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Abstract 
Flooding in urban areas, especially in low-income or disadvantaged communities, poses a 
serious problem to drivers. While techniques exist to map and predict flooding events, a 
knowledge gap exists in accurate mapping and prediction of urban flooding. It is important 
to have an understanding of how much flooding a region may experience given a certain 
weather event so that drivers may preemptively avoid flooded areas. This paper 
synthesizes several approaches to build an understanding of the spatial extent of urban 
flooding in the frequently flooded parts of San Diego, California. First, flooding reported 
during major storms was used as validation data for a Generalized Linear Regression 
model to create a map of flood risk. Then, a Support Vector Machine model was used to 
extract areas of possible flooding from a satellite image. Finally, model performance was 
compared. Each model provided robust and meaningful results, with the Generalized 
Linear Model indicating which areas of the city are most at risk for flooding and the image 
classification Support Vector Machine model successfully identifying water bodies during 
both dry and wet conditions. 
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Introduction  
 

Flooding is a perennial problem exacerbated by urbanization and climate change. While 
catastrophic events such as hurricanes, dam failures, or hundred-year storms draw the most 
attention, less severe flooding also leads to property damage, infrastructure failure, and fatalities, 
especially in dense urban areas. Extreme events are well-documented and studied, and formal risk 
assessments such as the Federal Emergency Management Agency’s National Flood Hazard Layer 
map are powerful tools for determining and managing flood risk. However, the complex urban 
topography and the small spatial scales at which urban flooding is relevant make modeling flood 
risk in dense cities challenging. There is no unequivocal definition for such minor flooding, but it 
is known by some and will be labeled here as Nuisance Flooding or NF, defined as minor flooding 
that can pose serious danger, especially to drivers [1]. 

Most climate models predict that precipitation in Southern California will become more seasonal. 
Rainfall totals are expected to remain at around current levels, but more extreme interannual 
variability and longer, drier dry seasons and shorter, wetter wet seasons will lead to both more 
severe drought and increased flooding, making water management more difficult [2], [3], [4]. 
Global sea levels are also rising, inundating coastal areas and overwhelming storm drainage 
infrastructure [5]. With these climactic changes and California’s burgeoning population, it has 
become essential to understand the spatial extent of flooding—not only along floodplains such as 
that of the San Diego River, which is well-understood as being an area chronically at-risk for 
flooding—but also in built-up areas where flood risk, especially at NF levels, remains poorly 
understood. Mapping NF is a challenge for three main reasons: (1) the urban environment is 
highly complex, with waterways at submeter resolutions; (2) flooding is shallow and ephemeral; 
and (3) ponding means that the flood extent will be discontinuous, making analysis with a 
traditional hydrologic model difficult. While 2-D hydrologic models are effective at lower 
resolutions, the computational resources to properly model urban flooding are difficult to come 
by with current technology [6]. 

When considering NF in urban zones, an area as small as an intersection is relevant, and most 
techniques will have difficulty accurately mapping and predicting at such high resolution. 
Attempts have been made to map urban flooding and flood risk with more traditional methods, 
such as [7], which compared the efficacy of four hydrologic models ranging from a simple 
runoff-response model to more complex 2-D models; [8], which used a combination of hydraulic 
models and Random Forest (RF) and Multilayer Perceptron machine learning (ML) algorithms; 
and [9], which used building footprints to create topography for modeling flooding at a very 
small scale. These studies gleaned good results, but work remains to be done. The authors of [7] 
found success in their modeling but stated that the 2-D models required for high accuracy are not 
feasible for larger urban study areas, exemplifying the need for finding methods of mapping or 
predicting flooding that are less computationally intensive. Hydrologic models may be the best 
solution in the future, but better computational and more accurate inputs (such as those from 
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sensors placed in the correct locations), may need to be implemented before such models can be 
widely used for real-time flood mapping. Another tested method is to use a catchment’s 
hydrologic properties and anthropomorphic variables as independent variables to create maps of 
flood hazard and vulnerability in urban areas. Many of these studies distinguish between flood 
risk—or the probability that an area will be exposed to flooding—and flood hazard—a combined 
metric combining risk and other vulnerability receptors such as income or infrastructure age. 
Some examples of this technique include [10], which used an ensemble of ML techniques and 
datasets to map flood hazard and risk in Iran; [11], which applies a similar method using the 
GARP and QUEST models; and [12], which gives an overview of flood hazard studies for cities 
in China. 

Research has also been done in flood detection using remote sensing methods such as aerial 
photographs or satellite imagery. A summary of methods, such as Synthetic Aperture Radar (SAR) 
and LiDAR, is given in [13]. SAR is an especially promising technique due to the fact that, as an 
active sensor, radar can detect the Earth’s surface no matter the local time of day or what cloud 
conditions prevail. Some notable studies in the detection of flooding with SAR include [14], 
which combined SAR imagery from COSMO-SkyMed and Landsat 8 Operational Land Imager 
data to map flooding along a river in northern China; [15], which employed RASARSAT-2 SAR 
images and flood stage data based on return period for the 2011 Richelieu River flood in Canada; 
and [16], which is the culmination of a series of studies using TerraSAR-X in tandem with very 
high-resolution aerial imagery to map flooding of the River Severn in England. A more in-depth 
overview of the techniques used in these studies and their relevance to this study will be 
discussed in the next section. 

A combined approach has the double advantage of testing techniques presented in previous studies 
and running a rigorous analysis on the study area. This study consists of two analyses: first, the 
creation of a flood hazard map of the study area in the city of San Diego using a Generalized Linear 
Regression (GLR) model, hydrologic characteristics, and vulnerability variables, and second, 
flood detection using SAR imagery taken by COSMO-SkyMed and a Support Vector Machine 
(SVM) model. Lacking the robust validation data for flooding during a specific storm used in 
some other studies, such as high-resolution aerial imagery, the GLR model was then used to 
further test results gleaned from the SAR data. Finally, a flood hazard analysis was run for 
transportation networks in the City of San Diego to provide practical results that may be of use to 
improve flood preparedness. We also took into account flood hazard in disadvantaged 
communities and reflected this in flood vulnerability calculations. This study, outlined by a 
flowchart in Figure 1 below, seeks to build knowledge in the area of urban flood detection by 
testing methods in a new study area, that being a collection of seasonally wet urban drainage 
basins in San Diego, including the lowest reaches of the San Diego River watershed. 
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Figure 1. Project flowchart, showing each step of the project and relationships between inputs, outputs, and 

processes. 
 

Background  
 

Since its inception, remote sensing has proved quite valuable for scientists and engineers in 
many fields, allowing collection of data on a temporal and spatial scope that was once 
impossible. Though a powerful tool, remote sensing capability is limited by spatial and temporal 
resolution, conditions on the surface that might limit the sensor’s functionality, and sensor 
availability. Flood mapping would be ideally carried out by high-resolution aerial photographs 
that could then be easily processed to extract water, but such flights are not always available and 
passive onboard sensors are limited by lighting and cloud conditions. 

Flooding can occur over a short period of time and often underneath heavy cloud cover, making 
active sensors an ideal tool, especially for NF flooding, which may cover very small areas and 
quickly recede. While passive sensors require some input from the environment, whether it be 
visible light, ultraviolet radiation, or heat, active sensors such as SAR create their own inputs for 
the sensor to detect. SAR works by emitting microwave signals that bounce off the surface and 
are picked up by the sensor. This backscatter value σ, which is affected by the geometry of the 
surface that reflects the microwave, is then interpreted to glean information about the surface’s 
nature. SAR is valuable because it can be used no matter what lighting or cloud cover conditions 
prevail [17]. SAR is applied to flood detection problems by seeking out a backscatter return that 
corresponds to smooth surfaces, such as floodwater. Water, along with other flat, smooth 
surfaces such as roadways or parking lots, returns a low backscatter value σ to a SAR sensor, 
appearing as dark regions on a radar image, as illustrated in Figure 2. In simple terms, studies 
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detecting flooding using SAR all sought out these regions of lower backscatter, either by training 
an algorithm to recognize the radar return of water through training samples or through change 
detection comparing images taken during flooded and unflooded conditions. This technique 
works best for regions in which a surface with a normally high radar return, such as cropland or 
low vegetation, is inundated and transformed into a smoother surface, which is then easily 
distinguished in a SAR image. Studies detecting floodwaters in rural areas, such as [14], [18], 
and [19], all reported good results, highlighting the efficacy of SAR in detecting surfaces whose 
reflectance characteristics have changed due to flooding. 

