

A Connected Work Zone Hazard Detection System for Roadway Construction Work Zones Wenjun Han, Elizabeth White, Mike Mollenhauer, Nazila Roofigari-Esfahan 6/18/2019

Highway Construction Safety

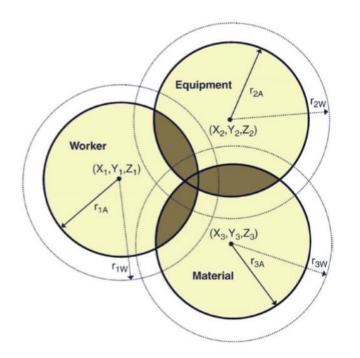
Fatal Injury Facts

- 24,745 individuals (about 750 per year) lost their lives in work zone crashes (1982-2014).
- 1571 deaths related to highway construction (2003-2015).
- Highway work zone fatality occurs every 8.7 hours.
- A work zone crash occurred once every 5.4 minutes.

01 / BACKGROUND

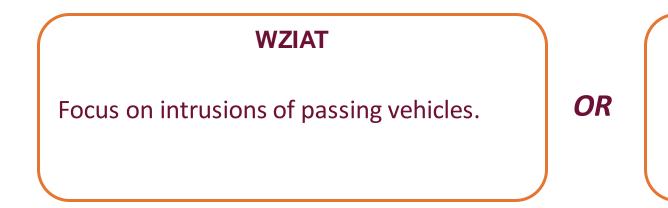
Current Preventive Measures

• Building safer highway work zones:

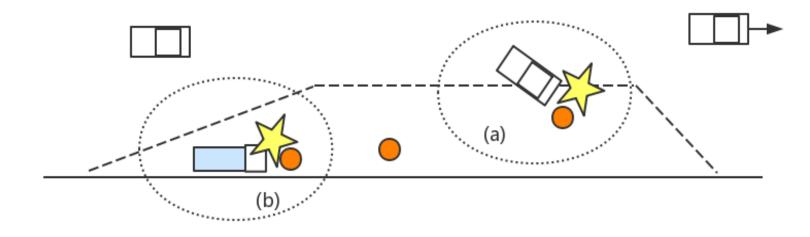

Measures to prevent worker injuries from vehicles and equipment (2001, NIOSH)

- Work zone intrusion alarm technology (WZIAT)
- Crash detection inside work zone

02



SonoBlaster® Work Zone Intrusion Alarm


Warning radius and alert radius (Teizer, Allread et al. 2010)

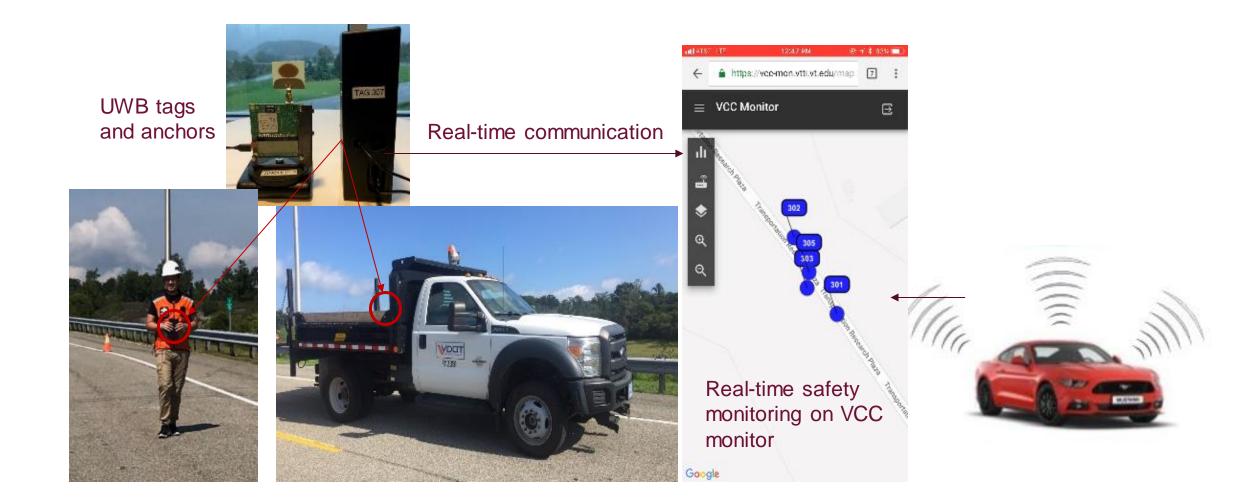
Current Research Gap

Crash Detection Inside Work Zone

Focus on crashes between workers and equipment or construction materials.

