
Identifying Deviations from 

Normal Driving Behavior

PPPR #!Final Report

January 2022



 

Disclaimer 
The contents of this report reflect the views of the authors, who are responsible for the 
facts and the accuracy of the information presented herein. This document is 
disseminated in the interest of information exchange. The report is funded, partially or 
entirely, by a grant from the U.S. Department of Transportation’s University 
Transportation Centers Program. However, the U.S. Government assumes no liability for 
the contents or use thereof. 

 

 



 

TECHNICAL REPORT DOCUMENTATION PAGE 

1. Report No.  
TTI-Student-08 

2. Government Accession No. 
 

3. Recipient’s Catalog No. 
 

4. Title and Subtitle 
Identifying Deviations from Normal Driving Behavior 

5. Report Date 
January, 2022 
6. Performing Organization Code: 
  

7. Author(s) 
Hananeh Alambeigi 
Anthony D. McDonald 
Eva Shipp 
Michael Manser 
 
 

8. Performing Organization Report No. 
TTI-Student-08 

9. Performing Organization Name and Address: 
Safe-D National UTC 
Texas A&M University 
Texas A&M Transportation Institute 
3135 TAMU, College Station, Texas 77843-3135, USA 

10. Work Unit No. 
11. Contract or Grant No. 
69A3551747115/TTI-Student-08 

12. Sponsoring Agency Name and Address  
Office of the Secretary of Transportation (OST) 
U.S. Department of Transportation (US DOT) 
 
 

13. Type of Report and Period 
Final Research Report 
14. Sponsoring Agency Code 
 

15. Supplementary Notes 
This project was funded by the Safety through Disruption (Safe-D) National University Transportation Center, a 
grant from the U.S. Department of Transportation – Office of the Assistant Secretary for Research and Technology, 
University Transportation Centers Program. 
16. Abstract 
One of the critical circumstances in automated vehicle driving is transition of control between partially automated 
vehicles and drivers. One approach to enhancing the design of transition of control is to predict driver behavior during 
a takeover by analyzing a driver’s state before the takeover occurs. Although there is a wealth of existing driver 
behavior model prediction literature, little is known regarding takeover performance prediction (e.g., driver error) 
and its underlying data structure (e.g., window size). Thus, the goal of this study is to predict driver error after a 
takeover event using supervised machine learning algorithms on various window sizes. Three machine learning 
algorithms—decision tree, random forest, and support vector machine with a radial basis kernel—were applied to 
driving performance, physiological, and glance data from a driving simulator experiment examining automated 
vehicle driving. The results showed that a random forest algorithm with an area under the receiver operating curve 
of 0.72, trained on a 3 s window before the takeover time, had the highest performance for accurately classifying 
driver error. In addition, we identified the 10 most critical predictors that resulted in the best error prediction 
performance. The results of this study can be beneficial for developing driver state algorithms that could be integrated 
into automated driving systems. 
17. Key Words 
Driver Behavior, Automated Driving, Transfer of 
Control, Machine Learning Algorithm, 
Physiological Measures, Predictive Modeling 

18. Distribution Statement 
No restrictions. This document is available to the 
public through the Safe-D National UTC website, as 
well as the following repositories: VTechWorks, The 
National Transportation Library, The Transportation 
Library, Volpe National Transportation Systems 
Center, Federal Highway Administration Research 
Library, and the National Technical Reports Library. 

19. Security Classif. (of this report) 
Unclassified 

20. Security Classif. (of this 
page) Unclassified 

21. No. of Pages 
22 

22. Price 
$0 

Form DOT F 1700.7 (8-72)                       Reproduction of completed page authorized

https://orcid.org/0000-0003-4310-3950
https://orcid.org/0000-0001-7827-8828
https://orcid.org/0000-0002-4034-8031
https://orcid.org/0000-0003-4706-7838
https://www.vtti.vt.edu/utc/safe-d/
https://vtechworks.lib.vt.edu/
https://ntl.bts.gov/
https://ntl.bts.gov/
https://www.library.northwestern.edu/libraries-collections/transportation/
https://www.library.northwestern.edu/libraries-collections/transportation/
https://www.volpe.dot.gov/library
https://www.volpe.dot.gov/library
https://highways.dot.gov/resources/research-library/federal-highway-administration-research-library
https://highways.dot.gov/resources/research-library/federal-highway-administration-research-library
https://ntrl.ntis.gov/NTRL/


