need of replacing the stepper driver as well as designing a 
suitable power source based on what was available. The 12 V DC power from the car battery 
wasn’t enough voltage to reliably operate the stepper driver, so a 110V AC to 36V DC step down 
was added. Based on the feedback received from the car (Figure 19), an integer signifying how 
far the brake motor should rotate from its initial position is used to pulse the stepper CW or 
CCW. A brake calibration procedure is undergone before each operation, moving the motor step 
by step until the initial depression of the brake pedal, assuming that the tension may be variable 
with each operation. This can later be  
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used as a transition from park to drive. The depression of the brake pedal is related to a 
deceleration of the vehicle in motion.  

 
Figure 18. A pulley is drilled and mounted on the steel hub of the motor shaft for brake actuation. 

 

 
Figure 19. Motor driver gets feedback from CAN about the actual pedal position. 

The throttle pedal potentiometers are mimicked by three digital-to-analog converters which is 
operated by inputting what percentage of throttle pedal depression is needed. Previous work was 
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undocumented aside from microcontroller code for operation, so documentation of the three 
MCP4725 wiring has been produced. The brake and throttle operation are both successfully 
working with the microcontroller, as well as under operation with the autonomous-manual mode 
switch relays. 

Vehicle Lateral Control Actuator Modification 
The steering-by-wire can be produced by manipulation of solely the torque sensor, as the Electric 
Power Steering (EPS) serves as an assist to reduce the amount of torque needed to turn the wheel 
by the aid of a motor. Mimicked torque outputs can operate the motor in the EPS to rotate the 
steering wheel, however if the torque signal is also the assist for subduing vibrations produced 
from steering in motion, the operation of the EPS using a 2-channel digital converter (one for 
each degree of rotation) will need to operate with the feedback from the torque sensor. Lateral 
motion of vehicles is dependent down to the flexibility of the tires, so for now, the steering wheel 
position has been used as the metric for automation of the steering in the vehicle. A PID 
controller is used to get the steering wheel to a position with applied torques to the wheel. As the 
automated steering could be erroneous when in use, the torque signals recorded when in 
autonomous mode are recorded to the microcontroller and sent to the main computer, as input to 
the EPS is modified to disregard the position-based input coming from the python script 
operating the steering. Rather than using individual channel DACs like the MCP4725s used for 
the throttle controller, a 2-channel DAC is used for the CW and CCW signals of the torque 
sensor. No torque application kept both outputs of the torque sensor in the medial range of 5 
volts that it outputted, as one sensor increases in voltage for one direction while the voltage 
decreases on the other output. The amperage ranges for both outputs also had to be measured to 
prevent damaging the EPS system after matching the power range using added resistances to the 
two channels of the DAC. 
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