 

Figure 2. Diagram illustrating backscatter behavior of various surfaces [17]. 
 

SAR, however, also has limitations. Until recently, SAR data was considered insufficient for 
mapping flooding in urban zones due to low resolution and shadow and layover in the complex 
urban environment [20]. However, with a combination of more experience, higher-quality data, 
and innovative image processing techniques, there has been some success in using SAR for 
urban flood detection applications. An early foray into mapping urban flooding with SAR, [21] 
used TerraSAR-X data, a SAR simulator to remove shadow from buildings, and a region 
growing algorithm. [20] employed a gamma distribution to recognize the backscatter values of 
open water and another region-growing approach using open-water seeds for two case studies, 
while [16] and [22] improved on these aforementioned algorithms by including change detection 
processing and double-scattering recognition, respectively. Some studies, such as [16], extracted 
roadways and parking lots from flood mapping to avoid incorrectly classifying pixels. Other 
algorithms have also been used, such as [14], which employed a counter without edges (C-V) 
machine learning model to extract flooded areas or [23] and [24], which used interferometry, 
consisting of pairs of pre and post-flood images. 

Another feature of flooding in urban areas is double-scattering, which has been explored by [22], 
[25], and [26]. Double-scattering is a phenomenon in which floodwaters on a surface will 
actually create a higher backscatter return. Double-scattering occurs in places where floodwaters 
adjoin a wall or other vertical surface, such as trees or vegetation. Radar signals will bounce first 
off the ground and then against the wall, being detected by the sensor in the same range band as 
signals deflected directly off the vertical surface. This creates a line of bright signal return at the 
edges of buildings, an effect that, in experiments conducted by [27] and [28], is enhanced by 
smoothing of the surface at the base of a building. A detailed review of techniques used and 



5 
 

results gathered by previous studies in the detection of urban flooding with SAR is included as 
Table 1. 

Table 1. SAR image Classification Literature Review 
 

Approach Examples Required Inputs Results 
Backscatter 
threshold, gamma 
distribution, 
region-growing 
algorithms 

[21], [20] 
[29], [30] 

SAR imagery and 
aerial/satellite imagery 
for validation. 

Good results, with 76% of urban water pixels in [19] 
correctly classified. This method, however, excluded 
roadways and parking lots from consideration for 
having a radar return too similar to that of open water. 
In [29], rural flooding was used to extrapolate urban 
flooding during river flooding. 

C-V model [14] SAR imagery and 
aerial/satellite imagery 
for validation. 

93.70% total accuracy, but the C-V model is best 
applied to continuous flooded surfaces, such as 
overflowing rivers and other such large-scale 
flooding. 

Double-scattering 
detection 

[22], [25] SAR imagery and 
aerial/satellite imagery 
for validation. 

Good results, but lots of room for introduction of 
error. Care must be taken to ensure that other 
reflectors are not fudging results. 

Change detection [16] SAR imagery and 
aerial/satellite imagery 
for validation. 

Improvement on region-growing technique, some of 
the same restrictions still apply. 

Interferometric 
pairing 

[23], [24] Interferometric SAR 
pairs and aerial 
imagery for validation. 

89% accuracy for interferometry radar return data, 
87% for just radar return. Interferometric pairs, 
however, require high revisit times and are much 
more costly to acquire. 

The similarity between the radar return of water and that of anthropomorphically-smooth surfaces 
is what makes the SAR approach to urban flooding so difficult. The flooding the authors of this 
report and most other authors wish to detect is in smooth, built-up areas, flooding which poses a 
hazard to drivers and infrastructure in impervious areas not well-suited to the flow of 
stormwater. Unlike many previous studies, however, our study area does not lie within the 
floodplains of a major river in a humid area, nor were the storms in question major, 100-year- 
storm events. Therefore, many of the techniques that were used to link flooding in urban 
floodplains and flooding on smooth urban surfaces will not be applicable to our study. In addition, 
the commonly-used region-growing technique, in which algorithms were used to grow “seeds” of 
known inundation will also not be applicable due to the discontinuous nature of urban flooding, 
where ponding, rather than river floodplains, is the primary cause of inundation. 

Since this study’s main purpose is to detect flooding along roadways, a different approach was 
necessary. We used simple, non-processing-intensive image classification and change detection 
techniques to extract regions of possible flooding from a COSMO-SkyMed image taken during a 
major storm on February 27, 2017, in San Diego. Our approach detects possible flooded areas by 
training an SVM algorithm to recognize the darker radar return of smooth surfaces. After these 
areas of possible flooding were identified, a change detection filter was then applied to remove 
false positives. These techniques will be explained in further detail in the methods section. 



6 
 

Methods  

Study Area and Datasets 
The study area within the San Diego region was chosen based on the following parameters: an 
area entirely within the extent of COSMO-SkyMed images taken during times of flooding, an area 
with the necessary hydrologic data to create a flood risk model, and an area containing a 
sufficient number of validation points for statistical significance. The final area that meets this 
criteria, shown in Appendix A (Figure A1), is entirely within the city of San Diego, covering about 
155 mi2 and includes the flood-vulnerable Mission Valley area as well as disadvantaged 
neighborhoods such as City Heights and Barrio Logan. The study area is the same for both the 
flood risk mapping and image classification portions of the study. The climate in the city is semi- 
arid Mediterranean, with long dry seasons and short wet seasons during the winter months. The 
climate, measured near downtown in the south-western corner of the study area, is generally 
warm and mild, with maximum average monthly temperatures at around 25°C in August and 
September and average monthly lows in December and January at about 14° C. Precipitation is 
highly seasonal on both the coast and in the more humid highlands. Precipitation in the city itself 
averages 9.79 inches a year, with around three-quarters of this value falling between December 
and March [31]. San Diego’s climate is also subject to high degrees of inter-annual variability, 
due to the effects of the El Niño- Southern Oscillation [32]. 

Another element of the study involved the calculation of flood hazard, a metric combining flood 
risk, or the risk that flooding will occur at a location, and flood vulnerability, or the susceptibility 
of an area to flooding due to factors such as income or population density. This study will cover 
areas known as Disadvantaged Communities, mapped in Figure A2 by census tract [33]. SB-525 
Disadvantaged Communities are areas designated by the State of California as meriting special 
investments from proceeds of pollution-cap programs. The goal is to improve not only quality of 
life and opportunities in these communities, but also to improve environmental conditions by 
reducing pollution. The criteria are based on communities in which at least 25% of the population 
is adversely affected by unemployment, poverty, or lack of access to healthcare or proper 
nutrition, as well as regions that are known to be polluted. These criteria are regularly updated by 
CalEnviroScreen, which scores census tracts based on the criteria previously mentioned. 

Some examples of validation data used by previous studies are the aforementioned LANDSAT 
and aerial imagery, tweets, road closures, and river gauge data by [34]; social media data and 
topographic LiDAR data by [35]; and [36], which used photos taken during a 100-year flood in 
1979 in the city of Jackson, MS to create a model for future flooding. We unfortunately lack 
robust validation datasets such as aerial photographs of high enough resolution to detect urban 
flooding, and social media sources such as tweets were found to be inadequate for ground- 
truthing. We used police and news reports of flooded intersections and roadways as ground- 
validation data. To ensure enough points for validation, road closure reports were gathered for 
four different storm events spanning three distinct water years: January 6, 2016 [37, 38]; 
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February 28, 2017 [39, 40]; December 8, 2018 [41, 42]; and February 14, 2019 [43]. These 
events were chosen because they all caused significant flooding, are all included in reports of 
flooding by news outlets and police in sufficient numbers to be statistically significant, and all 
occurred recently enough that it is unlikely that the region’s hydrological landscape significantly 
changed. Multiple storms were chosen to ensure enough validation points for a meaningful, 
robust GLR model. While it is true that flooding during specific storms may have been caused by 
factors such as blockages, any area flooded during heavy rainfall, even when caused by 
infrastructure failure, is an area vulnerable to flooding in the first place. These validation points 
do not represent areas that will flood during a given storm, but areas at a risk for flooding. The 
provenance by storm of each validation point is listed in Table A.1. 

