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Abstract 
The project developed a sensor degradation detection algorithm for Automated Driving 
Systems (ADS). Weather, cyberattacks, and sensor malfunction can degrade sensor 
information, resulting in significant safety issues, such as leading the vehicle off the road 
or causing a sudden stop in the middle of an intersection. From the Virginia Tech 
Transportation Institute’s (VTTI’s) Naturalistic Driving Database (NDD), 100 events 
related to sensor perception were selected to establish baseline sensor performance. 
VTTI determined performance metrics using these events for comparison in simulation. 
A virtual framework was used to test degraded sensor states and the detection algorithm’s 
response. Old Dominion University developed the GPS model and collaborated with the 
Global Center for Automotive Performance Simulation (GCAPS) to develop the 
degradation detection algorithm utilizing the DeepPOSE algorithm. GCAPS created the 
virtual framework, developed the LiDAR and radar sensor models, and executed the 
simulations. The sensor degradation detection algorithm will aid ADS vehicles in decision 
making by identifying degraded sensor performance. The detection algorithm achieved 
70% accuracy. Additional training methods and adjustments are needed for the accuracy 
level required for vehicle system implementation. The process of collecting sensor data, 
creating sensor models, and utilizing simulation for algorithm development are major 
outcomes of the research. 
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Introduction 
Vehicles equipped with Automated Driving Systems (ADS) rely on sensors that provide 
information about the surrounding environment to make control systems decisions for real-time 
object avoidance and path planning. All sensors have strengths and weaknesses that vary by sensor 
technology, as shown in Figure 1. Thus, a comprehensive ADS sensor suite should have a range 
of sensors to establish a robust system. Example Tier 1 sensors include perception sensors 
(LiDAR, radar, visual cameras, ultrasonic) and localization sensors (global navigation satellite 
[GPS] system, high-definition maps). 

 

Figure 1. Radar chart. Systematic analysis of the sensor coverage of automated vehicles using 
phenomenological sensor models. [1] 

The accuracy of the sensor information passing to the sensor fusion algorithm and then to the 
control algorithms greatly affects vehicle performance. Various forms of degradation can affect 
the sensor information, such as weather and information corruption due to cyberattack. 
Cyberthreats can create degraded sensor states by introducing misinformation to the sensor or 
system, including direct communication to the vehicle, false physical signage, and projected 
images in front of vehicles [2]. It has been widely demonstrated in the literature that an attacker 
can easily launch a GPS spoofing attack using a low-cost off-the-shelf software-defined radio such 
as the bladeRF. This could fool the victim vehicle into following a route crafted by the attacker. 
Misinformation from a sensor could also present significant safety concerns by leading the vehicle 
off the road or causing the vehicle to suddenly stop in middle of an intersection. 

Background 
The goal of this project was to explore whether algorithm-based detection can identify sensor 
misinformation. The misinformation can be in various forms such as degradation from weather or 
information corruption due to a cyberattack. The objective was to develop a sensor degradation 
detection algorithm through simulation, constructed and validated from physical testing and real-
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world data. The intent of developing the algorithm was to improve ADS performance reliability 
by identifying potentially degraded sensor data. The project work was divided between three 
organizations. The Virginia Tech Transportation Institute (VTTI) provided real-world driving data 
and analysis to understand the conditions a sensor may experience (e.g., degradation factors), 
identified select use cases (event incident types), supported physical sensor testing on the Virginia 
Smart Roads, and explored overall performance considerations of the sensor degradation detection 
algorithm. Old Dominion University (ODU) developed a GPS model with spoofing detection and 
introduced cyberthreats for GPS-related information. The Global Center for Automotive 
Performance Simulation (GCAPS) developed test methods and models for LiDAR and radar 
sensors. GCAPS also developed a virtual simulation framework to evaluate the performance of the 
degradation detection algorithm. Both GCAPS and ODU developed the cyberthreat methodology 
and sensor degradation detection algorithm.  

This project was divided into six subtasks: 

• Task 1: Project Management 
• Task 2: Analysis of Sensor Perception-related Crash and Near-crash Events  
• Task 3: Virtual Framework for Simulation  
• Task 4: Sensor Model Development  
• Task 5: Sensor Degradation and Algorithm Development and Assessment  
• Task 6: Final Report 

Because the technical content was contained within Tasks 2 through 5, the remainder of this report 
will focus on those tasks. 

Methods and Results 

Task 2: Analysis of Sensor Perception-related Crash and Near-
crash Events 
The research leveraged real-world naturalistic driving study (NDS) data from the Second Strategic 
Highway Research Program (SHRP 2) NDS dataset, which includes vehicle kinematics and video 
data for over 5.5 million trips taken by over 3,500 participants [3]. These trips encompass 
approximately 32 million miles of driving data collected during thousands of hours of vehicle 
operation. Nearly 2,000 crash events, ranging from severe to minor, and nearly 3,000 near-crash 
events have been identified in the SHRP 2 dataset. T 

From the NDS, the research team selected 100 events for initial simulations. From the 100 events, 
variations of each event were created in simulation to bring the total number of events to 1,000.  

To determine the 100 events, a review of all available variables associated with crashes and near-
crashes in the SHRP 2 dataset was conducted. The team identified four factors relevant to sensors 
perceiving the environment (weather, roadway alignment, lane of travel, and traffic density) and 
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analyzed the distribution of these factors for the selected incident types and crash severities. These 
variables are categorical, meaning they contain only a few discrete values and are not necessarily 
continuous or linear, which precludes many relationship-based analyses from the selection of 
events. There were 41,539 cases pulled from the database. Eighty percent were baseline events 
that did not contain crash or near-crash scenarios. These were initially provided in case they were 
useful for model development, which turned out to be unnecessary. Some high-level distributions 
of the data are shown in Table 1 and Table 2 in the Appendix. 

