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Abstract 
Emerging connected vehicle and Automated Driving Systems (ADS), widely available 
advanced in-vehicle telematics data collection and transmitting systems, as well as 
smartphone apps produce gigantic amount of high-frequency, high-resolution driving data. 
This telematics data provides comprehensive information on driving style, driving 
environment, road condition, and vehicle conditions. High frequency telematics data has 
been used in several safety areas such as insurance pricing, teenage driving risk 
evaluation, and fleet safety management. This report study advances traffic safety 
analysis in the follow aspects: 1) characterize high-frequency kinematic signatures 
for safety critical events compared to normal operations; and 2) develop models to 
distinguish and predict crashes from normal driving scenarios based on high frequency 
data. Two deep learning models were developed. The first one combines the strength of 
convolutional neural network (CNN), gated recurrent unit (GRU) network and extreme 
gradient boosting (XGBoost). The second approach is based on a novel variational 
inference for extremes (VIE) to address the rarity of crashes. The models proposed in this 
project can benefit a variety of traffic research and applications including 
connected vehicles and ADS real-time safety monitoring, naturalistic driving study (NDS) 
data analysis, hail-driving driver safety prediction, as well as fleet and driver safety 
management programs.  
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Introduction and Background 
Emerging transportation technologies, such as connected vehicles (CVs) and automated driving 
systems (ADS), as well as widely available advanced in-vehicle telematics data collection systems, 
produce massive amount of high-frequency, high-resolution driving data. For example, Tesla 
collects a large amount of data on vehicle operation, system status, kinematics, and service history. 
The OnStar® system by General Motors also includes sensors for an automatic crash response. At 
a much larger scale, modern smartphones are typically equipped with inertial measurement units 
(IMUs), which can support apps that also measure vehicle kinematics. Such ubiquitous, high-
resolution kinematic driving data provides a unique opportunity for driving risk assessment, crash 
prediction, and safety countermeasure development.      

Crashes have been a gold standard in crash risk evaluation. Although the overall number of crashes 
is large, around 35,000 per year in the US, crashes are rare events for an individual driver. On 
average, a driver would experience a fatal crash every 5,000 years and one police-reportable crash 
every 30 years. The rarity of crashes is especially challenging for continuous driving data as 
crashes typically only last a few seconds, which is extremely short compared to normal driving. 
For example, there are only around 2,000 crashes from the Second Strategic Highway Research 
Plan (SHRP 2) Naturalistic Driving Study (NDS) with more than one million hours of continuous 
driving data [1].  

Although occurring at a shallow frequency, rare events can have far-reaching impacts on society 
and new technology. For example, fatal crashes are rarely observed for ADS, but even a few 
fatalities could profoundly reduce public confidence in the new technology and impede its 
development. Identifying, assessing, and predicting rare events and determining the underlying 
risk factors can benefit a broad range of applications, such as fraud detection, traffic safety 
evaluation, and other rare event scenarios. Highly efficient, scalable models are required to identify 
crashes from the vast amount of normal driving data.  

Kinematic driving data, such as speed, three-dimensional acceleration data and yaw rate, reflect 
critical characteristics of driving behavior and the driving environment. High-frequency, high-
resolution telematics data provide crucial information on both long-term driver behavior as well 
as instantaneous driving conditions. Telematics driving data have been used for individual driver 
risk evaluation, teenage driving behavior intervention, use-based insurance pricing, and 
identifying safety-critical events (SCEs) from NDS [2].  

One of the most significant developments in the travel service provider sector in the last decade is 
the surge of ride-hailing services such as Uber and Lyft [3]. Ride-hailing services provide a novel 
alternative travel mode by connecting travelers and ride-hailing drivers via smartphone apps. 
Leveraging the rapid development in wireless and smartphone technology, the ride-hailing 
platform can effectively match the travel demand and supply via sophisticated computational 
algorithms. The ride-hailing app can conveniently collect kinematic information from sensors on 
smartphones. The constantly connected app with the cloud server allows such telematics 
information to be collected from millions of drivers, which could lead to Big Data analysis 
challenges. The mega-scale telematics data with substantial noise imposes tremendous challenges 
in the data processing and analysis. A distributed cloud data server, extensive parallel computing 
system, and advanced analytics methods are needed to implement a smartphone-based safety 
management system successfully.  
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Telematics information has been used to evaluate and predict crashes at the driver level, for 
example, hard braking and swerving events [35]. The premise is that aggressive or unsafe driving 
behavior could lead to a high number of situations that require an evasive maneuver to prevent 
crashes from happening. Thus, if a driver can drive conservatively and cautiously to avoid such 
hazardous situations, fewer cases will require high g-force maneuvers, defined as a maneuver that 
leads to acceleration or yaw rates higher than a pre-specified threshold value, to avoid crashes. 
Studies have shown that the rate of high g-force events can be used to predict crash risk. For 
example, Simons-Morton et al. [4] showed that high g-force events predict crashes for teenage 
drivers. A previous Safe-D UTC project confirms that kinematic driving signature does affect 
individual crash risk [3]. In addition, the threshold values used to define high g-force events can 
vary depending on the objective of a study [35].  

Modern CVs and ADS are equipped with full suite of sensors and constantly connected to the 
network [3]. The high-definition driving data from these systems open up opportunities for diverse 
applications, including real-time vehicle status monitoring, automated driving algorithms, and 
provide real-time services for drivers. High-frequency kinematics information is essential for such 
applications.  

However, existing research typically only uses simple features, such as maximum deceleration, 
for risk prediction and crash detection. Though proven to be associated with crash risk at the driver 
level, the extreme value-based features ignore a large amount of information from the high-
frequency data. Comprehensive feature extraction can help utilize the rich information collected 
through NDS or CVs. Advanced statistical and machine learning models are required to capture 
the full information from the rich source data, as well as address methodology challenges such as 
the rarity of crash events.  