ii 
 

Abstract 
One of the critical circumstances in automated vehicle driving is transition of control 
between partially automated vehicles and drivers. One approach to enhancing the design 
of transition of control is to predict driver behavior during a takeover by analyzing a driver’s 
state before the takeover occurs. Although there is a wealth of existing driver behavior 
model prediction literature, little is known regarding takeover performance prediction (e.g., 
driver error) and its underlying data structure (e.g., window size). Thus, the goal of this 
study is to predict driver error after a takeover event using supervised machine learning 
algorithms on various window sizes. Three machine learning algorithms—decision tree, 
random forest, and support vector machine with a radial basis kernel—were applied to 
driving performance, physiological, and glance data from a driving simulator experiment 
examining automated vehicle driving. The results showed that a random forest algorithm 
with an area under the receiver operating curve of 0.72, trained on a 3 s window before 
the takeover time, had the highest performance for accurately classifying driver error. In 
addition, we identified the 10 most critical predictors that resulted in the best error 
prediction performance. The results of this study can be beneficial for developing driver 
state algorithms that could be integrated into automated driving systems. 
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Introduction 
Automated vehicle technologies are a promising approach to reduce the nearly 6 million motor 
vehicle crashes per year in the United States [1]. Yet this promise is limited by the complexity of 
driver and automated driving system (ADS) interactions [2, 3]. In particular, major challenges 
regarding safety may arise when drivers are required to take over control of the vehicle after the 
ADS fails or encounters an operational limit. There is a wealth of existing research that has 
investigated the influential factors on takeover performance [4]. This research suggests that 
providing drivers with more time to react to takeovers and assistive technology to aid driver 
decision making during takeovers may improve takeover performance and safety [4]. Machine 
learning algorithms that accurately predict post-takeover driver behavior are an important first step 
in developing such technology. Although a substantial amount of research has been conducted on 
machine learning in the automated driving domain [4], literature in the area of driver takeover 
during automated driving is still relatively sparse.  

Prior studies have predicted drivers’ takeover performance using various machine learning 
algorithms [5–8]. Du et al. [5] used six machine learning methods to predict the driver’s takeover 
performance, categorizing the performance as bad or good based on the takeover reaction time, 
maximum resulting acceleration, minimum time to collision (TTC), and standard deviation of road 
offset. They found that the random forest algorithm on a 3 s time window before the event 
performed the best when the drivers were engaged with non-driving-related tasks. In another study, 
Ayoub et al. employed eXtreme Gradient Boosting (XGBoost) to predict the takeover time using 
variables that influenced takeover time, such as the level of automation and the takeover request 
modality [6]. That analysis found that the urgency of the situation (low, medium, high), takeover 
time budget, driver’s age, and type of the non-driving-related task (handheld vs. non-handheld) 
were the most important variables for predicting takeover time. In a study by Braunagel et al., 
takeover readiness—an indicator of takeover quality—was categorized as low or high and was 
predicted by three categories of features: the complexity of the traffic situation, the type of 
secondary task performed by the driver, and the on-road gaze [7]. The study compared support 
vector machines (SVM) with a linear (SVML) and radial basis kernel, linear discriminant, Naïve 
Bayes, and k-nearest neighbor (kNN) and found that the SVML had the highest classification 
performance among the other algorithms. Tivesten et al. [8] developed a simple metric and 
threshold-based classifier (i.e., a manual approach to select metrics and thresholds that can capture 
the crash involvement) to predict the driver’s takeover performance, categorized as crash and non-
crash. Their study analyzed driver glance behavior (e.g., number of on-road and off-road glances) 
and environmental parameters (e.g., number of issued warnings) and found that a low level of 
visual attention to the forward road way over a short time window (4 or 6 s), the percentage of 
time the driver looked off-road for more than 2 or 3 s during the complete drive, and long visual 
reaction time to attention reminders were associated with increased risk of crash involvement.  