Proceeding with the non-baseline events, the dataset was evaluated by variable combinations given 
the categorical data type. There were 8,960 non-baseline events and 1,078 unique combinations of 
the data and description variables; 566 of those combinations had only one occurrence within the 
dataset. There were still far more combinations than the target of 100 re-created events.  

To further reduce the dataset, the team evaluated the unique combinations based on their variable 
distance, meaning the number of variables that were different between combinations. Variable 
distance between unique combinations is shown in the square matrix plot in Figure 2. A value of 
0 indicates the combinations are identical and, because the data only contains unique combinations, 
values of 0 only occur on the diagonal. A value of 7 indicates the two combinations are different 
across all variables. Some clusters of similar events are evident in the dark blue areas of the figure 
resulting from the matrix sorting of unique combinations; however, there is still too much data to 
draw specific conclusions.  

 

Figure 2. Square matrix plot. Variable distance between each unique combination. 

The next step in reducing the combinations was to develop a method that would optimize the 
quality of the final selection. This was done with an algorithm to rank and eliminate combinations 
that are different in only one variable, which resulted in a ranked list containing 219 combinations.  
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The team used the top 100 combinations in this list as the final selection of events. These final 
combinations were matched to their actual events in the dataset. Because there were multiple 
events for each of these combinations, the events were evaluated on their data quality. The 
requirements included availability of the data channels needed for event re-creation and minimum 
signal dropouts. This final list of 100 events was carried forward into Task 3. 

Task 3: Virtual Framework for Simulation 
The virtual framework consisted of using MATLAB and IPG CarMaker together in a co-
simulation environment to provide event simulation and sensor algorithm evaluation. Data 
groupings and flow path were identified between the two software applications to support the 
sensor models and algorithm. 

Relative to simulation, the sensor models were integrated post simulation into the data stream. The 
object-level output data was collected from CarMaker’s internal sensor models. These models 
handle the geometric constraints and sensor occlusions of the sensor. The degradation sensor 
model then augmented this time series data to reflect the response of the degraded sensor. The 
degraded sensor data was applied at a prescribed intensity and time. This data was unknown to the 
degradation detection algorithm and compared after the fact to assess the accuracy and 
performance of the algorithm. A diagram of this integration is shown in Figure 3.  

 

Figure 3. Diagram. Integration of simulation, sensor models, and misinformation detection tasks. 

Simulation 
To be used in the framework, NDD events required conversion using a GCAPS-developed method, 
which also allowed variations of each baseline event to be created via the OpenScenario format. 

Decode: The simulation process began with reducing real-world event radar, inertial measurement 
unit (IMU) data, and visual data to a local coordinate digital format using a proprietary MATLAB 
graphical user interface (GUI).  
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Creation: A 3D environment of each event location was created in MathWorks RoadRunner. 
Environmental objects and road geometry were replicated for use in OpenScenario and CarMaker.  

OpenScenario: The results from the Decode and Creation processes were used for the 
OpenScenario process. Combining the information from the decoding (location of actors, 
trajectory) and the 3D environment (lanes/junctions/exits) produces an estimate to visualize the 
trajectory of the ego vehicle with respect to other actors in the scene.  

CarMaker Conversion: MATLAB processing script was run on the OpenScenario base event 
output to convert the event-based data back to X-Y data. Subject vehicle velocity and trajectory 
files for the controller algorithm and vehicle actor positive text files were created in this step. 

The CarMaker global coordinate system (GCS) was configured to output latitude and longitude 
data. The actor vehicles were manually set to mirror the original event, and the input file was set 
to the event ID number. The randomized OpenScenario events were run through CarMaker, and 
the output results were algorithmically analyzed based on eliminating vehicle actor collisions, 
eliminating variations where the subject vehicle took the incorrect path, and selecting variations 
with enough speed and position variation compared to the original base event. The simulation time, 
sample rate, and sensor parameters were set to match the NDD and test data parameters, 
respectively. Then, the final mass CarMaker simulations were run, and the output data was 
configured and saved in MATLAB.  

Task 4: Sensor Model Development 
Of the multiple sensors available to the ADS, this research focused on three Tier 1 sensors: LiDAR, 
radar, and GPS. Cameras were omitted due to project scope. This study focused on an algorithm’s 
ability to detect degradations in a sensor signal. Since cameras and LiDAR are both light sensing 
devices, there would be some duplication of effort in the limited time and resources to complete 
the project. Sensor models of LiDAR and radar were created from data collected on the Virginia 
Smart Roads. While the sensor models were empirically based, the test conditions captured 
physical response data (i.e., different colors, surfaces, and orientations to capture the various light 
effects for a LiDAR sensor). Events for sensor characterization included non-moving, continuous 
moving, and sudden movement targets in a variety of degraded states, including varying rain 
conditions and lighting conditions. The sensor model for the simulation will need to work within 
the time domain; thus, GCAPS incorporated time continuity into the model outputs.  

The sensor models were based around the statistical distribution of responses collected from actual 
sensors. The distributions were relative to the parameters of the simulation (target vehicle 
position/pose, lane curvature, velocity, etc.) and the prescribed degradation intensity (rain). This 
determined the augmentation applied to the simulation signal relative to modeled performance 
metrics. Depending on the response, the distributions were fit in MATLAB to match an existing 
probability distribution, parametric equations, and/or custom fitted and smoothed distributions. 
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The sensors under test were focused on more advanced types of radar and LiDAR technology: the 
Continental ARS430 radar and the beta version of the Innoviz Pro LiDAR. The newer ARS430 
operates at a higher frequency, 76 GHz, and outputs point-cloud-like data. The Innoviz is a solid-
state LiDAR with no motor-driven components, which are common in older sensor models.  