This study leverages the rich information available through NDS data collected in the last decade 
and state-of-the-art machine learning and artificial intelligence (AI) models to bridge the gap 
between rich data and limitations in application due to relatively simple analytics methods. The 
study’s overall goal is to provide a comprehensive portrait of the telematics characteristics of SCEs 
and apply them to risk prediction and evaluation. The study’s outputs can be used in driving risk 
assessment, event classification, and real-time risk prediction and detection.  

Crashes and SCEs involve impact with other objects or evasive maneuvers, which will be reflected 
in vehicle kinematics, such as excessive deceleration rate. Using such kinematics information to 
predict crashes can lead to instantaneous crash prediction and benefit emergency response, large-
scale NDS processing, and active safety system development. However, the actual driving data are 
typically noisy, and the key signatures are not easy to extract. In addition, the duration of SCEs 
only accounts for an infinitesimal portion of the total driving time. To address these challenges, 
we propose two alternative approaches. The first approach focuses on feature representation of 
high-dimensional, high-frequency kinematics data through deep learning models. The second 
approach focuses on the rarity of crashes.  

 

This project offers two main contributions. First, it proposes a hybrid deep learning approach that 
consists of feature engineering based on convolutional neural network (CNN) and gated recurrent 
unit (GRU), as well as classification based on extreme gradient boosting (XGBoost) to predict 
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SCEs, including crashes and near-crashes (CNCs), from normal braking behavior. A novel time-
series classification approach is used for imbalanced data based on kinematic signatures. Second, 
it formulates a variational representation learning scheme that models disentangled extremes and 
develops a robust, powerful prediction approach that joins the strength of a generalized additive 
model and an isotonic neural net.  

The rest of the report is organized as follows. Section 2 presents the instantaneous crash risk 
prediction using deep learning models; Section 3 introduces the methodology for risk prediction 
using rare event models. Section 4 provides a summary and discussion. Section 5 introduces the 
web tools for application and dissemination.  

Instantaneous Crash Risk Prediction Using Deep 
Learning Models 
 
Substantial research effort has been conducted on identifying crashes in real time, with 
environment-based approaches [5-7] and kinematics signal-based approaches [8-11] being the two 
common alternatives. Environment-based approaches monitor accident-prone areas by predicting 
risks on specific road sections and providing warning when the risk is high. These methods are 
typically constrained to specific locations, and complicated, often site-specific, environmental 
conditions bring challenges in model generalization. The environment-based approaches are less 
informative for in-vehicle monitoring and applications. 

The kinematics signal-based approaches utilize data from the vehicle network or sensors installed 
on vehicles, e.g., data from NDS and CV technology. By learning from the high-frequency 
kinematic data from individual vehicles, traffic crashes can be detected or predicted. This approach 
does not rely on environmental information and is not limited to specific locations.  

Although encouraging results have been reported for crash and non-crash detection and prediction 
[8-10], it is challenging to generalize them to crash, near-crash, normal driving detection [8]. One 
reason is that crashes are not always associated with robust and recognizable features under the 
extreme imbalanced condition, as traffic crashes are rare for individual vehicles. To accurately 
model the key characteristics of crashes, we utilize a weighted categorical cross-entropy loss-
function-based CNN-GRU to enhance representation power for traffic crash identification. This 
data-driven approach can identify key features that were ignored by traditional domain-
knowledge-based feature extraction methods. While the weighted categorical cross-entropy loss-
function can address the class imbalance issue, it could lead to high class-weight risk, i.e., lower 
precision and F1-score to each class [12]. To avoid the high class-weight risk, we adopt an 
XGBoost classifier to predict CNCs based on features extracted by the aforementioned CNN-GRU 
model. Compared with the neural network, the XGBoost has the advantages of processing the 
discrete data as input, tuning the hyperparameter easily, and not depending on a large amount of 
training data [13]. The combination of CNN-GRU and XGBoost led to a powerful crash prediction 
model with high accuracy and computation efficiency. The deep learning approach with weighted 
loss-function extracts critical representative features of driving kinematics, especially of crashes. 
The XGBoost classifier builds an efficient and precise classification model while mitigating the 
class-weight risk in the deep learning model. The structure of the model is illustrated in Figure 1. 
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Figure 1. Illustration. Model architecture for instantaneous crash prediction model. 

 
The algorithm includes three steps:  

• Step 1 is the feature engineering module, which includes three components, a 
convolutional network, pooling layers, and a GRU layer. The convolutional network 
captures local characteristics. The maximum pooling layer integrates adjacent aspects for 
the convolutional layers. The GRU layer captures temporal patterns of the driving data. 
The outputs of the CNN-GRU are the features that will be fed to the classification 
component, which is a fully connected neural network. Due to an imbalance issue, class 
weight is selected for the cross-entropy loss. The model is fitted by the backpropagation 
method. The outputs of the GRU layer represent the key characteristics of driving 
segments and are used for the subsequent classification task.  

• Step 2 trains an XGBoost classifier based on outputs of the feature engineering module 
trained from Step 1. The results show that the classification performance improves 
significantly over the full connected neural network classifier in Step 1. 

• Step 3 builds the final prediction model by integrating the CNN-GRU feature engineering 
module trained in Step 1 and the XGBoost classifier trained in Step 2. 