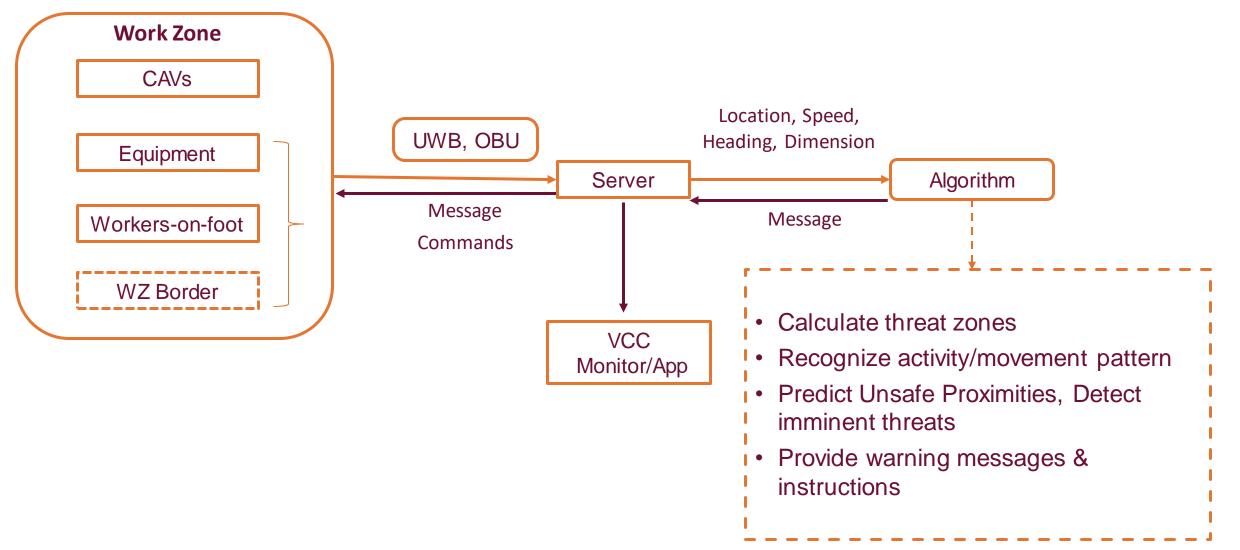
(a) Collisions from outside the work zone; (b) Collisions from inside the work zone