A differential GPS (DGPS) was used to track the test vehicles’ exact position to aid in processing. 
This eliminated the potential variable of which object detection technique to use to extract the 
target data and allowed that element to be controlled within the sensor models, if desired. The 
known relative position of vehicles seeded the bounding box extraction of object information from 
the point cloud outputs. It also provided the true value to compare against sensor responses and 
generated error signals needed to build the metrics that describe the statistical model components.  

In Figure 4, a top-down LiDAR point cloud is shown at t = 0 s and t = 5 s. The Innoviz LiDAR, 
being solid-state, has a fixed field of view of 72°. It contains contour lines of the roadway and 
vertical structures such as the fence line containing the test track and far-off buildings that may 
come within range. The Innoviz LiDAR detects the intensity of returned light, so the road lines 
stand out because of their retroreflective paint. In the figure, the green circle is the subject vehicle 
with its heading arrow from the DGPS; the red circle is the target vehicle from its DGPS. Having 
the DGPS allows the simple removal of non-target data to make the process of object detection 
straightforward and deterministic, without adding the inaccuracies of a perception system. The 
radar data is similar; the ARS430 produces a front-facing pseudo-point cloud, though it is much 
less sparse than a LiDAR and more susceptible to noise and variations in returned power.  

 

Figure 4. Scatter plots. LiDAR data examples. 

To fit the models, the team used scenario-based tests to build and validate the statistical sensor 
models. The tests evaluated were ranging sweeps, lane slaloms, and circle track tests. The range 
sweeps provided dynamic longitudinal information. The lane slalom provided lateral information. 
The circle track provided target pose and position information. There was, of course, overlap in 
these designations. The baselines of these models were built around a static subject vehicle 
(sensing vehicle) with validation tests at speed to ensure that the responses did not deviate with 
speed.  
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The sensor models were built around the statistical distribution of data collected from actual 
sensors (i.e., Innoviz Pro LiDAR and Continental ARS radar). The sensor model’s process for 
modifying the simulation data is shown in Figure 5. The sensor is broken into three main parts: 
preprocessing, data manipulation, and setpoint randomization.  

 

Figure 5. Flowchart. Sensor model process. 

The preprocessing part of the model is an object extractor and coordinate transformer. The traffic 
and environment objects were collated from the CarMaker data into a more usable format for the 
degradation algorithm and/or the DeepPOSE localization algorithm being co-developed by ODU. 
DeepPOSE is a framework that equips a deep learning model to address the noise introduced in 
sensor readings and detect GPS spoofing attacks on multiple platforms, including mobile phones 
and vehicles. Each LiDAR/radar sensor’s coordinate system was converted to the same reference 
frame to improve the usability. The core data manipulation of the model is four subprocesses: 

1. Object Manipulation (Insertion/deletion) 
2. Geometry Manipulation (Sensing limits, detection range, and field of view) 
3. Noise/Offset (Shifting and scaling of data) 
4. Time Effects (Latency, dropouts) 

The continuous effects, like noise and offset, were defined statistically. The distributions defining 
these subprocesses are relative to the parameters of the simulation (target vehicle position/pose, 
lane curvature, velocity, etc.) and the prescribed degradation intensity (rain). These were built in 
MATLAB around existing probability distribution, parametric equations, and/or custom fitted and 
smoothed piecewise cumulative distribution functions. For other modeled sensor effects such as 
spoofing, hacking, or dropouts, the responses were parameterized to state variables according to a 
function/system of equations, lookup tables with interpolation, statistical distributions, or a 
combination of these. The setpoint randomizer determined how the CarMaker datasets were 
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augmented. The array for all these setpoints is unknown to the detection algorithm but saved for 
calculation and to compare with the algorithm output to determine the proficiency of detection.  

Additional GPS data was collected to validate the GPS/IMU sensor models to provide augmented 
data to feed through DeepPOSE. The GPS test data was collected on two separate days with clear 
and overcast weather, driving across all areas of the Smart Roads (urban, highway, and rural). A 
standalone automotive GPS and a DGPS system were used to indicate the accuracy of the onboard 
GPS system to atmospheric conditions to scale the continuous degradation effects to the 
normalized degradation input request to the model and non-continuous shifts in position to the 
loss/gain of satellite reception. The data was adapted to the statistical distributions and sensitivities 
of simulation variables by the same methods as the LiDAR and radar data. Example plots of the 
GPS and IMU degradation effects on the yaw signal are below in Figure 6. The effects shown were 
the noise from atmospheric conditions to GPS, the potential voltage bias of the output amplifier of 
an IMU, and the calibration error that commonly drifts over time of an IMU. The effects on the 
IMU grow in error overtime because IMU sensors inherently rely on integration down to the first 
order signals, and the integration errors accumulate.  

 

Figure 6. Scatter plot. Example yaw data of GPS signal with noise and degradation. 

The team created the input degradation array to challenge the detection algorithm. The array was 
built to be informed by a mixture of natural rainfall parameters and enough steady state conditions 
to not over or under constrain the variety of data to train the algorithm. The rain intensity was 
normalized across the unit interval, 0 to 1, with 0 being no rain and 1 being tropical storm levels. 
The way this intensity changes over time, shown in Figure 12, is typically a gentle lead-in to the 
heart of the storm, then a large and rapid change in rainfall, and then a similarly gently lead-out.  