 
CNN-GRU Models for Feature Engineering 
The feature extraction for the high-frequency driving kinematic data uses the CNN-GRU approach. 
CNN’s ability to characterize spatial information and GRU’s efficiency in capturing the temporal 
structure of local features extracted by CNNs has been extensively demonstrated in the literature 
[14, 15]. In combination, the CNN-GRU model can extract represented patterns while building 
prediction models for high-frequency and noisy data [15, 16]. The first set of layers is the primary 
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convolution layers, which are used to identify the local information, such as abrupt changes in 
driving. The output of the CNN is input into a GRU structure to refine the inherited dependency 
structure for time-series kinematic information. Figure 2 shows the overall structure of the feature 
extraction approach. The input results from data processing, a tensor shaped (N, 51, 3). For feature 
extraction, two 1-dimension convolutional layers are used to catch the relationship between each 
kernel. A maximum pooling follows the convolutional layers to catch extreme driving behavior 
changes. The output of this layer is (N, 18, 96). Several GRU layers follow in processing the time-
series dependence. The output of GRU (N, 96) is the features, which are fed into the fully 
connected layers for classification. The fully connected layers are comprised of four dense layers. 
Batch normalization and dropout methods follow each dense layer to reduce random noise and 
improve the model’s generalization. The last layer is a SoftMax classifier to determine whether 
the input data are crash, near-crash, or normal driving segments. From grid search, the class weight 
of crashes, near-crashes, and baselines is set as 30: 7: 1. 

 
Figure 2. Illustration. Deep learning models for feature engineering. 

 
The feature extraction module described above is trained through a supervised learning process. 
The outputs are fed to four fully connected neural network layers. A SoftMax classifier is utilized 
to link with labels (C, CN, and ND).  

To address the severe imbalance issue, i.e., small number of crashes compared to normal driving 
segments, we used the weighted cross-entropy loss function with higher class weights for CNCs. 
Higher weights improve the model’s ability to capture the characteristics of these 
underrepresented classes. One drawback of the weighted loss function is the associated class-
weighted risk reflected in the low precision and F1-scores [12], which is addressed in Step 2. 
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XGBoost for Prediction 
The output features of the CNN-GRU are used for an XGBoost classifier, a supervised machine 
learning system based on a tree boosting approach [17]. The XGBoost follows the Gradient 
Boosting framework and has been shown to provide better performance and efficiency than other 
boosting methods [17]. One of the most important parts of the XGBoost is a regularization term 
that avoids overfitting. In the proposed model, the XGBoost replaces the fully connected layers 
in Step 1 to alleviate the class-weighted risk [12] and preserve high precision and F1-scores. 
 

 
Figure 3. Diagram. XGBoost model for instantaneous crash prediction model. 

Figure 3 illustrates the XGBoost module in the overall model structure, as well as its key 
parameters. The same training data are fed into the trained deep learning model. The output after 
the GRU layer is the features, a matrix with shape (N, 96). This matrix is fed into an XGBoost 
classifier; that is, the booster as gradient boosted trees at a 0.005 learning rate; the minimum child 
weight is 1.7; the maximum depth is 12; the 𝐿𝐿1 regularization parameter (𝛾𝛾) is 0.1; the subsample 
ratio is 0.7; the subsample ratio of columns when constructing each tree is 0.7; the 𝐿𝐿2 
regularization on leaf weights (𝜆𝜆) is 0.5; and the objective function is SoftMax. The outputs of the 
XGBoost classifier predict whether the inputted driving segments are crash, near-crash, or normal 
driving segments. 

Application of Deep Learning Crash Detection Models 
The time-series datasets from the SHRP 2 NDS [26] are used to evaluate the proposed deep 
learning crash detection approach. The SHRP 2 NDS database contains more than 1,000,000 hours 
of NDS kinematic time-series data driven by 3,221 drivers over a 5-year period. The dataset 
includes 1,821 crashes and 6,848 near-crashes. Crashes are divided into four severity levels: most 
severe crash (Level 1), police-reportable crash (Level 2), minor crash (Level 3), and low-risk tire 
strike (Level 4).  
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To prepare the data to be suitable for real applications, the following two aspects are considered. 
Firstly, speed is a lurking variable between acceleration and the classification result; that is, it is 
very likely to have a zero speed or substantially lower speed after CNCs. In contrast, if normal 
driving segments are randomly selected, the beginning and ending speed are likely to be 
remarkably similar due to the short segment length. To make the model more suitable for real 
applications, normal driving segments should be selected with similar beginning and ending speeds 
as SCEs. The speed-matching step will ensure the model’s capability to distinguish CNCs from 
normal stopping or slowing maneuvers. For each CNC, we search the entire driving data for the 
same driver to identify matched normal driving segments. More than 2 million matched normal 
driving segments have been identified, and the application used 60,000 randomly selected matched 
normal driving segments.  

The length of driving segments in the SHRP 2 NDS dataset varies considerably; e.g., some of the 
segments last for less than 10 seconds; some last for more than 30 seconds. In comparison, the 
driving segments containing a CNC are 15.4 seconds on average. To avoid the nuanced 
information not related to the CNC, proper truncation and alignment to the segments should be 
applied to capture the most volatile parts.  

The turbulence selection module is needed to capture the part with maximum volatility, which 
corresponds to the time when the CNC occurred. Figure 4 shows the process of turbulence 
selection. The first step calculates a longitudinal and lateral acceleration resultant, horizontal 
acceleration. The second step sets a moving standard deviation of the horizontal acceleration and 
assumes the maximum moving standard deviation is the center of turbulence. Each segment 
consists of 25 time-series data points (2.5 seconds) before the center of turbulence and 25 data 
points after. The duration of selected turbulence is 5.1 seconds, mostly representing the volatility 
after comparing other durations (10.1 and 2.1 seconds).  

 
Figure 4. Graphs. Turbulence selection. 
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The triaxial acceleration (the horizontal direction of the vehicle is positive x) is used as the input 
to determine whether a specific NDS time-series signal is a crash, near-crash, or normal driving 
behavior. For N events, the resulting input dataset is a tensor with shape (N, 51, 3) and is the input 
for the model.  