03 / BACKGROUND



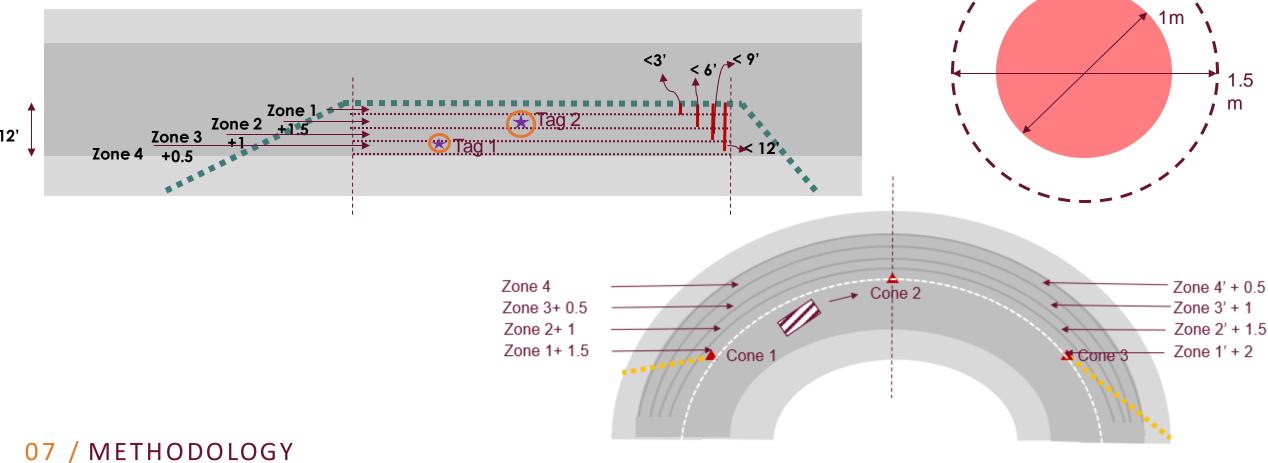
Research Scope

- Connect inside and outside of the work zone
- Receive real-time locational data
 - Workers
 - Connected and automated vehicle (CAV)
 - Construction equipment
- Detect potential hazards
- Provide real-time messages and instructions
- Recognize activities of workers.
- Demonstration & Experiments

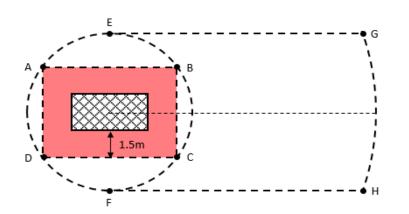

04 / SCOPE

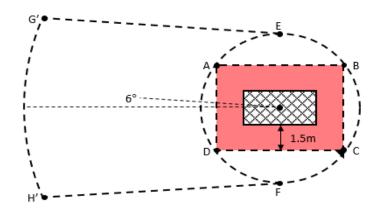
Data Collection & Communication

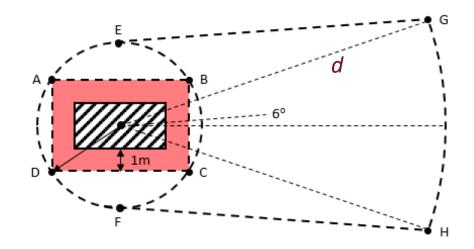
05 / METHODOLOGY


Data Collection & Communication

06 / METHODOLOGY


Algorithm Design- Workers-on-foot


- General Threat Zone
- Distance to the work zone border (only consider workers-on-foot)
- Road Shape (Straight/Curve Section)