2 
 

In addition to the takeover performance, prior studies have predicted situation awareness [9] and 
fatigue [10] using various machine learning algorithms. Zhou et al. [9] used Light Gradient 
Boosting Method (LightGBM) to predict the situation awareness, which was defined as between 
0 and 1 based on three performance measures of situation awareness, in recreating simulated 
driving scenarios during the takeover period. That study used eye-tracking (e.g., number of 
fixations on the mirrors) and subjective data (e.g., years of driving experiences) as input and found 
that features such as the length of the video, the time needed to make a decision, and back mirror 
fixation were the most important in predicting situation awareness over a 1 s time window. Zhou 
et al. [10] predicted the driver’s transition from non-fatigue to fatigue while driving in automated 
mode using a random forest algorithm and driver physiology over at least a 13.8 s time window 
(minimum of 1.3 s and maximum of 16.4 s). This analysis found that heart rate, heart rate 
variability, breathing rate, and standard deviation of breathing rate were the most important 
features for fatigue prediction. The ground truth, measures, and algorithms used in these studies 
as well as in the current study are summarized in Table 1. 

Although these studies provide valuable insights on driver behavior predictions during automated 
driving, additional research is needed to understand the features, algorithms, and sampling that 
best predict driver errors following a takeover. Thus, the goal of this project was to expand the 
prior analyses to predict driver error during a takeover process using machine learning algorithms 
on a range of window sizes of a set of driving performance, physiological, and glance data from a 
driving simulator experiment during partially automated vehicle (SAE Level 2; [11]) driving.  

Table 1. The Ground Truth, Measures, and Algorithms from the Literature and the Current Study 

Study Ground Truth Measures Algorithm 
[5] Takeover performance (good/bad) Environmental parameters 

Physiology  
Eye glance  
 

SVM 
NB  
DA 
kNN 
LR 
RF 

[6] Takeover performance (time) Environmental parameters 
Demographics 

XGBoost 

[7] Takeover readiness (low/ high) Environmental parameters 
Eye glance 

Linear SVM 
SVM with a radial basis 
kernel 
NB 
DA 
kNN 

[8] Takeover performance (crash/ no-crash) Environmental parameters 
Eye glance 

Metric and threshold-based 

[9] Situation awareness (0 to 1) Eye glance LightGBM 
[10] Fatigue (fatigue/ non-fatigue) Physiology  

Eye glance  
NARX 
RF 
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Current Takeover performance (post-takeover 
error/ no-error) 

Physiology  
Eye glance  
Driving 

SVM RBF 
RF 
DT 

NB: naïve bayes; DA: discriminant analysis; LR: linear regression; RF: random forest; NARX: nonlinear 
autoregressive exogenous model; RBF: radial basis function; DT: decision tree 

Methods  
The driving simulation experiment data was collected in Texas A&M Transportation Institute’s 
Realtime Technologies Inc. driving simulator lab. The lab consists of a quarter-cab driving 
simulator with three screens that provide 165° horizontal and 35° vertical fields of view, a speaker 
system to provide ambient roadway noise, and a physiological and eye-tracking data collection 
suite. The driving simulator setup is illustrated in Figure 1. The driving environment and ADS 
were simulated using SimCreator software and emulated SAE Level 2 automation. The ADS was 
activated with a button on a touch screen display located to the right of the steering wheel. When 
the system encountered a failure or an operational limit, the vehicle’s ADS was disabled (see [12] 
for a detailed description). 

 

Figure 1. The driving simulation lab setup including the 
driver’s seat and forward view screens. Note that the eye-
tracking system is positioned on top of the dashboard. 

Dataset 
The study included 64 participants (32 males, 32 females) from the surrounding community, aged 
19 to 65, with a mean age of 41.44 (SD = 15.14). All participants were English speakers, reported 
normal or corrected-to-normal visual acuity and normal color vision, held a valid driver’s license, 
reported driving experience of at least 1.5 years, were not on any medications that may have 
affected their ability to operate a moving vehicle, had not previously participated in an experiment 
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involving automated vehicles, and had no prior experience driving in an ADS-equipped vehicle 
(SAE Level 2 and higher). All procedures were approved by the Texas A&M Institutional Review 
Board (IRB2018-1362D) and were conducted in accordance with the principles expressed in the 
American Psychological Association Code of Ethics. Informed consent was obtained from each 
participant and each received $50 for their participation.   