Feature Representation 
The performance of the model depends heavily on the research representation, i.e., the outputs of 
the CNN-GRU model, of the kinematics of driving segments. A good representation should 
provide clear separation among different types of events. We compared our CNN-GRU automatic 
feature extraction method with three state-of-the-art domain-knowledge-based feature extraction 
methods in processing kinematics data, including Taccari et al. [8], Winlaw et al. [9], and Osman 
et al.[10]. 

For comparing the representation power of different feature extraction methods, we utilized t-
Distributed Stochastic Neighbor Embedding (t-SNE) [27]. The t-SNE method reduces the original 
multidimensional data to a lower dimension to visualize the representation power of different 
feature extraction methods. The t-SNE of features extracted by the CNN-GRU method is shown 
in Figure 5(a), and the t-SNE of features extracted by the methods in Taccari et al. [8], Winlaw et 
al. [9], and Osman et al. [10] are shown in Figure 5(b),(c), and (d). Different types of events are 
represented by different colors. CNCs do differ from normal driving behaviors, as shown in each 
figure. However, many crashes mix up with near-crashes in the benchmarks (Figure 5(b),(c), and 
(d)), while the CNN-GRU feature extraction method can distinguish most of them (Figure. 5(a)), 
indicating a superior performance of the proposed model.  

 

 
Figure 5. Graphs. t-SNE visualization for features. 
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Performance Classification 
To quantitatively evaluate the model, we use four standard evaluation metrics: accuracy of the 
model, precision of crashes, recall of crashes, and the F1-score of crashes. 

Table 1. Confusion Matrix for 3-class Problem for Crash Detection Model 

 Predicted: Crash Predicted: Near-crash Predicted: Non-crash 
Actual: Crash 655 108 156 
Actual: Near-crash 57 3,069 285 
Actual: Non-crash 61 177 29,765 

Table 1 shows the confusion matrix of the prediction result on the test set, which accounts for 
about half of the data, containing 773 crashes, 3,354 near-crashes, and 30,206 normal driving 
epochs. The global accuracy is 97.54%, which means the overwhelming majority of the prediction 
of events is correct. The recall of crash and near-crash is 71.27% and 89.97% respectively, which 
indicates that the model can detect the majority of the SCEs.  

The precision of crashes and near-crashes is 84.73% and 91.50% respectively, which suggests 
strong power to distinguish crashes, near-crashes, and normal driving behavior. These evaluation 
metrics show that even if under a highly imbalanced sample, the model achieves high performance 
in crash identification.  

We compared the model performance with various benchmarks, and the results are shown in Table 
2. There is no major difference in the accuracy of the overall model in each method because normal 
driving behaviors constitute the vast majority of the data. However, compared with the benchmark 
models, the recall of crashes in the proposed method increases by 5.80%, 15.77%, 40.85%, and 
8.57%, respectively, while the F1-score of crashes in the proposed method increases by 5.97%, 
7.33%, 23.32%, and 24.01%, respectively, which suggests that the proposed model provides a 
better overall performance compared to the benchmark models.  

Table 2. Performance Classification Comparison for Crashes 

Method Feature 
Extraction Classification Accuracy Recall Precision F1-score 

Proposed 
method CNN-GRU XGBoost 97.54% 71.27% 84.73% 77.42% 

Arvin et al. 
[11] CNN-LSTM DNN 97.27% 67.36% 81.13% 73.60% 

Taccari et al. 
[8] 

Statistical 
Features 

Random 
Forest 97.37% 61.56% 87.08% 72.13% 

Winlaw et al. 
[9] 

Statistic 
Features 

Logistic 
Regression 96.61% 50.96% 81.74% 62.78% 

Osman et al. 
[10] 

Statistic 
Features Adaboost 96.08% 65.95% 59.27% 62.43% 

The severity of crashes varies, and the kinematic signatures of different types of crashes can vary 
substantially. We examined the model performance by crash severity. As mentioned previously, 
the SHRP 2 NDS data separates crashes into four groups: most severe, police-reportable, minor, 
and low-risk tire strike. There are altogether 1,821 crashes, including 101 most severe crashes, 182 
police-reportable crashes, 769 minor crashes, and 769 low-risk tire strikes. Table 3 lists the recall 
rate by crash severity. The recall for most severe crashes is 98.02%, while the recall for minor 
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crashes and low-risk tire strikes is 72.43% and 78.28%, respectively, suggesting considerably 
better performance for the most severe crashes.  

Table 3. Recall by crash severity 

Severity Total crashes Predicted crashes Recall rate 
Most severe 101 99 98.02% 

Police-reportable 182 162 89.01% 
Minor crashes 769 557 72.43% 

Low-risk tire strike 769 602 78.28% 
 
In summary, the proposed CNN-GRN-XGBoost deep learning approach achieves a good 
prediction power in distinguishing CNCs from normal driving segments. The model outperforms 
benchmark models in precision, recall, and F1-score overall. The model can recall most of the 
severe crashes with 98.02% recall rate.  

Rare Event Prediction Models 
 
Severe event class imbalance poses a significant challenge to traffic collision prediction in traffic 
safety [18] and autonomous vehicle testing [19]. Characterized by severe event class imbalance 
and the lack of minority labels, rare event modeling falls outside the comfort zone of standard 
statistical approaches [20]. Without explicit statistical adjustments, the imbalance drives a learning 
agent to bias towards the majority class; at the same time, the absence of adequate minority 
examples causes unprotected models to capture spurious features that do not generalize well.  