One storm was chosen for the SAR portion of the project. The temporal window for the SAR flood 
was much narrower than that for the GLR model, requiring heavy flooding during the precise 
moment the SAR image was taken. One difference between this investigation and most previous 
studies is the magnitude of the event under analysis. Our goal in this respect is to apply methods 
found to be effective for larger-scale flooding, such as the 2007 overflow of the River Severn, 
which saw the inundation of over 55,000 homes after the largest record rainfall since records 
began in 1766. After the 2017 hurricane in Houston, [44] or [24] conducted analysis on flooding 
to smaller-scale urban flooding in the San Diego, which has not seen catastrophic flooding on the 
level of these aforementioned events in many decades. The most catastrophic flooding in recent 
history was the 1916 storm, during which 11.5 inches of rain fell in under 80 minutes and the 
gage height in Santee, CA was over 35 feet [45]. Another such storm is likely to occur again, and 
one way to understand how it might affect the densely built-up city is to study the impact of 
smaller storms. To build an understanding of the variability of year-to-year water flow in San 
Diego, Figure A3 shows streamflow in the San Diego River over the past decade, highlighting 
low flows during a long drought in the first part of the decade and heavy flows during the latter 
half. The boundary conditions for a storm we could study were as follows: one that occurred 
recently enough to be imaged by satellites equipped with high-resolution SAR, and one large 
enough to create enough flooding to be noted by news and police agencies. 

To assess the severity of a storm and the likely extent of flooding, we used rainfall and river stage 
data. While rainfall is far from homogenous across the San Diego area, we focused on the San 
Diego River at Fashion Valley, this being where most flooding was reported. Under the reasonable 
assumption that peak gauge height will correspond to peak flooding, we used flood gauge data 
from the United States Geological Survey to find peak storms over the past decade during which 
high-resolution SAR sensors were active. 

One gauge height peak in February 2017 immediately stands out. Closer inspection reveals that 
the gauge height reached a peak of almost 10,000 cubic feet per second at around 1:00 on 
February 28, 2017. Rainfall records also reflect a short, intense burst of rainfall at around 23:00 
on the 27th. It was likely this high-intensity period of rainfall following steady rain throughout the 
previous day that caused the high gauge height and flooding. Flooding for this day can be further 
verified with other qualitative data. A National Oceanic and Atmospheric Administration report 
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on heavy flooding through California in February of 2017 reported an “above-average” flood in 
Mission Valley on the 27th and 28th, near historic peaks in 2011 and 1995 [46]. A Times of San 
Diego article reported enduring flooding on the 28th and evacuations in the Lake Hodges and 
Mission Valley areas, as well as 702 collisions logged by the California Highway Patrol, nearly 
seven times the fair-weather average [39]. The precipitation and streamflow at Fashion Valley is 
shown in Figure A4. The temporal and spatial extent of the study was constrained by available 
datasets and processing time. Thanks to the low return period of COSMO SkyMed’s satellite 
constellation, a scene of the San Diego area taken at 17:41 (local time) on February 27, 2017, was 
found. This was around the time of the most intense precipitation and just before the flood peak in 
the San Diego River. Additional datasets are presented in the Appendix: Figure A5–Figure A7 
show the hydrologic variables, Figure A8 and Figure A9 show the flood vulnerability variables, 
and Figure A10 shows the SAR images used in the study. 

Flood Risk and Hazard Mapping 
The methodology of this research consists of two steps. First, a flood risk map was created using 
a GLR model and hydrologic variables, then regions of possible inundation were extracted from 
SAR imagery taken during a storm on February 27, 2017, in San Diego using image classification 
techniques. After these areas were extracted, the risk model was used to validate the SAR 
detection. 

Hydrologic Variables 
Any hydrologic model recreates, in some fashion, watershed characteristics. The simplest models 
might use nothing beyond the rational method, while the most complex might attempt to model a 
watershed down to individual culverts and pipes. Our approach does not include the traditional 
hydrologic model process of creating a “design storm” that “falls” onto the model and creates flow, 
but instead is a model of flood risk based on points of known flooding. We chose not to use a 
traditional hydrologic model because the area we wished to model was too large to efficiently 
compute with hydrologic models at the resolution we needed to model, and because the nature of 
urban flooding includes localized ponding that traditional flow models may have trouble detecting. 

Our approach, therefore, was to use points of known flooding as training data for a GLR model 
using hydrologic variables as explanatory variables. We chose our variables based on availability, 
statistical significance, and model testing. Some variables that were used in other studies, such as 
[11], [47], or [48], included variables such as slope, elevation, groundwater depth, distance to 
drains, drainage density, and soil type. Some of these datasets were suitable for our study area 
while others were not, and we added new ones based on newly developed techniques and urban 
hydrologic factors. Soil type, groundwater depth, rainfall distribution, and elevation were all 
discarded as potential hydrologic variables for our analysis. Hydrologic soil maps of the area do 
not include underlying soil underneath heavily urbanized regions, labeling them simply “X,” so 
an imperviousness layer was used instead. Similarly, groundwater depth maps for the San Diego 
region simply show the presence of aquifers, all of which are underneath valleys, therefore adding 
little insight into the spatial distribution of urban flooding. 
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Rainfall distribution over our small coastal study area varies little—there are only two weather 
stations with good data availability, and it is likely that storm-specific variation would be the 
most important rainfall variable that would need to be included. Land use was discarded as an 
explanatory variable because our validation points, nearly all being reported flooding along 
roadways, would have introduced bias if land use were included to explain their spatial 
distribution. Finally, absolute elevation was not considered as an explanatory variable, as it is 
unlikely, in our small study area, that elevation would have any impact on rainfall and including 
it would have likely introduced error. These variables were tested during the model training 
portion of the project and were found to either overfit the model or to lack enough variation to be 
significant. The variables chosen after training iterations were presence of bluespots, distance to 
nearest flowline, slope, local watershed imperviousness, and local watershed drainage density. 
Variables that required a Digital Elevation Model (DEM) were found using an already processed 
0.76-meter resolution hydro-conditioned DEM provided by San Diego Association of 
Governments’ GIS division. 

Bluespot is a term for a landscape depression that is likely to fill up during storm events, taking 
into account stream networks and presence of landscape sinks. More details about this technique 
can be found in [50]. Before bluespots were found, building footprints were burnt onto the 
previously mentioned hydro-conditioned raster to account for the diversion of flow around 
buildings, as well as to prevent bluespots being detected on building footprints. The bluespot 
technique can be used as a high-resolution model of spillover given certain rainfall amounts, but 
our approach employed bluespots as a method to identify sinks in the urban environment 
susceptible to flooding. Further analysis could be conducted using bluespots to find areas of flood 
risk given specific storm rainfall totals and even rainfall spatial distribution, but this is outside the 
scope of this study and our study area was too large to conduct such as analysis efficiently. 

Distance to flowlines is a way to model areas that will receive higher volumes of water. Flow lines 
were found using a flow accumulation raster, itself derived from a flow direction raster. These 
flow lines can represent actual channels and streams, or they could also be areas such as streets 
that see high volumes of flow during intense rainfall events. For this study, we defined flowlines as 
being pixels in the flow accumulation raster which received at least 1,700,000 pixels of flow, 
equivalent to about 247 acres contributing flow to a certain point. Euclidean distance to flow lines 
was then calculated, and the output raster used as an explanatory variable. Local imperviousness 
was calculated by finding the average imperviousness of sub-watersheds. This was found to be a 
better explanatory variable than imperviousness as a rough estimate of the likelihood of water in 
the sub-watershed to become runoff. 

Flooding in urban areas generally occurs in areas with high imperviousness with little infiltration 
capacity, so the purpose of imperviousness data as an explanatory variable is to model the impact 
imperviousness has on runoff. Areas with low imperviousness have increased runoff, which is 
what this element of the model is simulating. Local drainage density was also calculated by sub- 
watershed. Features which accept flow, such as inlets, were added over each area, and features 
which add flow, being outlets and clean outs, were then subtracted from the total amount of 
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inlets. This metric, referred to as drain density, is presented in the datasets section. Surface 
channels in the study area were found to be sparse and with little spatial correlation to flooding. 
The slope of the hydro-conditioned raster was used as a simple filter for areas with higher slopes 
where flooding would be very unlikely. No threshold was chosen, but the model was run by 
training it using slope values at validation points. 

Validation Points 
As discussed in the previous section, we collected 47 validation points from news reports covering 
four storms in the San Diego area from 2016–2019. We split the validation points into 37 points 
for training, and 10 points were tested based on the 80:20 rule. Ten points were randomly 
sampled from across the study area as testing points and the rest were used to train the GLR model. 
The spatial extent of flooding for the training points was estimated from the reports, and the data 
was then converted to a raster where flooded points were assigned a value of 1 and unflooded 
points a value of 0. 