To make this into a simple input array for the simulations, a sigmoid shape was used with randomly 
assigned start and end points. These points were defined by two normally distributed intensities to 
match the lower intensity lead-in or lead-out periods and the higher intensity peak period of the 
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storm. This bimodal intensity results in some events having a large transition from low to high, 
and vice versa, and some events having mostly constant high or low intensities. The output shape 
was scaled and shifted to the beginning and ending intensities. Thirty percent of the cases were 
overwritten to be a constant 0 intensity and 10% were overwritten to be a constant 1 intensity. This 
was to ensure that the training data allows the detection algorithm to be sensitive to dry conditions 
and discern degraded signals, even if they are constant in the evaluation time.  

The event breakdown of rain and level of rain is: 

• 1,155 Total events 
o 369 Events with constant conditions 

 161 with no rain-37 with all heavy rain 
o 394 Events with increasing rain 

 188 from no rain 
o 392 Events with decreasing rain 

 71 from heavy rain 

Task 5: Sensor Degradation and Algorithm Development and 
Assessment 
The sensor degradation detection algorithm (1) uses the sensor inputs to determine the possible 
representation of vehicle positions in space and time relative to the subject vehicle and road 
geometry for each sensor, (2) compares the results, and (3) determines possible misinformation of 
the sensor. This was accomplished using input data sources along with external map data. The 
completed algorithm was run across the 1,000 events to create time histories of all relevant objects 
in the scenario. The research team applied state-of-the-art convolutional neural networks that allow 
precise and fast detection of traffic objects from naturalistic driving data despite varying image 
quality. Subject vehicle movements were estimated by fusing different sensor outputs in a 
Bayesian framework, taking into account different error sources in the data. The object detection 
results and the estimated trajectory of the subject vehicle were complemented with other data 
sources such as radar and map data.  

The ODU team designed a deep learning system that uses motion sensors in a vehicle IMU, 
including accelerometer and gyroscope sensors, to estimate vehicle position and further detect 
GPS spoofing attacks. The deep learning system has two components: a vehicle position estimator 
and a GPS spoofing detector. To estimate the vehicle position from the noisy motion sensor 
readings, the system uses a combined convolution neural network and sequence-to-sequence 
neural network to transform sequences from the source domain to sequences in the target domain. 
In the system, the multi-dimension sensor measurement was taken as the source sequence, and the 
vehicle state, including the speed and direction, served as the target sequence. To detect GPS 
spoofing, an efficient detection algorithm was designed that detects the attack by composing the 
real-time trajectory (based on the vehicle speed and direction obtained from the motion sensor 
data) and comparing it with the trajectory reconstructed by the GPS signals. 
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To increase the accuracy of the trajectory reconstruction from the noisy motion sensor data, a novel 
map alignment scheme was conducted to align the reconstructed trajectory with an open-source 
street map, which can significantly reduce the accumulation of displacement error from the 
trajectory reconstructed from the noisy sensor data when the vehicle driving distance is large.  

Baseline Noise and Degradation Noise 
Baseline noise refers to any background interference, which can cause fluctuations in the sensor 
data measurements. The baseline noise typically has the form of stray ambient light, which affects 
beam diameter and LiDAR data signal strength measurements. Our simulated baseline noise, 
which mimics the baseline erroneous readings, has the form of various levels of spikes adding to 
the original data. Because the baseline noise is a natural property of LiDAR data and is different 
from misinformation in the object detection level that requires detection, it becomes important to 
minimize the background noise while increasing the accuracy in degradation pattern detection.  

 

Figure 7. Line graphs. Experimental results of recovered LiDAR data from baseline noise. 

The top of Figure 7 illustrates the frontal LiDAR signal strength data with baseline noise as 
irregular spikes at various levels. The baseline noise removal algorithm is a preprocessing step of 
the degradation detection algorithm that removes baseline noise before the analysis of the 
degradation data is started. The baseline noise removal step is implemented using a sliding window 
method that calculates the neighborhood data point’s intrinsic statistical information and analyzes 
the discontinuation of the spike data point. The optimal sliding window size is 5, based on the 
experiments. The output of the baseline noise removal method is shown in the bottom of Figure 7. 

Deep Learning-based Degradation Detection Algorithms 
The training dataset is a structure array with two fields: Data and Labels. The Data field contains 
the object level detection data for each actor within the scenario that is reduced from the many 
subject vehicle sensors down to a single detected object by a priority filter. This filter prioritizes 
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by frontal sensor detections and then by strength of signal in the object data output. This limits the 
number of signal switches that could confound the detection algorithm.  

The Data field is a 2D matrix in which each row is a simulated driving event sampled at 10 Hz. 
The row index represents the event index, and the column index represents the timestamp. The 
baseline noise has been put in the top half of the data, and the degradation sensor data has been 
put in the bottom half of the data, arranged such that each baseline noise data and degradation 
noise data from the same event have the same interval.  

To analyze the sensor signal feature on multiple levels to maximumly extract the feature of data, 
time-frequency representations of the sensor signals were created, also called scalograms. The 
scalogram is the absolute value of the sensor signal’s continuous wavelet transform (CWT) 
coefficients. The first step for creating the scalograms is to precompute the CWT filter bank of the 
sensor signal. The analytic Morse (3,60) wavelet is used, which is a default in the structure of the 
GoogLeNet network backbone described in the next section. To match the simulation data’s 
sampling time and frequency, a signal length of 290 and a signal frequency of 10 were used. To 
examine one of them, the filter bank was created from the first 290 signals to take the CWT and 
get the coefficients of the signal to then create the scalogram. The CWT filter bank provides the 
CWT of the sensor signals. The scalograms have been constructed based on the wavelet 
coefficients. Then, the scalograms were saved as 2D RGB images and fed into the deep learning 
neural networks. An example is shown in Figure 8.  