The existing solutions mainly focus on differential sampling or sample reweighting approaches to 
alleviate the imbalance issue. However, these statistical sample adjustments, such as resampling 
and reweighting, do not handle inputs outside the norm well. Resampling typically involves either 
over-sampling or under-sampling [21]. The former is often subjected to the loss of estimation 
efficiency [20], and the latter is often associated with compromised generalization [22]. The 
reweighting schemes are often criticized for their numerical instability [23]. Recent works by Cao 
et al. [22] and Lin et al. [24] modify the hinge loss and entropy loss to capitalize the minority class 
prediction [23], mentioning that resampling and reweighting may cause overfitting issues due to 
training bias and label noise, which leads to inferior performance in generalization or fit on unseen 
datasets.  

To address the rare event issue, we take a novel alternative view on promoting generalization. Our 
proposal is formulated under the generative Bayesian framework, positing that predictors are the 
stochastic proxies of latent causes, whose exceedance leads to extreme events. Our solution adopts 
a generalized Pareto distribution as prior and is modeled with variational inference to capture the 
extended tail accurately. We devised a disentangled additive monotonic neural architecture to 
predict the risk by the assertion that exceedance leads to extremes. Our model acknowledges 
representation uncertainties while at the same time embracing improved interpretability, 
generalization, and robustness. The proposed model was applied to the SHRP 2 NDS for predicting 
crashes, near-crashes, and normal driving segments. 
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Variational Inference of Extremals for Rare Event models 
The key idea of the variation inference of extremals (VIE) is to amortize the difficulty of direct 
prediction of rare events to the representation learning stage. The premise is that extreme latent 
representations lead to extreme events. The approach partitions the representation space into 
normal and extreme regions, where the prevalence of target events in the latter far exceeds those 
in the former. This alleviates the majority bias issue that afflicts conventional schemes, as the event 
distribution is more balanced for the extreme region, which lends better statistical efficiency when 
learning from the predictors. The VIE model is composed of two parts, an encoder and decoder.  

For supervised learning tasks with rare event modeling, the core of the generative Bayesian model 
is to reconstruct the conditional probability of data. Optimizing over the conditional probability is 
challenging because of the computational intractability of the integration, as well as for high 
dimensional predictors. To address this issue, the conditional Variational Auto Encoder based on 
the Multilayer Perceptron (MLP) utilizes variational inference to transform the intractable 
integration in equation into optimization over the evidence lower bound (ELBO). Since we are 
primarily interested in the modeling of events instead of reconstructing input features, the 
following conditional ELBO is the main training objective function  

𝑝𝑝θ(𝑦𝑦 ∣∣ 𝑥𝑥 ) ≥ 𝐸𝐸𝑞𝑞ϕ(𝑧𝑧∣𝑥𝑥 )[log𝑝𝑝θ (𝑦𝑦 ∣∣ 𝑧𝑧 )] − 𝒟𝒟KL�𝑞𝑞ϕ( 𝑧𝑧 ∣ 𝑥𝑥 ) || 𝑝𝑝θEP(𝑧𝑧)� ≜ ℓVIE(θ,ϕ), 
 

As there is no closed form solution for the Kullback-Leibler (KL) divergence, the Monte Carlo 
method is used to estimate the empirical KL divergence with:  

𝒟𝒟KL�𝑞𝑞ϕ( 𝑧𝑧 ∣ 𝑥𝑥 ) || 𝑝𝑝θ(𝑧𝑧)� = 𝐸𝐸𝑞𝑞ϕ(𝑧𝑧∣𝑥𝑥 ) �log 𝑞𝑞𝜙𝜙(𝒛𝒛∣𝒙𝒙 )

𝑝𝑝𝜃𝜃(𝒛𝒛) � ≈ 1
𝐿𝐿
∑ log �

𝑞𝑞𝜙𝜙�𝑧𝑧(𝑙𝑙)
∣∣
∣𝒙𝒙 �

𝑝𝑝𝜃𝜃�𝑧𝑧(𝑙𝑙)�
�𝐿𝐿

𝑙𝑙=1 , 

 
For predictions with an input vector x, the marginal likelihood can be approximated by the 
following Monte Carlo estimator: 

𝑝𝑝𝜃𝜃(𝑦𝑦 ∣∣ 𝒙𝒙 ) = ∫ 𝑞𝑞𝜙𝜙( 𝒛𝒛 ∣ 𝒙𝒙 )𝑝𝑝𝜃𝜃(𝑦𝑦 ∣∣ 𝒛𝒛 )𝑑𝑑 𝒛𝒛 = 1
𝐿𝐿
∑ 𝑝𝑝𝜃𝜃� 𝑦𝑦 ∣∣ 𝑧𝑧(𝑙𝑙) �𝐿𝐿
𝑙𝑙=1   where    𝑧𝑧(𝑙𝑙) ∼ 𝑞𝑞𝜙𝜙(𝒛𝒛 ∣ 𝒙𝒙 ), 
 

To enable the modeling of extreme representations, we extend standard variational inference via 
incorporating a generalized Pareto-based prior to accommodate heavy tails. For a scalar latent 
variable z, let 𝜇𝜇 be the cutting point for being “extreme.” We define the extreme prior (EP) as a 
weighted mixture of a generalized Pareto distribution and standard Gaussian distribution to 
guarantee its continuity: 

𝑝𝑝θEP(𝑧𝑧) = 𝑤𝑤
√2π

exp �− 𝑧𝑧2

2
� + ℐ(𝑧𝑧 ≥ μ) × 1−𝑤𝑤

σ
�1 + ξ 𝑧𝑧−μ

σ
�
�−1ξ−1�, 

  
where w is the accumulated mass of the normal prior at the threshold. To induce more flexibility 
into the model, all the parameters in the EP are learnable. The purpose of this prior distribution is 
to insert a heavy-tailed part to represent how those rare events deviate from the bulk. If the tailed 
behavior does not actually lead to “rarity,” the flexibility of the prior will fall back to a standard 
Gaussian distribution. Generalization to multi-dimensional latent components can be achieved by 
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applying the above setup to each individual dimension, although the parameters need not be 
shared.  