Generalized Linear Regression Model 
Flood risk was mapped using a GLR model through ArcGIS Pro. GLR is a commonly used 
technique with a range of applications, such as predicting the impact of sea level rise on NF [51], 
likelihood of flash flooding [52], and modeling of flood risk [10]. The GLR model was chosen 
because, as mentioned in the background, it was found in the comparative study [11] to yield 
decent results in comparison to other models, and this technique was resource and processing- 
efficient. A GLR model is a generalized form of the linear regression model, which allows 
response variables to be related via a link function and the variance of measurements to be 
functions of their predicted values. [53]. GLR models are known for being able to handle 
multiple independent variables, including mixtures of categorical and continuous variables. 

GLR models consist of three components: a random component, referring to the probability of 
the response variable Y; a systematic component specifying the independent variables; and a link 
function, which specifies the relation between the response variable and linear predictors gleaned 
from explanatory variables [54]. The link functions serve as a way of linking non-linear 
relationships between explanatory and dependent variables to the linearity of the overall model. In 
this case, a GLR model was used to create a flood risk map by linking the previously mentioned 
datasets: 𝑌𝑌 = 𝛽𝛽0 + 𝛽𝛽1𝑋𝑋1 + … 𝛽𝛽𝑛𝑛𝑋𝑋𝑛𝑛. The regression equation consists of a random component Y, 
systematic component X, and regression coefficients 𝛽𝛽. As the dependent variable of concern is 
the presence of flooding, a binary logistic GLR equation was chosen. The link function for 
binary logistic GLR models is as follows: μ = log ( 𝜋𝜋 ). 

1−𝜋𝜋 

ArcGIS Pro’s GLR GeoAnalytics tool [33] was used to run the analysis on the explanatory 
variables. The binary regression model was chosen, and the input variable, presence of flooding, 
and the five explanatory variables were then rasterized and converted to a 5 m resolution point 
grid. We chose 5 m as a resolution both low enough to be processed efficiently and high enough to 
capture the high variability of the urban landscape and small bluespots that, though only a few 
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meters wide, could still pose a hazard. The probability column of the output table was then 
converted to a raster, clipped, and normalized. 

Flood Vulnerability Variables, Weighting, and Flood Hazard Mapping 
Flood vulnerability represents how impactful flooding might be in a certain area. In this study, 
flood vulnerability is a metric that applies only to the city’s transportation network, as this 
research is focused on the effect of flooding on transportation. Most of our vulnerability 
variables are mapped and processed by census tract, a commonly used unit for measuring 
demographic statistics in the United States. Population density is a simple metric to measure how 
much of an effect flooding will have in an area based on how many people will be impacted by 
inundation. This also allows us to filter out sparsely-populated areas that might suffer less human 
cost than densely- populated regions. This metric was classified based on natural breaks present 
in the data. Income per census tract allows us to measure and represent how wealthy certain 
neighborhoods are, and how resilient they might be to damages created by flooding. Thresholds 
were chosen based on California income brackets, with the highest vulnerability assigned to 
census tracts with average income below the California poverty line. Average drain 
infrastructure age is an estimate of the age of hydraulic infrastructure by census tract. Aging 
infrastructure is more likely to fail and puts regions at higher risk for flooding [55] so this was 
also included as a vulnerability metric, also classified by natural breaks. Street Overall Condition 
Index, or OCI, is a measurement used by the city of San Diego to determine which streets might 
soon be in need of repairs [56]. Streets are scored on features such as cracking, potholes, 
pavement collapse, or sub base failure. Streets are given a “good,” “fair,” or “poor” rating based 
on these characteristics. Street OCI was included in the study as a measure of vulnerability of 
transportation infrastructure to flooding. 

Each variable was assigned an equal weight, and vulnerability was then calculated over 
roadways for which OCI data was available within the study area. The weights for each variable 
were calculated based on breaks in the data, discussed earlier for each variable. Weights were 
assigned by best judgement, with weight for population density and drain age (breaks for these 
variables having been determined by natural breaks in the data) in equal intervals to reflect the 
gradual, linear increase in flood vulnerability as infrastructure ages or population becomes denser. 
Income was weighed to reflect the disproportionate impact of income below the poverty line in 
California, while street OCI index was weighed similarly to represent the much higher flood 
vulnerability of streets rated to be in poor condition rather than fair or good condition. As our 
variable weighting is meant to compare vulnerability within the study area, the focus here is to 
ensure that different levels of each variable are distinct and will create unique results in the final 
flood hazard map. After these weights, or vulnerabilities, were calculated for each point, they 
were summed and multiplied by the risk factor, itself represented by a weight depending on 
classified risk index. The following calculation yields flood hazard: Hazard = Risk x 
Vulnerability. Calculations were performed at 5 m intervals. Table A.2 shows weight used by 
variable. 
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Extraction of Flooded Areas With SAR Imagery 
A summary of various image classification approaches and reasoning for this study’s use of an 
SVM classification model was given in the previous background section. A more in-depth 
description of the methods used in this analysis follows. Ours is a combined approach, applying 
three methods consecutively to detect flooding that may express itself in the SAR imagery in 
distinct ways. First, an SVM model classified SAR imagery, then a land use filter was applied to 
remove surfaces such as roadways where flooding would not be detectable with SAR, and finally 
a change detection filter was used comparing images taken during dry and wet weather. Using 
radar images to extract flooding in urban areas has been proven possible but is a challenging and 
still-incipient process. Many of these methods have yet to be proven with a wide range of study 
areas and validation data, and this study seeks to further test applications of SAR data to urban 
flood detection with more limited validation data. Without resources such as high-resolution 
aerial imagery taken during flooding, we draw upon previous experience, model assessment 
techniques, and results of our flood risk model to validate results of SAR image classification. 

Classification of SAR Imagery Using an SVM Model 
The goal of SAR image classification is to recognize backscatter values associated with a certain 
feature on the surface of the Earth. Our approach was to use an image classification algorithm, the 
SVM model, to learn which pixels belong to which land use type. The SVM model has already 
been used to classify SAR imagery, with some examples being [57], which used an SVM model to 
classify land use in Denmark, and [58], which used the same model to determine land type and 
tree canopy species on Tubuai Island, French Polynesia. We apply this same technique to 
partition SAR imagery into three land types: shrubland, corresponding to grass, chaparral, and 
some canopy; urban, consisting of areas on and around buildings and tall trees; and water, made 
up of both open water surfaces such as ponds and lakes and also anthropomorphic surfaces with 
a similarly dark radar return, such as freeways and parking lots. 

Imagery was acquired from COSMO-SkyMed satellites 1 and 4, which took images including the 
entirety of the study area. Images were pre-processed by the data providers, with some speckle 
reduction and alignment to a local DEM (Table A.3). First, the prepared and processed SAR 
images were clipped to the study area and segmented. Image classification on a pixel-by-pixel 
basis would create too much noise, as SAR images are inherently noisy datasets [59]. 
Segmentation was performed to group together regions of similar pixels and smooth the image. In 
addition, an object-based approach was used in the image classification process. Therefore, regions 
with a certain backscatter distribution were classified rather than selecting a specific threshold 
beneath which a pixel might be considered to be water. 

Segmentation was performed through ArcGIS Pro’s Image Segmentation tool, which uses the 
Mean Shift technique to group pixels together based on average values. The Mean Shift 
approach employs a moving window that iteratively groups pixels together based on their 
characteristics [60]. Segmentation functions under three parameters: spectral detail, spatial detail, 
and minimum segment size. Spectral detail assigns a level of importance to spectral differences 
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in imagery, spatial detail determines the importance of proximity between features (with high 
levels more suitable to features which are clumped together), while minimum segments size 
specifies the smallest number of pixels a segmented region can contain. For segmenting SAR 
data, a relatively high spectral detail was chosen to be able to distinguish between relatively 
small variations in backscatter values, as well as a high spatial detail to pick out details in the 
urban landscape. To reduce speckle, a high minimum segment size of 2,000 pixels was chosen. 