 

Figure 8. RGB scalogram. The conflict happened in the beginning of the 30-second event. 

The vehicle conflict data is concentrated in the beginning of this event due to the nature of the 
original naturalistic data and randomization process. The low frequency content in this region is 
also reduced by the filtering processes to remove the slow and steady state content expected in the 
data that can confound the detection algorithm. The data has been randomly divided into two 
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groups. Eighty percent of the dataset was assigned to the training set and 20% to the validation set. 
This ratio is common for training with this type of data as it provides a bit more data to train the 
neural networks with a limited dataset of simulated scenarios.  

The network backbone is GoogLeNet [4]. It takes 2D RGB images as input, and the input size is 
224 x 224 x 3. The GoogLeNet is designed to classify more than 1,000 categories for images. The 
model is pretrained to its original purpose, so the network needed to be retrained for the proposed 
sensor signal with two types (baseline noise and degradation noise).  

The early stages of the network try to extract some low-level image features, including color and 
edges. The later stages are expected to extract more intrinsic features of the sensor signals, which 
can be more representative for separating the baseline noise and degradation noise of sensor data. 

The more detailed layer graph of the GoogLeNet used is listed in Figure 13. The dropout layer was 
added to prevent overfitting, which can randomly change the input element’s value to become 0 
based on a 0.5 probability, and the final dropout layer’s probability was set to 0.6. The last two 
layers of the convolutional neural network are the important part for extracting the image feature 
for classification. The last two layers combine all the information extracted in the previous layers 
to become the probability of a certain class label, as well as the loss values. Because this research 
only concerned the two types of sensor signal, which is different from the original GoogLeNet 
designed for 1,000 categories, the last two layers were replaced for the current task. The original 
fully connected layer was replaced with a new fully connected layer that has the two filters. This 
also allowed increasing the learning rate in the fully connected layer for a faster learning speed.  

The target of the training process is to minimize the loss function iteratively between prediction 
and ground truth. Inside each iteration time, the gradient of the loss function leads to the change 
of the descent algorithm weights. The parameter tuning inside the training process can make a big 
impact on the performance of the neural network. For example, tuning the number of epochs is 
critical. If the epochs are too small, the network may have a problem with underfitting, which 
means the model cannot provide sufficient information to predict the output. If the epochs are too 
large, then the model can have a problem with overfitting, which means the model is too good for 
the training data but lacks the generalization for adapting to new testing data. After many 
experiments, 20 epochs were chosen as optimal. The mini batch size is 10, which corresponds to 
the subset number of training data inside each iteration. The initial learning rate was set as 0.0001, 
which represents the initial step size toward the direction of negative gradient in the loss function. 

The training set chosen is: 

Four state variable inputs for the models 
• Baseline noise 
• Rain 
• Emulating two hacking/spoofing effects 
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Four activation levels for each of those variables 
• On throughout 
• Off throughout 
• On to off 
• Off to on 

Cross entropy was chosen as the loss function. The convergence process is shown in Figure 9. As 
indicated in the figure, the training accuracy shown at the top keeps increasing as the iterations 
increase, and the loss shown at the bottom keeps decreasing during the process. After 20 epochs 
and 280 iterations, the training finished in 23 minutes with a single CPU. The learning rate of 
0.0001 was the most optimal value based on the results.  

The accuracy of the network is 70.37% when using the given validation dataset. In this instance, 
only two categories of data were used: baseline noise sensor data and degradation sensor data. In 
the future, improvements may be made using new categories for new types of essential patterns 
inside the sensor data. 

The proposed degradation signals have very subtle differences compared to baseline signal data. 
Both signals have irregular patterns compared to common periodical signals. Thus, the sensor data 
requires the networks to have a stronger learning capability to best capture the different patterns 
inside the degradation data. To further improve the performance of the current algorithm, a better 
data cleaning method that refines the sparse data to have more informative features inside the 
training dataset can be very useful based on our experiments. 
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Figure 9. Line graphs. Training process of the proposed network. 

The algorithm accuracy during training achieved approximately 70%. To improve accuracy, larger data sets are required. To compare 
to the NDD data, simulation data was “played back” and evaluated at each simulation time step with the data up to that time step. When 
the algorithm determined that a degradation was occurring, the playback clock was stopped to determine the “reaction time” of the 
algorithm. After iterating through 44 events in this way, the algorithm was shown to perform poorly (Figure 10) in this evaluation 
method. The remaining events were not evaluated since the early results already indicated that improvement was needed in the algorithm 
detection rate. The improvement in the accuracy of the algorithm will contribute to improving the reaction time. Further investigation 
is needed to determine other paths than this playback evaluation for improving the algorithm reaction time. 
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Figure 10. Bar graph. Algorithm reaction time from first 44 events. 

DeepPOSE algorithm 
DeepPOSE is a deep learning framework proposed to (a) address the noise introduced in sensor 
readings and (b) detect GPS spoofing attacks on mobile platforms. It contains a vehicle position 
estimator, which uses a convolutional and recurrent neural network (RNN) to reduce the noise and 
recover a vehicle's real-time trajectory from multiple sensor inputs, and an offline map, which 
projects a reconstructed trajectory in a real-world road map to eliminate the accumulation of errors 
on the trajectory estimation effectively. The reconstructed trajectory from sensors is then used to 
detect the GPS spoofing attack. 