Next, to facilitate interpretability and generalization for rare event modeling, it is beneficial to 
impose constraints on the decoder part. In this paper, we combine two prominent techniques: the 
generalized additive model and isotonic regression. Let y come from a Bernoulli distribution and 
we focus on modelling the conditional event probability. We model this under the following 
generalized additive models: 

ψθ(𝑦𝑦 ∣∣ 𝑧𝑧 ) = log � 𝑝𝑝
1−𝑝𝑝

� = ∑ 𝑓𝑓𝑗𝑗�𝑧𝑧𝑗𝑗�𝑖𝑖 ,   s.t.    𝑓𝑓𝑗𝑗�𝑧𝑧𝑗𝑗� = α𝑗𝑗 + β𝑗𝑗 ∫ exp �ℎ𝑗𝑗(𝑡𝑡;𝜃𝜃)�𝑑𝑑𝑡𝑡𝑧𝑧𝑗𝑗
𝑠𝑠0

, 
 

The generalized additive model uses the linear combination of functions for every latent variable 
to model the generation of y. Each function 𝑓𝑓𝑗𝑗 takes input from the j-th dimension of the latent, 
and this additive decomposition encourages disentangled representation. It is easy to see that all 𝑓𝑓𝑗𝑗 
are monotonic, with the direction dictated by the sign of 𝛽𝛽𝑗𝑗. We model ℎ𝑗𝑗 (𝑡𝑡:𝜃𝜃) above using deep 
neural networks, and compute 𝑓𝑓𝑗𝑗�𝑧𝑧𝑗𝑗� via Clenshaw-Curtis numerical integration. 

To sum up, the proposed VIE framework brings together the strength of variational inference, 
extreme value theory, and isotonic regression to advance rare event modeling. The model provides 
enhanced representation of rare events and improve the capability to detect rare events. The overall 
VIE model structure is shown in Figure 6. 

 
Figure 6. Diagram. VIE for rare event modeling model structure. 

 

Application of VIE Models  
The VIE model was also applied to the SHRP 2 NDS. To fully capture discriminative 
characteristics for normal driving segments and traffic crashes, we employed seven commonly 
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used features in transportation safety research for x-, y-, and z-dimensional acceleration separately, 
which led to a total of 21 features to represent the acceleration dynamics within every driving 
segment. The utilized features for prediction models include:  

• SD: standard deviation of the acceleration, representing the driving variability [28];  
• RV: realized volatility [29] of the acceleration;  
• MAX: maximum of the acceleration, typically referring to hard braking or acceleration in 

driving; known as the elevated gravitational-force event in Morton et al. [4];  
• KT for kurtosis of the acceleration, SK for skewness, AC for autocorrelation, and UQ for 

75-percent quantile. For a more detailed discussion, please refer to Shi et al. [30]. 
 
For comparison, the following baseline deep learning approaches are used: (1) Sampling MLP: a 
resampling scheme based on multi-layer perceptron over-samples from the less-represented class 
[21]; (2) LDAM-HG: a reweighting-based loss that adapts the hinge loss accounting for the 
imbalance[22]; (3) MAML: a few-shot learning scheme [31]; and (4) Deep-SVDD: a one-class 
classification-based anomaly detection approach [32]. In addition, we also considered several 
widely available statistical approaches: (5) GBDT: a tree-based classifier [33] where we set the 
maximum depth to be 10, preventing it from over-fitting; and  (6) Elastic Net: logistic regression 
that alters the class weight to adapt to an imbalanced ratio.  

A 5/5 split was adopted for training and testing, as well as a fixed training-validation split ratio of 
8/2 for all state-of-the-art benchmarks’ hyperparameter selections. As indicated by existing 
empirical studies [34-36], analytical modeling is sensitive to kinematic noise (such as signal 
connection issues or different driving environments), where model performance can largely 
deteriorate as noise increases [28]. To develop a robust model, we created an artificially noisy 
setting where Gaussian noise N (0; 2) was injected into the input features. A model trained using 
this added-noise data will be more resistant to noise.  

To validate the effectiveness of the proposed VIE framework, we compared the VIE against 
popular baselines on various real-world applications. The applications include identifying traffic 
crashes based on kinematic IMU acceleration, identifying fraudulent credit card transactions, and 
news detection. We conducted the experiments via Pytorch on an NVIDIA V100 GPU cluster. To 
ensure fair comparisons across different models, we set bottleneck dimensions to 2; i.e., the 
number of latent, in all experiments, with 1000*1000*2 fully connected layers for encoder and 
1000*1000*2 for the unconstrained monotonic neural network (UMNN)in recognizing the 
decoder part. We used Leaky ReLU for the activation function throughout. 

The interpretations for the analytical models were also evaluated. Figure 7 shows the learned 
representations for different models, where the VIE model shows a remarkable distribution tail 
and a clear discriminative boundary between “normality” and “events.” Elastic Net logistic 
regression and logistic generalized additive models have no latent variables to consider, so we 
used the linear principle component analysis (PCA) to approximate its two-dimensional latent plot. 
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Figure 7. Graphs. SHRP 2 learned representations in testing set for different models –  

red represents crash events and blue represents non-crash events. 