After the image was segmented, we then classified the segments using an SVM, which is a 
supervised machine learning model [61]. First, training polygons were defined using a land use 
raster as reference. To ensure statistical significance, at least 20 segments per class were chosen. 
The model was then run using the training polygons. The SVM model is a technique that searches 
for a linearly separable hyperplane, a decision boundary that separates members of one class 
from another. SVM models find this hyperplane using support vectors and margins, and are 
known for their ability to model complex nonlinear relationships and their high accuracy [54]. 
Like other ML models, the SVM seeks to find the characteristics that separate one set of data 
from another. If the SVM hyperplane is a plane of all dimensions equated to zero and θ a 
constant known as the bias, then: 

θ0𝑥𝑥0 + θ1𝑥𝑥1 + θ2𝑥𝑥2 … θ𝑛𝑛𝑥𝑥𝑛𝑛 = 0. 
An optimal hyperplane will be as far as possible from all observations, as it seeks to represent a 
division between classes. Therefore, the distance of each observation to the hyperplane must be 
computed, the smallest of these distances being known as the margin. The SVM algorithm then 
finds the hyperplane with the maximum possible distance to groups of observations, and 
classifies observations based on whether they lie “above” or “below” the hyperplane. Points 
closest to the hyperplane define the hyperplane’s position; if these are shifted slightly, then the 
location of the hyperplane shifts too. These points can have their own planes drawn through 
them, which are known as support vectors. Points past these support vectors can shift, but the 
support vectors, and by extension the hyperplane that defines the division between classes, only 
shift if the maximal observations also change. These critical points define changes in 
classification. This method allows SVM to avoid overfitting, an important feature for a 
classification schema in which we want to avoid overprediction of flooded surfaces. The SVM 
algorithm can also account for nonlinear relationships through kernel functions. Note that open 
street surfaces, especially those in large parking lots or on freeways far from the effects of shadow 
or layover, will appear as water on a classified image. Therefore, the land use raster was used to 
filter any areas associated with transportation, parking, or other smooth anthropomorphic surfaces. 

Land Use and Change Detection Filters 
The similarity of the radar return of water and urban surfaces such as roadways means that 
applying the SVM to only the wet-weather scene would lead to an excess of false positive results, 
as freeways, parking lots, and some larger streets would be classified as water by the model. 
Therefore, a land use dataset was used to filter out any areas classified as water that were 
contiguous with roads and asphalt or concrete parking lots. Then, a change detection filter was 
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applied, removing any areas classified as water in the wet-weather scene that were also of the 
water land type in the dry-weather scene. This step allowed us to filter out any permanent water 
bodies, such as ponds, or any other areas with naturally low backscatter distributions before 
inundation. 

Results  

Flood Risk Mapping 
Results of the GLR model for flood risk are presented in this section. These results consist of a 
flood risk map showing the spatial pattern of flood risk, a table with coefficients and t-statistics 
that give information about the model’s performance and which variables were most relevant, 
and a graph of flood risk index to justify the classification used. Figure 3 shows classified flood 
risk for the study area, as calculated by the GLR model. Note the concentration of flood risk in 
coastal areas and along the floodplains of the San Diego River. The nature of urban flooding, 
however, means that areas with concentrated, spatially extensive flood risk are not necessarily 
those that require the most attention and analysis. 

 

Figure 3. Flood risk map produced by GLR model. 
 
 

GLR models are validated through a variety of methods, the goal of which are to test the efficacy 
with which the model can make predictions, and whether these predictions are more valuable 
than simply choosing random points. A typical receiver operating characteristic curve-area under 
curve, or ROC-AUC, was not generated for the GLR model because of a lack of true negative 
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validation data. To properly validate with this technique, a collection of points along 
transportation infrastructure known not to be flooded or to never experience flooding would need 
to be collected. Therefore, the model was tested using the aforementioned testing points, which 
were split from the validation dataset. Out of the 10 testing points, 8 showed a flood risk of at 
least 78, the cut-off between low and negligible flood risk. In addition, the performance of 
hydrologic variables in the model were evaluated through t- statistics. 

The statistics tabulated in Table A.4 illustrate the weights assigned by the GLR model to each 
variable and their t-statistics, which measure statistical significance. The direction of each 
coefficient implies that higher values of average imperviousness and presence of bluespots (where 
0 = no bluespot and 1 = presence of bluespots) and low drain density, low slope, and small 
distances lead to higher flood risk index values. These directions all make sense—presence of 
bluespots and high imperviousness can be expected to lead to a higher risk of flooding, just as 
proximity to streamflow, few drains, and low slope do. The t-statistics also give a sense of the 
importance of the GLR model assigned to each variable. 

In Table A.4, the hydrologic variables are ranked by importance, in the order of bluespot 
presence, proximity of flow accumulation lines, average sub-watershed imperviousness, average 
drain infrastructure density in the sub-watershed, and slope in order of most to least importance. 
The t-statistics appear robust, showing that each variable used in the model contributed, though 
some more than others. We can be reasonably confident that the results are meaningful and map 
onto reality based on the coefficients and t- statistics gathered from the GLR model technique. 
Again, the value of detecting landscape sinks for urban flood risk analysis is highlighted. Mapping 
of these landscape sinks with high-resolution hydro-conditioned DEMs could be immensely 
useful in future studies. 

The curve of flood risk index results (Figure A11) was used to classify values. Inspection of the 
curve reveals that the majority of pixels (~95%) lie on a flood index between 30 and 84. Instead 
of dropping back to near zero and behaving unimodally, however, the risk index curve rises to 
another local maxima, giving the data a bimodal distribution. This second maxima was interpreted 
to represent areas with flood risk. In addition, another group of values was also included to 
represent areas where flood risk is very low, but could still appear in extreme events or with 
infrastructure failure. In addition, this classification schema was found to have the best fit with 
testing data. With this classification schema, almost all areas assigned at least some flood risk are 
within bluespot extents, which follows the assumption that urban flooding will occur primarily in 
landscape depressions. Some flood risk also appears near flow accumulation lines, which could be 
interpreted as flooding occurring near streams in sub-watersheds with poor drain density and high 
imperviousness. 

Extraction of Flooded Area 
Explanation of image segmentation and classification parameters used and their justification are 
explained in the Methods section above. Results gleaned from image classification (Figure A12) 
show that the SVM model was able to properly classify large water bodies such as Mission Bay 
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and Lake Murray almost perfectly, with close to the same results under dry and wet conditions. 
The results can be visually understood through the classification map, with large continuous 
areas of low radar return, such as Mission Bay, Lake Murray, or stretches of the 5, 8, and 805 
freeways easily visible on the map. Results can be better understood through the backscatter 
distribution of pixels associated with water, shrubland, and urban land use types, as shown in 
Figure A13. 

To quantitatively compare backscatter characteristics, a gamma distribution was employed to 
compare the radar response of the three land type classes used by the SVM model. This approach 
allows us to present distributions without taking into account the number of pixels within each 
class, as the urban and shrubland classes cover a far greater amount of the study area than water 
and were trained using more pixels than were used for training the model to recognize water. 
Figure A14 presents the backscatter distribution of pixels used to train the SVM model during 
the wet condition, as laid out in the methods sections. There is some overlap between 
distributions, representing the effects of speckle and phenomena such as waves creating zones of 
brighter radar return in segments classified as water. However, these distributions illustrate clear 
shifts in spectral backscatter values for each land type class. Presented in Figure A13 are the 
gamma backscatter distributions comparing the backscatter response of pixels classified as 
shrubland or urban during dry conditions, yet water during wet conditions. These areas present a 
backscatter distribution almost identical to that of pixels used to train the model to recognize 
zones as urban during dry, unflooded conditions, yet with a distribution very close to pixels used 
to train zones as water during wet, flooded conditions. 

Previous studies have found a distinct difference in backscatter distributions associated with 
various surfaces, and the results presented here reinforce these findings. Even a relatively simple 
model such as ArcGIS Pro’s SVM image classification model was able to distinguish the 
backscatter distribution of different land cover types, and was able to reflect this same difference 
in distribution in areas classified as flooded before and after flooding occurred. In general, areas 
associated with water can be expected to have a short, sharp bimodal distribution concentrated at 
the lowest backscatter return values, while dry areas will have a distribution shifted towards 
higher backscatter return. Note that in both backscatter distribution graphs, digital number (DN) 
values above 750 were discarded. 