Throughout the experiment, the following driving performance data were collected at a 60 Hz 
sampling rate: continuous steering wheel position, accelerator and brake pedal positions, velocity, 
time to lane crossing, time headway to an upstream object, and lane position. Physiological 
indicators, including heart rate, breathing rate, and electrodermal activity (EDA), were also 
collected from each participant. Heart rate and breathing rate were measured using a Zephyr 
BioHarness 3.0 (Zephyr Technology, Annapolis, MD, U.S.), an adjustable chest strap, at a 1 Hz 
sampling rate. The EDA data were measured at 60 Hz using a Shimmer3 wireless Galvanic Skin 
Response (GSR) sensor (Shimmer, Dublin, Ireland), an elastic strap that was attached to the wrists 
of subjects’ non-dominant hand, and two electrodes attached to the palm. Glance behavior data 
were collected using a dashboard-mounted FOVIO eye-tracking system (Seeing Machines Inc., 
Canberra, Australia). The FOVIO system was interfaced with the Eyeworks Data Record software 
(Eyetracking Inc., Solana Beach, CA, U.S.). Participants were calibrated to the FOVIO system 
using a four-point calibration screen and were instructed to look at the exterior edges of the 
panoramic display while maintaining a directly forward field-of-view. The compiled driving 
performance data set from the experiment is published on the Virginia Tech Transportation 
Institute’s data repository website [12]. 

The study process consisted of a brief 10 min training on the system’s capability and operation, 
two practice drives, and four counterbalanced experimental drives separated by 2 min breaks. 
Figure 2 illustrates the temporal depiction of the study process. The experimental drives differed 
by the type of failure (unexpected braking or obstacle in the road), the deceleration rate of the lead 
vehicle (2 m/s2 vs. 5 m/s2), and the takeover request (alerted vs. silent failure). Regardless of the 
failure type and criticality, the participants in the silent failure group did not receive any indication 
of the automation failure. The participants in the alerted group received an auditory and visual 
alert. The auditory alert consisted of a loud beep, and the visual alert consisted of a change of color 
on the instrument cluster and an automation activation screen. Only the unexpected braking drives 
were included in the present analysis because they were deemed most relevant to the project’s 
industry advisors.  

 
Figure 2. Temporal depiction of the study process. 
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The experimental drives took place on a 10-mile section of a four-lane straight highway where the 
participants drove in a three-vehicle platoon with a 1 s time headway. The unexpected braking 
scenario included one braking event after approximately three and one after seven miles of driving. 
In the first event, the automation responded to the braking lead vehicle appropriately and in the 
second event the automation failed to respond. In the latter event, the vehicle’s lateral and 
longitudinal control failed, necessitating a takeover. The criticality of the scenario was 
manipulated using the deceleration rates of the lead vehicle. Drivers were instructed to keep their 
hands on the steering wheel throughout the experiment and informed that it was their responsibility 
to monitor the ADS and the driving environment. Figure 3 shows the unexpected braking takeover 
scenario from the driver’s view (left) and an overhead view (right). 

 
Figure 3. Unexpected braking takeover scenario with the construction zone on the road shoulder. Left: 
Simulator scenario from the driver’s view. Right: Scenario schematic from the top view. 

Data Preprocessing and Ground Truth Definition 
All 64 participants completed the entire experiment, resulting in 128 completed driving 
performance, physiological, and glance datasets; however, physiological data from BioHarness—
including the heart rate variability—from four drivers were missing and thus excluded. Two 
additional participants were excluded from the datasets due to eye-tracking technical and 
calibration issues, resulting in 122 complete datasets. All the data pre-processing and analysis steps 
were performed in R 4.0.3 [13] using the “tidymodels” package [14]. Figure 4 illustrates the entire 
analysis schematic.  
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Figure 4. Analysis schematic including the datasets, preprocessing steps, and the algorithm development. 