DeepPOSE takes sequential IMU sensor data as input, then produces estimated vehicle positions 
sequentially to profile the relative movements of the target vehicle. The benefits of using 
DeepPOSE to reconstruct the vehicle trajectory instead of using a self-correcting filter are 
manifold. First, a self-correcting filter like Kalman requires a good understanding of the system 
being estimated, including the system dynamics and measurement noise. Estimating the necessary 
parameters for a complex vehicle system can be challenging. Furthermore, to accurately estimate 
a vehicle’s state with a Kalman filter, multiple sensors must often be used in combination. 
However, fusing sensor data from different sources can be complex and challenging, as different 
sensors may have different noise characteristics and biases. While DeepPOSE is proposed as a 
unified framework to process noisy data from multiple sources, it can effectively estimate the 
vehicle position without considering the sensors’ different noise characteristics and biases. 

Model Inputs and Outputs 
There were 𝐾𝐾 different sensors provided by CarMaker. Sensor 𝑘𝑘 has the sampling frequency 𝑓𝑓𝑘𝑘. 
Let 𝑑𝑑𝑘𝑘 represent the number of axes for each sensor (e.g., measurements along 𝑥𝑥, 𝑦𝑦, and 𝑧𝑧 axes). 
The GPS coordinates 𝐶𝐶 are sampled at the frequency 𝑓𝑓𝑐𝑐.  
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Unlike other deep learning models that require each data input to be paired with a target or label, 
the sequence-to-sequence model used in our design requires pairing a series of inputs with a series 
of target speeds and directions in the time domain. After all sensor measurements are aligned with 
the correct targets, the raw measurements were split into small sequences with the same number 
of the time unit, 𝑛𝑛𝜏𝜏. A 3D matrix, 𝒳𝒳𝑘𝑘, was used to represent an input sequence generated by the 
sensor 𝑘𝑘. The depth of the input is 𝑛𝑛𝜏𝜏 , which is also the number of encoders/decoders in the 
sequence-to-sequence model. The height of input is 𝑑𝑑𝑘𝑘, which depends on the number of axes of 
sensor 𝑘𝑘. The width of the input is 𝜔𝜔 · 𝑙𝑙𝑘𝑘, where ω is the size of the sliding window to control the 
number of sensor measurements aligned to one single target. When multiple sensors are 
considered, the inputs are stacked into a 𝑛𝑛𝜏𝜏  ×  ∑ 𝑑𝑑𝑘𝑘𝑘𝑘  ×  𝜔𝜔 𝑙𝑙𝑘𝑘 matrix 𝓧𝓧. 

A unified symbol, 𝓨𝓨, denotes the output vector corresponding to each input vector 𝓧𝓧. When the 
model is used to estimate the vehicle speed, 𝓨𝓨 = 𝒗𝒗, where 𝒗𝒗 =  {𝑣𝑣𝑡𝑡}, 𝑡𝑡 ∈  {1, . . . ,𝑛𝑛𝜏𝜏}. 

Similarly, 𝑌𝑌 =  𝜃𝜃 when the target is the vehicle direction. For the sake of consistency, all vectors 
are denoted by bold 𝓨𝓨, and an instant target value at time t is denoted by 𝒴𝒴t. 

Sequence-to-Sequence Modeling 
. Unlike a single or stacked RNN, which operates on a sequence and feeds its own outputs for 
subsequent cells, most Sequence-to-sequence learning (seq2seq) models are encoder-decoder 
models composed of a set of two RNNs. The first RNN, encoder, trains the input data, and then 
passes the last state of its recurrent layer as an initial state to the first recurrent layer of the decoder. 
Figure 14 illustrates the overall design of our sequence-to-sequence model used by DeepPOSE.  

Based on the sequence-to-sequence model, the encoder long short-term memory (LSTM) 
processes the input sequence 𝓧𝓧  of 𝑛𝑛𝜏𝜏  elements and passes the internal state (hidden state) 
representation to the next encoder until it reaches the last encoder. Then, the first decoder receives 
the hidden state generated by the last encoder and adds one initial input 𝒴𝒴0 to generate its target 
output 𝒴𝒴1 and updates the hidden states. The second decoder takes the new hidden state and 𝒴𝒴1 as 
inputs to generate a new output 𝒴𝒴2, and so forth. Eventually, the target sequence 𝓨𝓨 is obtained, 
which is (𝒴𝒴1, ..., 𝒴𝒴𝑛𝑛𝜏𝜏). 

In the training process, 𝐷𝐷𝐷𝐷𝐷𝐷(·) was used to denote the decoder output of our model and < 𝓧𝓧,𝓨𝓨 >  
to denote the training samples and labels. The loss function for training the model, ℒ, is given as: 

ℒ =  �𝑙𝑙(
𝑛𝑛𝜏𝜏

𝑡𝑡

𝐷𝐷𝐷𝐷𝐷𝐷(𝓧𝓧𝑡𝑡),𝒴𝒴t)) + �𝜆𝜆𝑗𝑗
𝑗𝑗

𝑃𝑃𝑗𝑗   

The second term in the loss function is the regularizations’ function, and 𝜆𝜆𝑗𝑗 controls the importance 
of penalty or regularization terms. In the design, an L2 regularization is used in the training 
process, and the weight decay is set to 0.01. 
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Performance of DeepPOSE in Speed and Direction Estimation 
The team selected 560 out of 700 trips (with average duration of about 40 seconds) to form training 
data to optimize the model learning process, and the remaining 140 trips were used to perform the 
stepwise analysis for degradation detection. The maximum vehicle speed in the dataset is 36.39 
m/s, and the range of vehicle heading falls into the range of [-25, 25] degrees. Based on this, the 
vehicle instant speed and direction were converted into 50 categorical values (encodings) before 
entering them into the model. The DeepPOSE algorithm will take a sequence of IMU inputs and 
predict a sequence of categorical outputs at the same length. The predicted categorial values will 
be converted back to the vehicle states (i.e., speed and direction) to construct the vehicle trajectory. 
With a larger encoding number, a more precise estimation of vehicle speed and direction can be 
achieved. However, it cannot maintain the same accuracy due to the insufficient training set.  