The SVM model was tested by picking 60 random points in each classified image—30 on 
surfaces classified as water on the 2-m resolution land use raster, and 30 on surfaces classified as 
dry land (15 in shrubland-classified surfaces and 15 in urban). Regions populated with points for 
model testing were distinct from regions used to train the model. Results from these testing points 
are presented in Table A.5. SVM model parameters were chosen to keep over-detection to a 
minimum. Large segment sizes mean that small regions classified as water were merged with 
urban or shrubland segments in the model, best illustrated by the classification of narrower 
roadway surfaces (effectively, all surface streets) as shrubland rather than water, as flat 
anthropomorphic surfaces would be classified under ideal conditions. Therefore, the model tends 
towards under-detection rather than over-detection, with only 12 distinguishable, contiguous 
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regions, making it through the classification, land use filtering, and change-detection filtering 
steps of the technique. With this approach, we ensure that our model results are meaningful and 
that we avoid including a slew of questionable results that would require more time and 
resources to validate. 

With the speckle-reducing effects of image segmentation and the discarding of areas in radar 
shadow, only a handful of contiguous regions were found that could be classified as flooded with 
a reasonable margin of error (Table 2). Note that they are all flat, vegetated surfaces that are 
extensive enough to be “seen” by the radar sensor over the tops of surrounding buildings. While 
the entire extent of the features listed did not have their classifications change from shrubland or 
urban to water, a significant amount changed in each, and a pool of standing water large enough to 
obscure vegetation on a field would be significant enough to cause NF. 

Being all in a high- density urban area, every flooded region was found to be close enough to 
transportation infrastructure for flooding there to pose a possible risk, and most of either the 
regions themselves or some portion of adjacent transportation networks (83.3%) were classified 
as having at least some flood risk by the GLR model. Note that flood risk on adjacent 
transportation networks or flat blacktop surfaces (e.g. parking) were also considered, as this 
inundation would not be “visible,” being either in shadow or not changing in backscatter 
distribution. Except for one region classified in the land use raster as shrubland, the regions 
classified as flooded were either marshlands by waterways or grass/dirt fields, either serving as 
undeveloped parking lots or recreational surfaces. The effect of waves on the backscatter 
distribution of water surfaces such as lakes or flooded fields is considered to be negligible, as the 
backscatter distribution of Mission Bay and Lake Murray during wet and dry conditions was 
found to be similar. 

Table 2. List of Regions Classified as Flooded by SAR Imagery 
 

 
Location 

 
Description 

Presence of Nearby 
Transportation 
Infrastructure 

Flood 
Risk 

Presence 
Parking lot near Lomita Park Empty lot, dirt with 

some vegetation 
Yes Negligible 

Morse High school Football field 
and track 

Field, track, shrubland 
surrounding 

Yes Medium 

Southern end of Keiller 
Neighborhood Park 

Grass, some trees 
ringing park 

Yes Medium to High 

Backyard of properties near 
Broadway and Klauber 

Shrubland, dirt Yes Medium to High 

Lot near Harriet Tubman 
Village Charter School 

Empty lot, dirt with 
some vegetation 

Yes Negligible 

McKinley Elementary Joint Use 
Park 

Park, grass surrounded by 
blacktop 

Yes Low to Medium 

San Diego River channel just 
south of Snapdragon Stadium 

River channel, shrubs and 
trees 

Yes High 

San Diego River channel just 
south of Hazard Center 

River channel, shrubs and 
trees 

Yes High 

Riverwalk Golf Course Grass Yes High 
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Location 

 
Description 

Presence of Nearby 
Transportation 
Infrastructure 

Flood 
Risk 

Presence 
San Diego River just northwest 
of intersection of I-8 & I-5 

Marshland, tall grass Yes High 

Famosa Slough State Marine 
Conservation Area 

Shrubland, marshland, 
tennis courts 

Yes High 

Bill Cleator Community Park Grass field Yes High 
 
 

Validation of these regions would be immensely helpful in proving the efficacy of the SVM 
model in classifying flooding in high-density urban areas. However, any validation would need 
to take into account inter-storm variability. A region flooded during the heavy rainfall of 
February 27–28, 2017, might not necessarily be flooded during other, less severe storm events, or 
even storm events of equal or greater magnitude but with distinct spatial rainfall patterns. These 
points are useful, however, as a starting point for such analysis, and comparing what areas appear 
as flooded in SAR images during various storm events where spatial variation in precipitation is 
precisely known could give important insight to the effects of phenomena such as cloud bursts on 
flooding in the urban environment. 

An interesting feature discovered by this analysis not discussed by other studies in the literature 
review is the notable darkening of rooftop surfaces under the wet condition. An example of this 
phenomenon and a comparison with similar results from a grass field is illustrated in Figure A15. 
Though the backscatter distribution on some of these rooftops was shifted significantly to the left, 
the SVM model did not classify them as water, likely since the segmentation parameters did not 
allow a small surface surrounded by very bright returns, such as a rooftop, to be classified as 
water. As the purpose of the study is to study flooding on the surface and along transportation 
networks, the capacity of the model to reduce speckle and limit false positives was not 
compromised to detect possible flooding on rooftops. Future research, however, could investigate 
the possibility of using SAR to detect standing water on rooftops during storms, and analyze 
which anthropomorphic surfaces see noticeable reductions in backscatter intensity during 
inundations, even if these inundations are very shallow. 

Another phenomenon is the error created by changes in the urban environment, notably the 
presence of vehicles on transportation infrastructure. Individual cars were visible in the SAR 
images as small spots of bright radar return, and if grouped together, such as along a freeway or on 
a parking lot, the classification would change from water (smooth, flat surface) to urban (bright 
return from a high concentration of vertical surfaces such as walls). If not accounted for, the 
absence of cars on the same surfaces between the two images would cause a false positive 
reading in the SVM model. This error was accounted for by, as mentioned in the methods 
section, filtering out all blacktop surfaces from the final map of flooded areas during the storm of 
February 27–28. 
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Discussion  
 

This study consists of three distinct elements brought together to fulfill a common purpose of 
mapping flood risk in an urban area. We seek to both produce a useful flood risk map that could 
be used to determine where monitoring stations should be placed and what parts of the city, 
especially disadvantaged neighborhoods, require better infrastructure, and to further knowledge 
in the field of remote sensing flood mapping. Each result conveys information, but combined, 
flood risk and flood vulnerability are mapped as flood hazard. Figure 4 shows a final 
presentation of the results discussed above, including both flood hazards along the transportation 
network and flooding detected by SAR. 

 

Figure 4. Final map of flood hazard index and areas detected as flooded by SAR imagery. 
 

More insight can be gleaned from the flood hazard map by taking a closer look at specific zones. 
As expected, most of the study area has a flood hazard index of 0, reflecting the fact that in an 
urban area of generally topographically high relief, there will not be areas of extensive flooding, 
save in Mission Valley where the San Diego River occasionally bursts its banks and produces 
continuous flooding of the kind seen in more humid regions. A more in-depth review of the flood 
hazard map is shown in Figure A16. 

Bluespot mapping proved a powerful tool for the modeling of urban pluvial flooding. Most 
previous studies of urban flooding were conducted in cities with large rivers running through 
them, facilitating approaches that mapped flooding associated with floodplains or using contour 
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models to recognize the borders of floodwaters. Other studies that did model urban pluvial 
flooding usually did so at very small scales, with techniques that would be time and processing- 
intensive to replicate over a large area. The bluespot technique allowed us to efficiently map 
flood risk at high resolutions over a large area. Of all the flood risk variables, bluespots had by 
far the largest impact. This disproportionate impact can be explained by the fact that in the final 
flood risk model, bluespots defined the extent of flooding. The other variables, except distance to 
flowlines, essentially determined which bluespots would “fill up” during a given storm. This 
follows the assumption that only landscape depressions would be likely to flood during storms, 
especially in the context of nuisance flooding. The extra flood risk near flowlines could 
represent, however, streams bursting their banks during extreme rainfall events. 

The backscatter distributions of the three land cover classes defined in the study—water, 
shrubland, and urban—were distinct and generally followed the pattern found in other studies, 
with distributions for water shifted to the left of those of dry land cover classes. Segmentation 
was employed to reduce speckle and isolate regions of significant backscatter change in the 
image. After filtering out flat surfaces such as roadways, parking lots, rooftops, and regions in 
radar shadow, flooded regions corresponded with grassy fields or low shrubland. Finally, a 
significant change in backscatter intensity was also discovered on rooftops. The shift in 
distribution was less in magnitude than that for the areas deemed as flooded, but may still reflect 
some features and merits further investigation. 