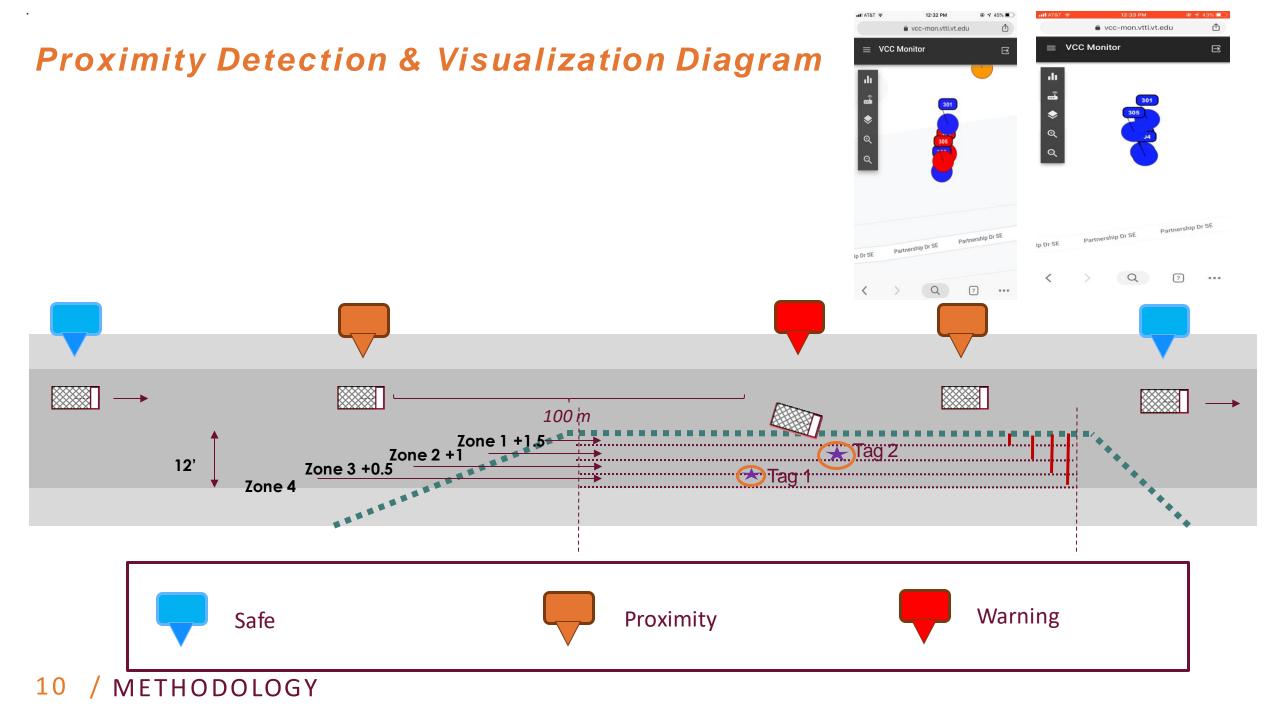


Threat Zone Design - Vehicle(CAV) & Equipment

- General Threat Zone (Teizer 2015)
- General alert zone distance: 1 m (Vehicle) & 1.5m (Equipment)
- Steer degree of CAV: 6 degree (Zhao et al. 2014)
- Driver reaction time (t₁): 2 seconds (Copradar 2017)
- Friction coefficient (*u*): 0.8 dry road (Chen et al. 2017)

Alert zone: ABCD Warning zone: ADFHGE Warning distance: *d*

$$d = vt_1 + v^2/2a$$
$$a = ug$$


08 / METHODOLOGY

Database Design

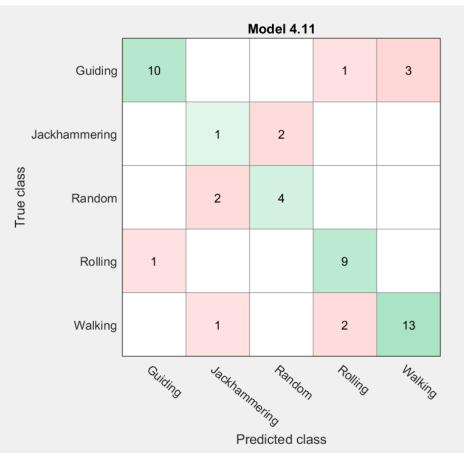
ID	- Worker Activity -	Worker Speed(m/s)	Ŧ	Description/Charateristics -
	18 Dig			use shovel/tool, static, random position
	3 Drill			static, use driller
	4 Drive			use vehicle, see vehicle charateristics
	6 Fill			Pothole filling, static, use shovel
	15 Guide			can be edge or out of work zone, flag, guide truck
	19 Install/Uninstall			install barricades, cones, and markers
	17 Load/Unload			near back of truck, static, small range movement
	27 Measure			measure, mark point, big range
	2 Moving-Tool Handle			slow walking with roller, parallel to road
	21 Mow			similar to trim, only for grass
	16 Paint			1-3 workers, walk slow, with tool, not continous
	25 Pour			
	26 Repair			Other movements of fixing structure
	11 Run	>1.79		
	20 Saw			1 or 2 workers, with saw, no position specific
	24 Spread			
	12 Sweep			slow walking with broom, or picking items
	23 Tamp			use tool (tamper), slow, specific area
	13 Trim			slow walking on shoulder/edge, with trimmer
	22 Turn			change direction
	14 Walk	0.89-1.79		