The following configurations were tested to obtain the speed and direction estimation: 

• Types of input IMU sensor: accelerometer only, gyroscope only, accelerometer and 
gyroscope  

• Sequence length: 5 seconds, 10 seconds, and 15 seconds  
• Number of hidden states: 512, 768, and 1,024 
• Depths of ConvLSTM encoder: two layers of Conv2D and three layers of Conv2D 

Accelerometer combined with gyroscope inputs were optimal from the sensor inputs. The optimal 
sequence length is 5 seconds in the current dataset. Empirical results suggest that a longer sequence 
will increase the learning capability but decrease the number of sequences for training the model. 
When the sequence length is 5 seconds and the distance between two adjacent sequences is 3 
seconds, 560 trips can produce 4,482 sequences for training and 1,121 for validation. When the 
sequence length increases to 10 and 15 seconds, the number of training/validation pairs decreases 
to 3,636/910 and 3,101/776, respectively. To enter enough training samples into DeepPOSE, the 
sequence length was kept to 5 seconds. In terms of the depth of the model, two layers of Conv2D 
were used instead of three layers to avoid possible overfitting. Therefore, each ConvLSTM 
encoder has two convolution layers with 64 filters, and the kernel size is 3 x 3. For the same reason, 
the hidden state in LSTM is set to 768 instead of 1,024 to reduce the model complexity.  

Intensive experiences are conducted with various hyperparameters including the selection of 
length of sequence, regularizations, number of hidden layers, etc. In addition, to test the model 
performance with the configurations mentioned previously (type of IMU sensor inputs, sequence 
length, number of hidden states, depth of ConvLSTM encoder, etc.), weight decay is applied from 
0 to 1, with a step of 0.05, to leverage the overfitting and fine-tune the model. Among the various 
results, the best accuracies for speed and direction estimation are shown in Figure 11. The results 
show an overfitting in the training process, which means the validation accuracies for both speed 
and direction estimation (about 72%) are much lower than the training accuracy (near 99%) when 
the model is set with simplest structure, i.e., with a single ConvLSTM layer and 768 hidden states. 
Overfitting usually occurs when the model has a relatively large number of learning parameters 
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instead of generalizing the examples, which is 5,000 training pairs. Therefore, the model is not 
performed at the optimal performance on the testing dataset. In the future, improvements may be 
made using more events simulated from CarMaker to better generalize the model. 

 

Figure 11. Line graphs. Accuracy of DeepPOSE from training events and validation events. 

Performance of DeepPOSE in GPS Degradation Detection  
To assess the performance of the designed framework in detecting such GPS degradation 
scenarios, we first use DeepPOSE to reconstruct the vehicle trajectories from IMU sensors, which 
are robust to bad weather and GPS spoofing attacks. The reconstructed trajectory generated from 
IMU is then compared with the vehicle trajectory extracted from the coordinates reported by the 
GPS module, which is subject to various degradation scenarios. If the difference between the 
reconstructed trajectory and the reported GPS trajectory is larger than the threshold, the GPS signal 
is then considered degraded. The experiment was run on 140 testing trips in the dataset that the 
model had not seen and with various levels of rain intensity. Figure 15 includes an example of the 
necessary information to perform degradation detection with DeepPOSE. There are nine 
subfigures generated through the assessment. Subplots are numbered as <column,row>, where 
subplot <1,1> refers to the plot in the top left corner, subplot <3,3> refers to the plot in the bottom 
right corner. Subplots <1,1> and <1,2> show the vehicle speed and instant direction extracted from 
CarMaker (ground truth), GPS, and DeepPOSE. Subplot <1,3> plots the rain (degradation) 
intensity. Plots in the second column indicate the errors introduced by GPS and DeepPOSE, 
compared to the ground truth values produced by CarMaker at each timestamp. Plots in the third 
column show the differences between GPS and DeepPOSE, which are critical to determining if 
the GPS signal is under degradation.  

Given that DeepPOSE is not working at optimal performance, the GPS error introduced by rain 
intensity is similar to or even less than the error estimated by DeepPOSE, which makes it hard to 
use DeepPOSE to identify the starting time of the GPS degradation by measuring the Euclidean 
distance error between GPS and DeepPOSE.  
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Although the distance error of DeepPOSE is similar to or higher than the degradation caused by 
rain, our model is vigilant to a special type of GPS degradation, GPS random walk. In the random 
walk degradation, the GPS signal drifts randomly but is still close to the real location. Therefore, 
the bearing difference between GPS and DeepPOSE can be used to detect such degradation.  

Figure 16 demonstrates the GPS random variation degradation, where the vehicle instant course 
calculated from the GPS signals fluctuates significantly. To eliminate the false alarm caused by 
the noise introduced by DeepPOSE, an observation window was set to detect if the random 
variation persists after a period of time. If the variation exists, this will confirm the degradation.  

Among the 140 testing trips, 20 trips were selected in which GPS performed a random walk when 
the rain started, and the DeepPOSE algorithm successfully detected 16 of them, with the detection 
rate of 80% when the observation window is set to 5 seconds. When the observation window 
reduces to 3 seconds, the detection rate remains the same, but the false alarm rate increases.  