The driving and physiological datasets started from the beginning of the drive and ended 
approximately 3 min after the second event was completed, where either a crash happened or the 
situation was resolved. The driving performance data and the physiological data from GSR sensor 
were down-sampled to 10 Hz from 60 Hz. The data from BioHarness included 1 Hz data from the 
entire experiment process and was subset into each scenario based on the synchronized time. The 
glance data were manually annotated by two independent coders from 10 seconds before the event 
onset until the end of the event. The areas of interest in the coding process included glances at the 
lead vehicle, dashboard, automation status console, construction site, road, and off-road (e.g., 
surrounding buildings). For the purpose of the current analysis, the driving performance data only 
included the time range where the vehicle was manually driven by the driver following the failure. 
The physiological data included the entire drive (up to the driver’s takeover time), and the glance 
data included 10 s before the event to the time that the takeover maneuver ended. The data from 
all these sources were time synced to the tenth of a millisecond.  

After the data were integrated, a data filtering and baselining process was performed. First, a 
plausibility filter was applied to the physiological data to remove invalid data (e.g., heart rate 
values of 0) that were a result of posturing that made the chest strap sensor lose contact with the 
participant’s skin or that were the result of poor fitting that made the chest strap sensor slide against 
the participant’s skin. This step was guided by the data recording limits in each device’s user 
manual. Next, a low-pass Butterworth filter with a sampling frequency of 1 Hz and a cutoff 
frequency of 0.1 Hz was applied to reduce noise. The optimal cutoff frequency was computed 
following the work in [15]. Following the noise removal process, the physiological data was scaled 
relative to a baseline. The baseline was defined as the mean of a 30-second time period of 
automated driving from the beginning of the drive after the ADS was enabled and before 
encountering the event for each participant. The selection of this method to define the baseline was 
guided by prior driving simulator studies [16, 17]. An example of the processed physiological and 
driving performance data is shown in Figure 5. 

The data were labeled as either error or no error, based on the driver’s performance during the 
takeover process using the annotated glance data. Data labeled error were defined as a failure to 
complete any necessary subtask during the takeover maneuver (e.g., failing to check the side mirror 
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before a lane change) or a failure to complete the necessary tasks in the correct order (e.g., checking 
the side mirror after a lane change). The accuracy of the error/no error labels was verified by a 
third independent coder. In total, 22 drives were labeled as error and 100 drives as no error. Table 
2 shows the order of subtasks associated with a braking or a lane change maneuver and the 
categories used to define an error.  

Table 2. Order of Subtasks Associated with a Braking or Lane Changing Maneuver and the Categories Used 
to Define an Error 

Maneuver Subtask Error 
Braking • Looking at the lead vehicle 

• Moving hands/feet towards the wheel/pedal 
• Checking the rear-view mirror  
• Applying the brake 
• Avoiding a crash 

• Not checking the rear-view mirror 
• Braking before checking the rear-

view mirror 
• Crash 

Lane changing • Looking at the lead vehicle 
• Moving hands/feet towards the wheel/pedal 
• Checking the side-view mirror  
• Applying the brake 
• Avoiding a crash 

• Not checking the side-view mirror 
• Lane changing before checking 

the side-view mirror 
• Driving off the road 
• Crash 

 

 
Figure 5. An example of the preprocessed data. The top plot shows the GSR from physiological 
dataset and the bottom plot shows the speed of the vehicle from the driving simulator dataset. The 
red line represents the time of the failure. 
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Feature Extraction and Reduction 
Following data preprocessing, a set of 73 features were extracted for window sizes, including 3 s, 
5 s, 10 s, 15 s, 20 s, 30 s, 60 s, 120 s, and 300 s before the takeover time. There were no overlaps 
between the baseline and the features’ windows. The driving features were limited to post event 
whereas the glance features were limited to 10 s before the event. Thus, longer window sizes (> 
10 s) mostly consisted of physiological features. The takeover time was defined as the time 
between the event onset and the start of the maneuver greater than a threshold of 2° for steering 
wheel angle rotation and 10% for brake pedal position [4]. Features were generated from the 
driving performance, physiological, and glance measures. Table 3 shows the extracted features 
along with their corresponding measures and data sources.  