As would be expected, one of the main concentrations of flood risk was in Mission Valley, along 
the floodplains of the San Diego River. During very large flooding events such as a hundred-year 
storm, catastrophic flooding would be expected in the area, but our flood risk hazard method 
showed most of the Mission Valley area as having a low flood hazard index. This is due to a 
lower population density and higher income in this area compared to other neighborhoods in the 
study area. Another extensive area of continuous high flood risk was the Midway district, just 
south of the river’s mouth. This area is notable for also having a high flood vulnerability, and 
therefore flood hazard, index. However, the ponded nature of urban flooding means that even 
discontinuous, geographically small flood risk zones are as important, as the San Diego River 
has been known to regularly burst its banks and inundate a nearby mall parking lot. These areas, 
especially when found in lower-income neighborhoods with aged infrastructure, are important to 
monitor. 

The model was trained using flooding reported by police and news agencies. The exact depth and 
intensity of this flooding is unknown, but it is likely that much of it goes beyond the maximum 
depth associated with NF. This also applies to the flooding detected by SAR—flooding of a large 
enough extent and enough depth to be “seen” by the radar also likely goes beyond NF. 
Validation data specific to NF, however, would be very difficult to gather without extensive field 
work. Instead, areas of this study that correspond with low or moderate flood risk could be 
considered areas that could flood at NF levels during storms. The variables that affect flooding 
reported by news and police agencies would likely be the same variables that cause shallower 
NF, and the results of this model could also be used to detect and monitor NF. Future field work 
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could validate this by searching for points where flooding occurs at shallow depths during 
storms, and comparing these to flood risk model results. 

Conclusions and Recommendations  
 

The results gleaned from our models indicate that both the flood risk mapping and SAR 
classification elements of the study produced robust results. However, one issue was a lack of 
validation data on both the flood risk modeling and SAR detection sides of the study. Major storms 
occur infrequently in the San Diego region, and due to the interannual variability of rainfall in the 
region, years can pass without the major storm events that cause significant flooding in the 
region. While the validation points were sufficient to build a robust model, future investigation 
would be helpful to refine and improve the model. Monitoring intersections assigned a high 
flood hazard level and areas classified as flooded by the SAR image classifier during major 
storms could be an effective method for further validating both models. Another approach could 
be gathering data from stakeholders living in areas with high flood risk. 

The obstacles of detecting flooding in urban areas, caused by the similarity of the radar return of 
water and smooth urban surfaces, and radar shadow and layover created by the complex urban 
topography, remain. One approach could be to detect for flooding in specific regions, such as a 
park or urban-adjacent vegetated area, known to be a signal for heavy flooding in urban areas 
nearby. One such example from our study is the Riverwalk Golf Club in the floodplains of the San 
Diego River, an open, vegetated area where our models detected flooding. Flooding in this golf 
course, and the extent of flooding, could be a signifier of flooding in urban areas adjacent. 
However, the nature of ponding in urban flooding suggests that this approach will be unable to 
catch all urban flooding occurring during a given storm. It is also possible that SAR images 
taken from an aircraft could be of better use than those from a satellite, but further research 
would need to be done in the area. Another direction research could be taken in this area is in 
mapping of flooding during specific storm events and comparing spatial distribution of rainfall to 
that of flooding. As both data availability and methodology improve, this could be carried out, 
giving better insight not only to what areas are at higher risk for flooding, but where flooding will 
occur during various storm events. Eventually, this method could lead to real-time flood extent 
mapping over large areas with only meteorological data as an input. 
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Additional Products  
The Education and Workforce Development (EWD) and Technology Transfer (T2) 
products created as part of this project can be downloaded from the Safe-D website 
here.  

Education and Workforce Development Products 
This project provided support for a full-time graduate student in the Department of Civil, 
Construction and Environmental Engineering at SDSU toward his MS Degree. The graduate 
student, Vincent O’Hara-Rhi, has assisted with all project tasks outlined above, and successfully 
defended his MS thesis on January 12, 2022. This project was the one that generated data for 
Vincent’s MS thesis. Throughout this project, Vincent has been provided with the opportunity to 
become familiar with the fundamental concepts around flooding impacts on transportation 
systems, flood control strategies, and Big Data Analytics. In addition, this project has provided 
Vincent with mentorship to excel his scientific communication skills. As a result, Vincent 
presented the findings of this study at the SDSU Student Research Symposium (SRS) on March 
4, 2022, and has received the following feedback from the conference judge, as an example: 
“Very interesting topic and good understanding of the issues with flooding.” In addition, this 
project engaged an undergraduate student, Callum McRae, in the Department of Civil, 
Construction and Environmental Engineering at SDSU with GIS analyses of the flood- 
prone areas identified through this research. Callum has now been admitted to SDSU’s Civil 
Engineering MS program, and is willing to continue his research in the PI’s lab. 

Furthermore, the PI has designed educational materials around flood control and remote sensing 
concepts for his graduate level course, “CIVE 730, Advanced Topics in Water Engineering” 
offered in Spring 2022. This is a graduate course at SDSU’s Civil Engineering MS program. 
Specifically, the materials included instructional videos on advanced flood modeling and 
management using a numerical flood modeling software, followed by an assignment for the 
students to design a flood control measure for the SDSU campus to alleviate the flooding of the 
nearby transportation network; i.e. the culvert beneath the Freeway I-8. In addition to the above- 
mentioned videos, the PI has summarized the research methods and findings into a lecture for his 
CIVE 730 class introducing satellite imagery through Synthetic Aperture Radar (SAR) and its 
application in flood monitoring of the transportation network in San Diego. 

Lastly, throughout the course of the project, the PI has repeatedly attempted to present the 
project’s concepts at the SDSU STEM Exploration Day, an annual event conducted by the 
SDSU Pre- College Institute (PCI), which brings more than 300 K-12 students from 
disadvantaged communities around San Diego to inspire them with the state-of-the-art science 
and technology. However, per PCI’s director, Ms. Nadia Rohlinger “given the pandemic and 
concerns about student participation, our team decided to postpone STEM Exploration Day to 
Friday, November 4, 2022.” Therefore, this workshop will take place on the above-mentioned 
scheduled date. 

https://safed.vtti.vt.edu/projects/evaluation-of-transportation-safety-against-flooding-in-%20disadvantaged-communities/
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Technology Transfer Products 
This project resulted into two different manuscripts for peer reviewed journals, one of which has 
been already published and the other which is still under-review: 

- This manuscript summarizes Vincent’s research and is currently under review by the Journal of 
Water Resources Management: O’Hara-Rhi V., & Tavakol-Davani H. (Under Review) 
Evaluation of Urban Flood Hazard based on Remote Sensing and Machine Learning. Water 
Resources Management. 

- This manuscript summarizes Callum’s research in collaboration with the iWERS Laboratory at 
the University of South Carolina, and has been published in the Water Journal: Tanim, A. H., 
McRae, C. B., Tavakol-Davani, H., & Goharian, E. (2022). Flood Detection in Urban Areas 
Using Satellite Imagery and Machine Learning. Water, 14(7). 
https://doi.org/10.3390/w14071140 

In addition, with the assistance provided by the project champion Ms. Virginia Lingham, PE, who 
is a Senior Consultant working in WSP’s Transportation Operations Strategies, this project was 
able to engage multiple stakeholders across the US through a webinar for transferring knowledge 
on our findings for informed future design of transportation network considering the flooding risks. 
This webinar took place on Feb 18, 2022, with 31 participants. The webinar flyer was distributed 
through multiple venues, including the Committee on Transportation System Operations (CTSO), 
National Operations Center of Excellence, and the TRB committee on Logistics of Disaster 
Response, Business Continuity, and Humanitarian Relief. Below is a link to the recording of this 
webinar, and the list of webinar attendees is presented in Table 3: 

https://sdsu.zoom.us/rec/share/YnF6fZrtYZ- 
7b7kg5cWJpFadtg93JAzHi62xweLqgflEGonhkTCV- 
4X4jGVZxdZT.eGXAgzLKGnmVeE29?startTime=1645203423000 