Further investigation is needed to improve the performance of DeepPOSE, which can help the 
system reduce the reaction time for the GPS random walk degradation and other types of GPS 
degradation caused by weather.  

GPS and LiDAR Data Comparison 
Because the GPS data format is different from the LiDAR data, the two data streams are compared 
in a different hidden level, the action level, instead of in the raw data. After extracting the raw data 
to become action symbolic data in the different time window, the two data streams can be 
compared and output the timeframe when the two data streams have misinformation compared to 
each other. In the first step, the “car offset” data was extracted based on XODR files, then the 
derivative of the offset data stream was calculated. Big drift inside the derivative data can indicate 
the change point of the vehicle’s action, so the change point detection algorithm was applied to 
detect and output the action change timestamps for both LiDAR and GPS data for comparison. 
The change point detection algorithm’s time-division variable keeps iterating automatically until 
the loss function inside each division reaches the minimum. The results show that the change point 
detection algorithm can effectively and accurately output the timestamp based on the vehicle’s 
lane line offset data acquired from LiDAR when the ego vehicle changes the action. 

Assessment 
As part of this task, the performance of the algorithm was compared with reaction times recorded 
during crash and near-crash events in the SHRP 2 NDS. Figure 17 shows the time, in seconds, 
between the Subject Reaction Start time and the Impact Proximity Time for all events in the SHRP 
2 NDS, where: 

• Subject Reaction Start is “[the] timestamp, in milliseconds, after the start of the file, when 
the driver is first seen to recognize and begin to react to the safety critical incidents 
occurring. Defined as the first change in facial expression to one of the alarm or surprise 
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or the first movement of a body part in a way that indicates awareness and and/or the start 
of an evasive maneuver, whichever occurs first.” [3] 

• Impact Proximity Time is “[the] timestamp, in milliseconds after the start of the file, when 
the subject vehicle and another object of conflict first make impact. In the case of a near-
crash, [this is] the timestamp when the subject vehicle and other object of conflict are at 
their closest distance to each other.” [3] 

For most crash events, driver reaction started less than 1 second before impact. However, for near-
crashes, there was more time between the start of the driver’s reaction and the Impact Proximity 
Time. For events with rain present (Figure 18), the distribution is similar to non-rain events. 

This analysis indicates that the detection algorithm needs to identify degradation from weather, 
malfunction, or cyberattack within the same time span, less than 1 second. 

Discussion 
The accuracy of the algorithm in detecting the degraded state of the sensors was the main topic of 
discussion. For the GCAPS-created algorithm, several tuning parameter sets were attempted to 
improve the accuracy but had little effect on the results. From this, the source of the inaccuracy 
was discussed relative to the algorithm chosen and the training sets. It was decided that the training 
set limitations are more than likely contributing to the poor accuracy. The study was limited in the 
number of events that could be replicated and simulated, and this directly impacts the size of 
training data. Increased data in the training set can also improve the model’s ability to discern 
some of the subtler changes in response from lightly degraded events. Relative to the ODU 
DeepPOSE algorithm, this limitation also produces a low accuracy for detecting degraded states. 
The limited dataset was determined to influence accuracy somewhat, but another contributor was 
the initial design of the algorithm. The algorithm was initially scoped to also detect larger spoofing 
errors and other cybersecurity misinformation, not just the subtler influences from weather or noisy 
sensors. This provided a greater challenge to the performance of the algorithm.  

Conclusions and Recommendations 
The team successfully created a method to train a sensor degradation detection algorithm through 
simulation. The method developed specifically for characterizing and implementing degraded 
sensors into simulation has applications to many other ADS development activities. Some 
refinement is needed to improve the generation of training data into a less time-intensive creation 
process. Also, a linear instead of binary classifier in the neural net may be more realistic for 
detecting the continuous variable degradation intensity, with a binary classifier then applied to that 
output if desired, along with the estimated degradation intensity.  
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Additional Products 

Education and Workforce Development Products 
 

Education and Workforce Development Activity or Product Date 
Expected Completed? 

Students onboarded  4/1/2021  Completed  
Establish monthly multi-disciplinary project coordination 

meetings 
4/15/2021 Completed 

Sample sensor data and model documentation 5/15/2022 Completed 
Present webinar  8/19/2022 Completed 

Archive report to VTechWorks  5/31/2022  In Progress 
 

Technology Transfer Products 
 

Technology Transfer Activity or Product Date 
Expected Completed? 

Present webinar 8/19/2022 Completed 
Archive report to VTechWorks  6/30/22 In Progress 

Present at Road Safety on Five Continents (RS5C) Conference 10/10/2022 In Progress 
 

Data Products  
Processed Sensor Data: https://safed.vtti.vt.edu/projects/ 

  

https://safed.vtti.vt.edu/projects/
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Appendix. Supplemental Visualizations 
Table 1. SHRP 2 Selection Distribution of Event Description Variables 
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Table 2. SHRP 2 Selection Distribution of Event Data Variables 
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Figure 12. Line graph. Storm rainfall model comparison [5]. 

 

Figure 13. Layer graph. Layer graph of the GoogLeNet. 
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Figure 14. Flowchart. Sequence-to-sequence model in DeepPOSE. 
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Figure 15. Line graphs. DeepPOSE results for rain effect. 
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Figure 16. Line graphs. DeepPOSE results for GPS random variation. 
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Figure 17. Bar graph. Seconds between Subject Reaction Start and Impact Proximity Time for all crash and 
near-crash events in the SHRP 2 NDS. 

 

Figure 18. Bar graph. Seconds between Subject Reaction Start and Impact Proximity Time for crash and 
near-crash events in the SHRP 2 NDS with rain present. 
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