Table 3. Categorization of the Datasets, Measures, and the Extracted Features  

Data source Measure Unit Feature 
Driving 
simulator 

Longitudinal and 
lateral speed 

meter per second Max, min, mean, med, and std of the speed 

Driving 
simulator 

Longitudinal and 
lateral acceleration 

meter per squared 
second  

Max, min, mean, med, and std of the 
acceleration 

Driving 
simulator 

Acceleration and 
brake pedal position 

- Max, min, mean, med, std, and zero crossing 
rate of the pedal position 

Driving 
simulator 

Lane offset inch Max, min, mean, med, std, and lane center 
crossing rate 

Driving 
simulator 

Steering wheel angle degree Max, min, mean, med, std, zero crossing rate, 
maximum steering wheel angle rate, and 
sample entropy of the steering wheel angle 

Driving 
simulator 

Automation 
disengagement 

count Rate of disengagement 

Driving 
simulator 

TTC second Min TTC after the event onset 

BioHarness/GSR Heart rate beats per min Max, min, mean, med, and std of heart rate 
BioHarness/GSR Heart rate variability standard deviation 

in milliseconds 
Max, min, mean, med, and std of heart rate 
variability 

BioHarness/GSR Breathing rate breaths per minute Max, min, mean, med, and std of breathing rate 
BioHarness/GSR Galvanic skin 

response 
kilo ohms Max, min, mean, med, and std of electrodermal 

activity 
Fovio  First fixation 

location 
- Location of the first observed area of interest 

after the event onset 
Fovio  First fixation 

duration 
second Duration of the first observed area of interest 

after the event onset 
Fovio  Fixation rate count Number of fixations on areas of interests 
Fovio  Fixation change rate count Number of changes in fixation location 
Fovio  Eyes-off-road second Duration of off-road glances 
Fovio  Eyes-on-road second Duration of on-road glances 
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After the features were generated, they were centered and scaled and feature reduction was 
performed to remove features with near-zero variance and highly correlated data (features with an 
absolute Pearson correlation greater than 0.85). To remove the near-zero variance features, two 
metrics of the percent of unique values (i.e., the number of unique values relative to the total 
number of samples less than a threshold) and the frequency ratio (i.e., the ratio of the frequency of 
the most common value to the frequency of the second most common value greater than a 
threshold) were considered. Following the prior work in the driving performance context, the 
unique value and the frequency ratio thresholds were set to 10 and 95/5, respectively [18]. Feature 
removal based on highly correlated features was conducted by analyzing the mean absolute 
correlation of each highly correlated pair and then removing the feature with the largest mean 
absolute correlation. This step helped to avoid multicollinearity, which makes the interpretation of 
the features imprecise and leads to an unreliable prediction. Lastly, the data were up-sampled. 
These steps were guided by the work in [18]. The feature reduction resulted in a total of 42 features 
in each window size.  

Algorithm Training and Evaluation 
Three machine learning algorithms—decision tree, random forest, and SVM with a radial basis 
kernel—were trained for each of the window size datasets. The training process consisted of a 
five-fold grouped cross validation process. The data were partitioned at the driver level (to avoid 
a driver’s dataset being included in both training and testing). Following data partitioning, the data 
were up-sampled to create a training set with an equal amount of error and no error instances. The 
trained algorithms were assessed by their area under the receiver operating characteristic (ROC) 
curve (AUC) across the five folds [19], where a higher value of AUC indicates a better 
performance. The algorithms’ AUC differences were statistically evaluated using a bootstrap test 
(n = 2000) for ROC curves with a threshold of p < .05. In addition to the analysis of algorithm 
performance, a feature importance analysis using permutation-based importance measure was 
performed for the algorithm with the best predictive performance to provide additional insights 
into the drivers’ behavioral patterns. The feature importance measure was computed by the mean 
decrease in accuracy. 

Results and Discussion 
Figure 6 shows the algorithm AUC categorized by the window size and machine learning 
algorithm (decision tree, random forest, SVM with a radial basis kernel), respectively. The black 
error bars indicate the 95% confidence intervals. The dashed line in Figure 6 shows random 
guessing performance. The 3 s time window for the random forest algorithm showed the best 
performance among the other algorithms and the time windows, where a significant difference was 
also found in AUC between the random forest with a 3 s time window and random guessing (p = 
.01). Figure 6 shows that the random forest algorithm with a 3 s window size had the highest AUC 
of 0.72 (0.56, 0.87) followed by a 20 s window with AUC of 0.67 (0.55, 0.78) and 15 s with AUC 
of 0.65 (0.55, 0.77) for the random forest algorithm.  In addition, pairwise comparison showed that 
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this algorithm outperformed random forest across 5, 30, 60, 120, and 300 s (p < .05). However, 
no significant differences were found between 3 s and 10 s (p= .4), 15 s (p = .26), and 20 s (p = 
.5) windows for the random forest.  