 
For fair and comprehensive comparison among different models, we used several classification 
criteria to evaluate model performance. As reliability is essential for decision making, we used 
negative log likelihood (NLL for short) and expected calibration error (ECE) to measure 
uncertainty generalization under an imbalanced testing setup, which describes the reliability of 
decision making based on the established predictive models. The ECE evaluates the relationship 
between model predicted probabilities and empirical accuracy. Another group of evaluation 
metrics measured the discriminative power. We adopted the area under the curve of the receiver 
operating characteristic curve (ROC-AUC; ROC for short) and precision recall AUC (PR-AUC 
for short). We also used the F1-score to evaluate the models’ precision and recall performance. 
The cutoff points for decision are discussed in each experiment. 

The model performance metrics are presented in Table 4 and Table 5. The proposed VIE 
outperforms alternative benchmark models based on the classification evaluation metrics on all 
metrics. Importantly, the VIE shows robust discriminant power under noisy testing conditions. 

Table 4. Traffic Crash Identification Model Comparison – Original 

Method NLL ECE ROC PR-AUC F1-Score 
GBDT 1.98 × 10−2 1.45 × 10−3 0.91 0.80 0.80 
MAML 1.26 × 10−2 1.09 × 10−2 0.94 0.86 0.85 

ELASTIC NET 1.98 × 10−2 4.02 × 10−3 0.99 0.83 0.67 
LDAM-HG 1.74 × 10−1 1.25 × 10−2 0.92 0.83 0.86 

DEEP-SVDD 1.82 × 10−2 3.00 × 10−3 0.93 0.43 0.08 
SAMPLING MLP 2.49 × 10−2 6.65 × 10−1 0.91 0.90 0.86 

VIE 3.44 × 10−3 1.30 × 10−3 𝟎𝟎.𝟗𝟗𝟗𝟗 𝟎𝟎.𝟗𝟗𝟗𝟗 𝟎𝟎.𝟖𝟖𝟗𝟗 
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Table 5. Traffic Crash Identification Model Comparison – Noise-infused Data 

Method NLL ECE ROC PR-AUC F1-Score 
GBDT 4.30 × 10−1 3.65 × 10−2 0.88 0.43 0.13 
MAML 5.05 × 10−2 1.28 × 10−1 0.92 0.50 0.57 

ELASTIC NET 5.93 × 10−1 1.04 × 10−1 0.91 0.56 0.04 
LDAM-HG 3.50 × 10−2 4.72 × 10−3 0.89 0.54 0.40 

DEEP-SVDD 1.95 × 10−2 1.62 × 10−3 0.81 0.24 0.08 
SAMPLING MLP 7.54 × 10−2 5.27 × 10−1 0.78 0.56 0.56 

VIE 3.20 × 10−2 2.23 × 10−3 𝟎𝟎.𝟗𝟗𝟗𝟗 𝟎𝟎.𝟕𝟕𝟕𝟕 𝟎𝟎.𝟔𝟔𝟗𝟗 
 

Figure 8 plots the marginal relationship between the latent variable and associated marginal risk. 
We can see that Latent Variable 1 contributes significantly and positively to event risk prediction. 
This indicates that the major components of Latent Variable 1 are 𝑥𝑥𝑅𝑅𝑅𝑅, 𝑥𝑥𝐾𝐾𝐾𝐾, 𝑦𝑦𝑅𝑅𝑅𝑅, 𝑧𝑧𝑀𝑀𝑀𝑀𝑀𝑀, 𝑥𝑥𝑈𝑈𝑈𝑈, and 
𝑧𝑧𝐾𝐾𝐾𝐾, where (x, y, z) represents the three-dimensional acceleration. This finding suggests that 𝑥𝑥𝑅𝑅𝑅𝑅, 
𝑥𝑥𝐾𝐾𝐾𝐾, 𝑦𝑦𝑅𝑅𝑅𝑅, 𝑧𝑧𝑀𝑀𝑀𝑀𝑀𝑀, 𝑥𝑥𝑈𝑈𝑈𝑈, and 𝑧𝑧𝐾𝐾𝐾𝐾 contribute the most for distinguishing between traffic crashes and 
normal driving segments based on IMU acceleration information. This finding is consistent with 
various empirical results in the traffic safety research domain [4, 10, 30]. 

 
Figure 8. Graphs. SHRP 2 marginal relationship of latent variable and risk – red represents crash. 

 

Summary and Discussions 
 
This project focuses on instantaneous crash risk prediction for a short time window with high-
frequency, high-resolution kinematic driving data. The instantaneous risk will provide critical 
information for current and future transportation systems for the development of safety 
countermeasures. This is especially useful when CVs, ADS, and smartphones make kinematics 
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data almost universally available. There are, however, numerous challenges in utilizing such data 
for risk prediction and assessment, among them the Big Data, large noise, and rarity of crashes. 
There is an imperative need for innovative methodologies to meet these challenges.  

This project developed two approaches based on state-of-the-art deep learning and statistical 
methods. The first approach uses a combination of multiple deep learning methods, including CNN, 
GRU, and XGBoost, to fit the unique demand of driving risk prediction. The CNN-GRU 
component concerns how to extract distinct features that represent the key characteristics of a 
driving segment, which is essential for predicting crashes from normal driving. This powerful 
combination can incorporate the crucial property of high-frequency kinematic driving data, i.e., 
local and time series correlation. To address the rarity of crashes, we adopted a weighted cross-
entropy loss function for feature engineering in combination with an XGBoost classifier to relieve 
the class-weighted risk. This sophisticated modeling framework is tailored for complex, noisy 
driving data while maintaining high computational efficiency.  

We applied the proposed deep learning risk prediction model to the SHRP 2 NDS, the largest 
naturalistic driving study to date with more than one million hours of continuous driving data. The 
results showed a clear separation of crashes and normal driving segments (with matched initial 
and ending speed) in the latent representation space. Quantitative metrics show promising results 
with high precision, recall and overall F1-score. For both latent representation and predictive 
assessment metrics, the proposed model outperforms the popular benchmark models.  