Activity database

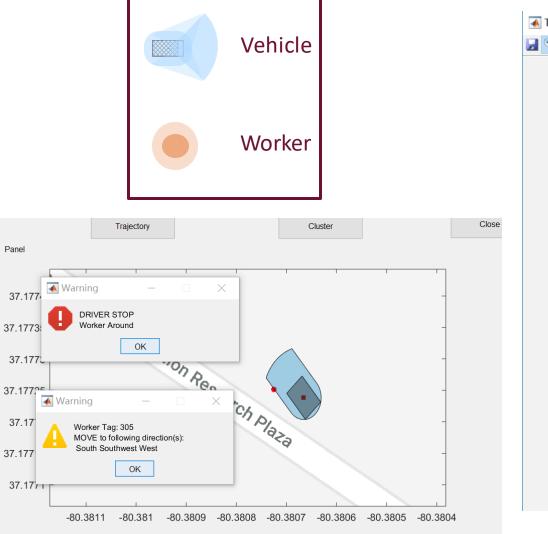
09 / METHODOLOGY

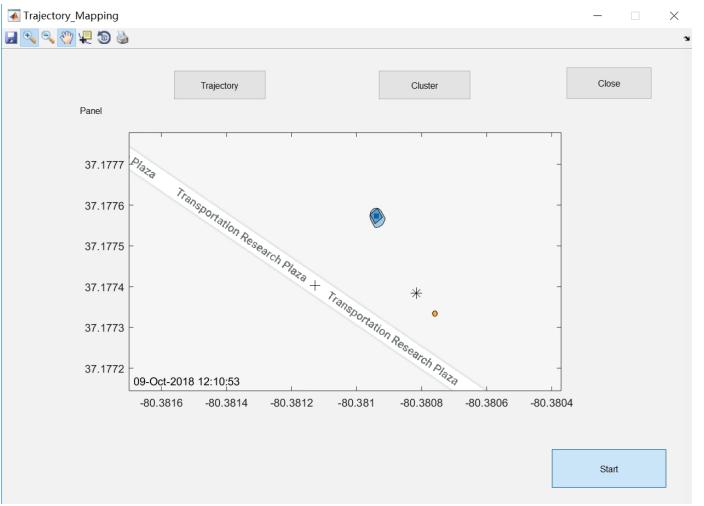
Activity Recognition

Activities Category:


	Category	Description
1	Jackhammeri	Utilizing hand-held equipment which
	ng	required consistent or inconsistent static
	(3)	position, such as jackhammer, drill, etc.
2	Walking (16)	Normal walking or running of workers.
3	Rolling (10)	Utilizing hand-held equipment which required regular moving, such as small compactor, etc.
4	Guiding (14)	Workers may walk backward to guide dump truck or other heavy equipment to adjust their locations.
5	Random (6)	Random movement of workers, may include change of directions and other unpredictable activities.

Ensemble Bagged Trees


- Accuracy: 75.5%
- Confusion Matrix
- 11 / METHODOLOGY


Influencing factors identification:

- Average speed
- Static time
- Parallel/perpendicular to traffic
- Moving in/against traffic direction

Algorithm Result

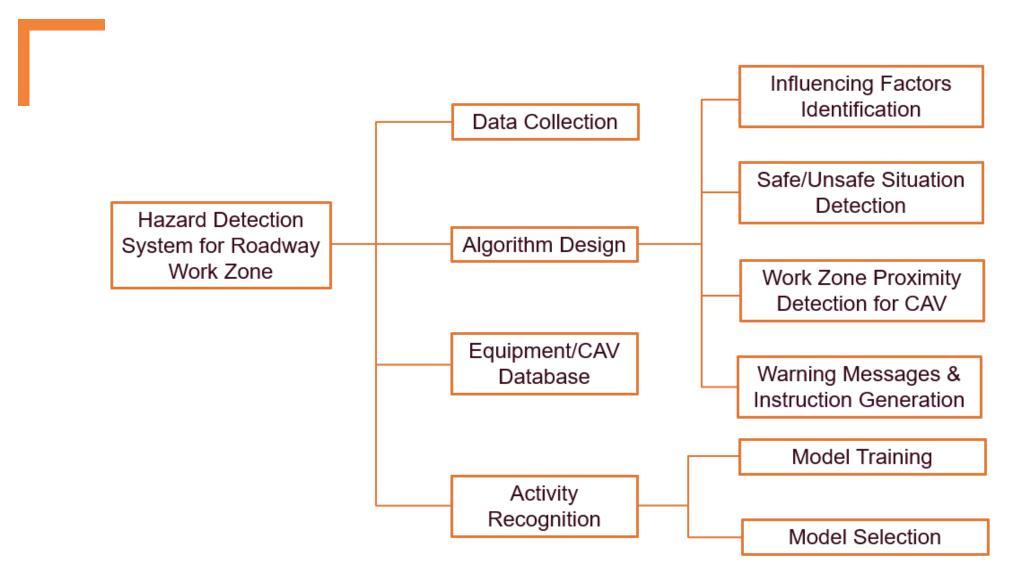
12 / RESULT

Panel

Demonstration

- Multiple work zone scenarios set up with workers on foot and equipment
- VCC Monitor will show the work zone entities in real-time
 - Blue = safe
 - Orange = proximity/workers in the area
 - Red = threat detected
- Safe-D application will show alerts received by CAV