The AUC value measures an algorithm’s ability to identify errors and distinguish errors from no 
error cases. Therefore, the results suggest that these algorithms were capable of predicting post-
takeover errors significantly better than random guessing, although the findings were inconsistent. 
Overall, the results showed that the random forest classifier outperformed decision tree and SVM 
algorithms, as indicated by the AUC values. This finding is consistent with prior studies in the 
automated vehicle driving domain. Du et al. [5] found that random forest as a classifier had the 
highest mean prediction accuracy (83%) compared to the other approaches, including decision tree 
and SVM. In addition, the findings of the current study show that for the random forest model the 
size of the window significantly influenced the prediction performance. This finding aligns with 
that of [5], which recommended 3 s as the optimal timeframe to predict drivers’ takeover 
performance. While a broader range of (physiological) measures, up to 300 s before the takeover, 
were included in this study, no significant improvement was found. Collectively, these findings 
might suggest that as data gets further from the takeover event (i.e., more than 20 s), the conditions 
surrounding an error become less prominent or even non-existent. In other words, the correlations 
between the takeover error and other influential factors might fade, although further investigation 
is needed to explore this speculation.  

In addition to the algorithm analysis, feature importance values were computed to provide 
additional insight into each feature’s relative importance in the post-takeover error prediction. The 
importance values indicate each feature’s mean decrease in accuracy in predicting the error. Thus, 
larger values of decrease in accuracy represent the most important features. Figure 7 shows the 10 
most important features for the random forest model with a 3 s time window. The results showed 
the importance of all three sources of driving, physiological, and glance measures. The figure 
indicates that median speed was the most important feature, although features derived from heart 
rate, glance duration, braking, and steering behavior were also important. This is notable because 
of the potential implications for data collection requirements for future error-prediction 
technology. 
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Figure 6. Algorithm AUC categorized by machine learning approach and window size.The horizontal 

dashed line indicates random guessing performance. 

The analysis of feature importance highlights the necessity of including a combination of driving 
performance, physiological, and glance measures in takeover error prediction. The findings of the 
10 most important features show that driving variables, including median lateral and longitudinal 
speed, median steering wheel angle, minimum TTC, maximum and median brake pedal position, 
and maximum lateral acceleration, play an important role in error detection. These variables 
indicate that if the speed, acceleration, or the changes in the steering wheel angle after the failure 
and prior to the takeover time are higher, this might lead to a more aggressive braking or lane 
change maneuver. Finding minimum TTC to be one of the most important features is 
notable. Minimum TTC, which has been used in several studies, is an established surrogate safety 
metric for longitudinal vehicle control [4] and is defined as the minimum time required to avoid a 
collision [20]. As a crash gets closer, minimum TTC decreases and therefore inverse TTC, which 
is a measure of the kinematic severity of a rear-end event [21], increases. In this sense, inverse 
TTC is associated with the perceived criticality of the situation and has been shown to have a 
strong link with drivers’ behavior, as it may trigger emergency avoidance reactions [22, 23]. Thus, 
a lower minimum TTC might lead to a more abrupt maneuver and thus more errors. It is notable 
that these measures are more granular than the environmental parameters (e.g., traffic density) 
included in prior work [5, 7, 8]. Perhaps the most relevant feature to the findings of this study, in 
particular to the minimum TTC, is the takeover time budget (i.e., TTC at the time of the failure 
[4]), that was found in [5] as one of the important features in takeover performance prediction. 
Prior studies have shown that a shorter takeover time budget is associated with a shorter minimum 
TTC [24]. Thus, our finding is aligned with the takeover time budget found in [5].  
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With regards to the physiological indices, heart rate was found to be the most important feature. 
This result aligns with [5], which also identified heart rate-based measures as important. Duration 
of on-road glances and first fixation duration 3 s prior to the takeover were the most important 
glance features. This finding might be associated with the visual readiness component of a takeover 
process, in which the driver has to redirect gaze to the forward roadway.  