Table 3. List of Attendees to the Project Webinar on Feb 18, 2022 
 

Name Affiliation 
Abdullah Al Mehedi Villanova University 
Alfred Gross Colorado Department of Transportation 
Amy Bailey Tennessee Department of Transportation 
Brad Darr North Dakota Department of Transportation 
Charles Tapp Texas Department of Transportation 
Christopher Poe Director, Mixon Hill 
Curtis Walker National Center For Atmospheric Research 
David Heller South Jersey Transportation Planning Organization 
Dennis Murray Georgia Department of Transportation 
Dominique Shannon Kansas Department of Transportation 
Jeff Williams Utah Department of Transportation 

https://doi.org/10.3390/w14071140
https://sdsu.zoom.us/rec/share/YnF6fZrtYZ-7b7kg5cWJpFadtg93JAzHi62xweLqgflEGonhkTCV-4X4jGVZxdZT.eGXAgzLKGnmVeE29?startTime=1645203423000
https://sdsu.zoom.us/rec/share/YnF6fZrtYZ-7b7kg5cWJpFadtg93JAzHi62xweLqgflEGonhkTCV-4X4jGVZxdZT.eGXAgzLKGnmVeE29?startTime=1645203423000
https://sdsu.zoom.us/rec/share/YnF6fZrtYZ-7b7kg5cWJpFadtg93JAzHi62xweLqgflEGonhkTCV-4X4jGVZxdZT.eGXAgzLKGnmVeE29?startTime=1645203423000
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Jim Cook Ohio Department of Transportation 
John Roberts Arizona Department of Transportation 
Josh Foster Michigan Department of Transportation 
Judith Peter New York State Department of Transportation 
Kate Homet Villanova University 
Katherine Jennings Wisconsin Department of Transportation 
Kayla Grubb Volkert, Inc. 
Khuzaima Mahdi Tennessee Department of Transportation 
Lee Mixon CEO, Mixon Hill 
Maria Rhi Independent health practitioner 
Matthew Miller Texas A&M University 
Peleg Kremer Villanova University 
Rob Marz Michigan Department of Transportation 
Sarah Gill Michigan Department of Transportation 
Thien Tran Colorado Department of Transportation 
Tony Coventry Federal Highway Administration 
Virginia Lingham WSP USA 
Virginia Smith Villanova University 
Xiaoxiao Zhang University of Virginia 

 
 

Data Products 
The data products of this project are the maps of flood risk and hazard index presented in Figure 
3 and Figure 4 above. This project did not collect any data through field measurements or social 
surveys. 
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Appendix. Supplemental Visualizations  
 

Figure A1. Location and geographic context of study area: a) shows study area DEM, network of major roads, 
major streams, and validation points; b) shows hydrologic and geographic context of region around the study area. 
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Figure A2. Disadvantaged communities by census tract in the study area as designated by CalEnviroScreen 
 

Figure A3. Streamflow in cubic feet per second in the San Diego River at Fashion Valley. 
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Figure A4. Average 15-minute streamflow in the San Diego river in cubic feet per second at Fashion Valley and 
rainfall at Fashion Valley, from 0:00 on February 27th, 2017 to 0:00 on March 1st, 2017. 
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Figure A5. Imperviousness and bluespots: a) shows average imperviousness per sub-watershed; b) shows the extent 
of bluespots, or landscape depressions identified from a hydro-conditioned DEM. 
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Figure A6. Drain density and flow lines/watershed boundaries: a) shows density of drains per sub-watershed; b) 
shows flow lines and local watershed boundaries. Note northern watersheds flow into the San Diego River, while 

those in the south flow directly into San Diego Bay. 
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Figure A7. Land use and slope: a) shows land use in the study area; b) shows slope, found from a hydro-conditioned 
DEM. 
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Figure A8. Income and drain infrastructure: a) shows average income; b) shows average drain infrastructure age, 
both by census tract. 
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Figure A9. Density and OCI score: a) shows population density by census tract; b) shows street OCI score for all 
streets that were sampled. 
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Figure A10. Images taken by COSMO-SkyMed satellite of the San Diego area on February 16, 2017 (top: dry 
condition) and February 27, 2017 (bottom: wet condition). 
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Figure A11. Distribution of pixels over normalized flood index values, with 0 being lowest flood risk and 100 highest. 

Note the bimodality of the distribution, and the concentration of values having a flood index from about 82 to 95. 
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Figure A12. SAR Imagery classification for a) dry-weather condition and b) for wet-weather condition. 
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Figure A13. Gamma backscatter distribution of training areas for three land cover classes. 
 

Figure A14. Gamma backscatter distribution for output regions classified as urban or shrubland during dry 
condition and water during wet condition. 
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Figure A15. Illustration of changes seen in a grass and dirt classified as water during wet condition a) but shrubland 
during dry condition b), and example of the same phenomenon occurring c) with rooftops during storm in and d) 

during dry conditions. 



42 
 

 

Figure A16. Four different areas of San Diego showing flood hazard levels. At the top, a) shows the downtown 
area of the city, b) a section of the Talmadge neighborhood, c) an area of elevated flood hazard , 
and d) the Mission Valley area around Fashion valley mall and the San Diego River. The area 
corresponding with c), the Midway District, is a mainly industrial and commercial area on a flat 
region between Mission Bay and San Diego Bay. Here the flood hazard index is high thanks to 
both high flood risk and high vulnerability indices, and it is a good example of high flood hazard 
in flat coastal areas. D) shows flood hazard along transportation networks in an area known for 
its flooding, Mission Valley. 

Extensive, continuous flood hazard as would be expected in a floodplain area is present but note 
that the flood hazard is almost exclusively low in this area. This is not because flooding does not 
occur here- as the flood risk map shows, Mission Valley is a zone of concentrated flood risk- but 
because the mainly commercial, wealthier Mission Valley area scores lower in flood 
vulnerability indices. A) is the area around downtown, showing flood risk in the most built-up 
(though not necessarily most dense in terms of residents) neighborhoods of the city of San 
Diego. Once again there are extensive regions of high flood hazard along the coast. Also notable 
here are two concentrations of high flood hazard along the 5 freeway circumventing downtown. 
Finally, b) shows flood hazard in the relatively high-density neighborhood of Talmadge. This is 
an example of the sort of flood hazard typically seen in the city, with small stretches of roads or 
intersections having high flood hazard. This flood hazard, taking the form of NF, could be a 
nuisance or even a danger to drivers using roadways during storms. 
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Table A1. Validation Point Sources 
 

Storm Date Rainfall total over 
storm interval at 
Fashion Valley 
(inches) 

Peak gauge height 
for San Diego River 
at Fashion Valley 
(feet) 

Number of points 
reported flooded in 
study area 

Flooded points 
shared with at least 
one other storm 

January 6, 2016 3.41 11.6 7 4 
February 17, 2017 2.78 14.2 23 9 
December 8, 2018 2.19 8.2 25 8 
February 14, 2019 1.78 12.1 20 5 

Total: 47 unique flooded points 
 
 

Table A2. Flood Hazard Variable Weighting 
 

Variable Class Weighting 
Flood Risk  Multiplier 

 High: 90–100 x3 
 Med: 85–90 x2 
 Low: 78–85 x1 
 Negligible: 0–78 x0 

Income  +0.125 
 Below Poverty Line 0.125 
 Middle Income 0.050 
 High Income 0 

Population Density  +0.125 
 Very High 0.125 
 High 0.100 
 Middle 0.075 
 Low 0.025 
 Very Low 0 

Drain Age  +0.125 
 Oldest 0.125 
 Old 0.075 
 Recent 0.025 
 Very Recent 0 

Street OCI Index  +0.125 
 Poor 0.125 
 Fair 0.075 
 Good 0 

Maximum Hazard Index = 1500 

Table A3. Cosmo-SkyMed Image Characteristics 
 

Image Sensor 
Mode 

Resolution Date Direction Polarization Processing 
Level 

Incidence 
Angle 

Wet- 
weather 
scene 

Stripmap 3m 02/27/2017, 
1:22 UTC, 

17:22 local time 

Descending HH Level 1-D 26.56 

Dry- 
weather 
scene 

Stripmap 3m 02/16/2017, 
1:44 UTC, 

17:44 local time 

Descending HH Level 1-D 26.57 
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Table A4. Generalized Linear Model Outputs 
 

Explanatory Variable Coefficient Standard Deviation T-statistic 
Imperviousness 0.042571422 0.001504421 28.29753837 
Bluespot Presence 2.218617379 0.039793941 55.75264266 
Drain Difference -0.001603797 0.0000829 -19.33972941 
Flow Accumulation -0.014684507 0.000382 -38.40768223 
Slope -0.090746418 0.00492696 -18.41833681 

Table A5. Generalized Linear Model Additional Outputs 
 

Dry True False 
Predicted True 22 0 
Predicted False 8 30 
Wet True False 
Predicted True 20 0 
Predicted False 10 30 
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