The second approach starts from the rarity of crashes. We propose a VIE approach for rare event 
prediction. The VIE model induces uncertainty to representation learning through a generalized 
Pareto distribution, which can accommodate rare events through its long distribution tails. Another 
common issue with rare event models is overfitting due to the small number of events. We address 
this issue through generalized additive monotonicity, which leads to a more robust model for rare 
events. We provide theoretical properties on the efficacy of the proposed model. Extensive 
empirical experiments were conducted to confirm the model performance over various application 
scenarios with promising results, especially with respect to model generalization and 
interpretability.  

The VIE rare event model was also applied to the SHRP 2 NDS data. The proposed model 
universally outperforms several state-of-the-art benchmark models. The approach proposed in this 
paper can positively impact the research field and society in several regards. The VIE framework 
dramatically improves the generalizability and interpretability of rare event modeling, two 
challenging issues associated with limited events. The application of VIE could accurately depict 
the risk associated with rare events and allow the general public and decision-makers to set realistic 
expectations for rare events. Identifying adverse events at an early stage may allow mitigation of 
the damage and loss associated with the events. The features identified through the model are 
crucial for researchers and practitioners to identify the causes of rare events and take proper 
countermeasures to prevent and reduce the occurrence of future adverse events. 

The two novel modeling frameworks proposed in this study allow prediction of instantaneous crash 
risk based on high-frequency kinematic driving data, which are widely available through 
smartphones, CV technology, and ADS. There is a wide range of applications in safety 
countermeasures, emergency response, naturalistic driving data processing, and insurance.  
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Education and Workforce Development and 
Technology Transfer 
Education and Workforce Development and Technology Transfer is an essential part of the project. 
For the education and workforce development, we supported two Ph.D. students, and the research 
outputs and methodology were presented in graduate- and undergraduate-level courses. For 
technology transfer and dissemination, we completed two manuscripts for submission to peer-
reviewed journals for publication. We presented the results of the project at a public webinar. A 
webtool was developed for dissemination and technology transfer.  

The products created as part of this project have been or will be located on the project page of the 
Safe-D website.1 The available datasets resulting from the final project have been or will be located 
in the Safe-D Collection of the VTTI Dataverse. 

Education and Workforce Development Products 
• The project supported two Ph.D. students, Liang Shi and Chen Qian.  

• The project contents have been used in multiple courses:  

o Stat Epi. & Obs. Studies (STAT 5374), Spring 2020 

o Applied Multivariate Analysis (STAT5504G/STAT4504), Spring 2021 

• The project was presented in a webinar, “Driving Risk Assessment Based on High-
frequency, High-resolution Telematics Data,” on August 26, 2021.  

Technology Transfer Products 
We have drafted two papers based on the results of the project.  

• “C'est La VIE: Variational Inference of Extremal for Rare Event Modeling,”  submitted 
to Annals of Applied Statistics  

• “Real-Time Traffic Safety Critical Events Prediction using Deep Learning Models”; draft 
manuscript completed.  

The methods developed in this study require a high level of technical knowledge to apply 
appropriately. To facilitate the dissemination and technology transfer, we developed a publicly 
available web tool to allow users to observe the input data and outputs of the deep learning models. 
The web tool also allows users to upload their own data for evaluation.  

The web tool was developed using the MySQL + Node.js. This system enables users to find the 
high-risk driving behavior and the corresponding probability. Users can upload their own data to 
fit our model and get the result or use our sample data. This can be the basis for risk management, 
which can improve traffic safety. The web tool can be accessed from the following link: https://utc-
deep-prediction.cloud.vtti.vt.edu/ 

 
 
1 https://safed.vtti.vt.edu/projects/driving-risk-assessment-based-on-high-frequency-high-resolution-telematics-data/ 

https://safed.vtti.vt.edu/projects/driving-risk-assessment-based-on-high-frequency-high-resolution-telematics-data/
https://dataverse.vtti.vt.edu/dataverse/safed
https://safed.vtti.vt.edu/projects/driving-risk-assessment-based-on-high-frequency-high-resolution-telematics-data/
https://safed.vtti.vt.edu/projects/driving-risk-assessment-based-on-high-frequency-high-resolution-telematics-data/
https://utc-deep-prediction.cloud.vtti.vt.edu/
https://utc-deep-prediction.cloud.vtti.vt.edu/
https://safed.vtti.vt.edu/projects/driving-risk-assessment-based-on-high-frequency-high-resolution-telematics-data/
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Figure 9 shows an interface of the web tool with the following main components:  

1.  The true label of the event.  

2.  The result of current sensor data detection.  

3. Menu for selecting a sample event. The web tool includes five crashes, five near-crashes, 
and five normal driving behavior segments from the SHRP 2 NDS.  

4. Adjust the vertical acceleration ( to remove one gravity unit). 

5. Visualization of the results, including   

a. 3-dimensional acceleration represented by lines; 

b. Probability of crash represented by red area; 

c. Probability of near-crash represented by yellow area.  

 
Figure 9. Screen capture. Web tool for risk prediction. 

 

Data Products  
The SHRP 2 dataset was used to evaluate the performance of the proposed time-series data 
classification approach. This database contains more than 1,000,000 hours of continuous 
naturalistic driving data driven by 3,221 drivers under daily normal driving conditions without 
specific instructions. A sophisticated data acquisition system was installed in each participant’s 
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own vehicle, which continuously collected key driving data, including four camera views, GPS, 
three-dimensional acceleration, yaw rates, etc. 

The research team extracted tens of thousands of normal driving conditions with matching initial 
and ending speed as the crashes and near-crashes. These data will be saved in data repositories 
for future use.  
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