 
Figure 7. Feature importance values. Med: median; Max: maximum; HR: heart rate; Lat: lateral; SWA: 

steering wheel angle; TTC: time to collision. 

In addition to the previous analysis, to investigate the effects of sampling rate on algorithm 
performance, a standardized data process was leveraged. Figure 8 shows the results of 1, 5, and 10 
Hz sampling rates for three window sizes of 3, 20, and 30 s for the random forest algorithm, which 
performed the best across all the algorithms. The results show that down-sampling below 10 Hz 
decreased the performance regardless of window size. The findings suggest a need to further 
investigate sampling rates above 10 Hz to identify if higher sampling rates will improve 
performance.  
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Figure 8. Sampling rate comparison for the random forest algorithm across three window sizes of 3, 20, and 

30 s 

Limitations and Future Work 
Although the analysis provides useful insights with regards to the data implementation and driver 
error prediction, it is limited in some respects. First, the number of observations in this study was 
relatively small, which limits the use of more complicated algorithms. Moreover, the collected 
data were from a driving simulator, which provides relative validity and might not reflect real-
world situations. Future work should examine model sensitivity to greater number of variables and 
data types, investigate whether the validation study results can be extrapolated to a larger pool of 
drivers, and validate the study in on-road real-world automated driving conditions.  

Conclusions and Recommendations 
The goal of the current project was to investigate what physiological, driving performance, and 
glance measures before a takeover can capture driver error during an ADS takeover process. In 
addition, the study focused on detecting an effective range of data for implementing the model 
predictions. We analyzed a combination of physiological, driving performance, and glance data 
from a driving simulator experiment during partially automated vehicle driving where the takeover 
scenario consisted of a lead vehicle unexpectedly braking due to approaching a construction site. 
A set of features were generated and three machine learning algorithms—SVM with a radial basis 
kernel, decision tree, and random forest—were applied to the generated features. We found the 
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random forest with AUC of 0.72 as the best classifier to predict the driver error on the 3 s time 
window before the takeover time. In addition, the results highlighted the importance of driving 
performance measures, including speed, brake pedal position, TTC, acceleration and steering 
wheel angle; physiological measures, including heart rate; and glance measures, including the 
duration of on-road glances and first fixation duration for predicting driver errors after an ADS 
failure. The findings provide useful insights for data collection requirements and their implication 
in designing driver error prediction technologies. In particular, the results have implications in 
developing algorithms for driver error detection and mitigation. The findings suggest that 3 s prior 
to the takeover with at least 10 Hz data is required to predict drivers’ takeover error. Within this 
range, driving performance, physiological measures, and glance measures need to be collected. 
Given these findings, consideration might be given to pursuing additional research that could lead 
to the development of advanced in-vehicle monitoring systems that proactively monitor the 
driver’s state and issue a warning if an abnormality in the driver’s state is detected. Providing 
dynamic feedback to the driver could potentially mitigate the driver takeover error associated with 
abnormal driver states. 

Additional Products 
The Education and Workforce Development (EWD) and Technology Transfer (T2) products 
created as part of this project can be downloaded from the project page on the Safe-D website. The 
final project dataset is located on the Safe-D Dataverse. 

Education and Workforce Development Products 
The project financially supported one Ph.D. student, Hananeh Alambeigi. One undergraduate 
student, Matthew Buttry, worked on the project as part of a for-credit research course in the Texas 
A&M Department of Industrial and Systems Engineering and assisted with data preprocessing. 

Technology Transfer Products 
This project has produced one conference paper and one journal article to date. The conference 
paper will be presented at the 101st Annual Meeting of the Transportation Research Board [25] 
and the journal article has been submitted to the Transportation Research Record. In addition, one 
journal article describing the characteristics of available data sources and variables that can be 
used in model construction of driver behaviors is planned. We also presented the findings of the 
project to the National Highway Traffic Safety Administration. 

Data Products  
The project’s used a dataset from a prior SAFE-D project, 03-036. A complete description of the 
dataset can be found in [12]. 

 

https://safed.vtti.vt.edu/projects/identifying-deviations-from-normal-driving-behavior/
https://dataverse.vtti.vt.edu/dataverse/safed
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