Demonstration



14 / DEMO

uala. Necesseu message.	In Eac, 304, worker, move to rottowing at ection(s/, wortheast
data:Received message:	Threat,305,Vehicle/Equipment,Worker,304,is in your way
data:Received message:	Threat,304,Worker,MOVE to following direction(s),
data:Received message:	Threat,305,Vehicle/Equipment,Worker,304,is in your way
data:Received message:	Threat,304,Worker,MOVE to following direction(s), North Southwest West Northwest
data:Received message:	Threat,305,Vehicle/Equipment,Worker,304,is in your way
data:Received message:	Threat,304,Worker,MOVE to following direction(s), South Southwest West Northwest
data:Received message:	Threat,305,Vehicle/Equipment,Worker,304,is in your way
data:Received message:	Threat,304,Worker,MOVE to following direction(s), North Southeast South Southwest West Northwest
data:Received message:	Threat,305,Vehicle/Equipment,Worker,304,is in your way
data:Handshake complete.	. Listening for messages on the TCP socket. There are currently 1 active TCP socket connections.
data:Received message:	Safe,304,Worker,Other actors are away
data:Received message:	Safe,305,Driver,Other actors are away
data:Received message:	Threat,304,Worker,MOVE to following direction(s), East Southeast South Southwest West Northwest
data:Received message:	Threat,305,Vehicle/Equipment,Worker,304,is in your way
data:Received message:	Safe,304,Worker,Other actors are away
data:Received message:	Safe,305,Driver,Other actors are away
data:Handshake complete.	. Listening for messages on the TCP socket. There are currently 1 active TCP socket connections.
data:Handshake complete	. Listening for messages on the TCP socket. There are currently 1 active TCP socket connections.

15 / DEMO

Research Summary

16 / CONCLUSION

Research Significance

- Provide a holistic, efficient, convenient hazard detection and warning system.
- Enhance safety level of construction sites.
- Help inspectors or managers in monitoring the real-time work zone remotely.

Future

- Collect more activity samples from experiments
- Develop methods to alert workers and equipment operators
- Develop **new safety garment** with hazard detection application

17 / CONCLUSION

Acknowledgement

The project was funded by the Safety through Disruption (Safe-D) National UTC, a grant from the U.S. Department of Transportation's University Transportation Centers Program (Federal Grant number: 69A3551747115).

18 / CONCLUSION

THANK YOU & QUESTIONS

Г

VIRGINIA TECH...

Reference

Agent, K. R. and J. O. Hibbs (1996). "Evaluation of SHRP work zone safety devices."

Awolusi, I. G., E. D. Marks, N. Pradhananga and T. Cheng (2015). <u>Hazardous proximity zone design for</u> <u>heavy construction equipment</u>. Proc., 5th Inter/11th Construction Specialty Conf.

Aycin, M., & Benekohal, R. (1998). Linear acceleration car-following model development and validation. *Transportation Research Record: Journal of the Transportation Research Board*, (1644), 10-19.

Bohannon, R. W. (1997). "Comfortable and maximum walking velocity of adults aged 20–79 years: Reference values and determinants." Age Ageing, 26(1), 15–19.

Chen, Y., Shi, T., Shi, Q., Wang, C. and Li, P. (2017). "Development and Validation of Vehicle Safety Margin for Design of Highway Horizontal Curve. *CICTP 2017*.

Dagan, D. and S. Isaac (2015). "Planning safe distances between workers on construction sites." *Automation in construction* **50**: 64-71.

NIOSH (2017). "HIGHWAY WORK ZONE SAFETY." Retrieved Feburary 23,2019, from <u>https://www.cdc.gov/niosh/topics/highwayworkzones/default.html</u>.

Reference

National Work Zone Safety Information Clearinghouse(2017). "Work Zone Fatal Crashes and Fatalities." Retrieved Febrary 23, 2019, from <u>https://www.workzonesafety.org/crash-information/work-zone-fatal-crashes-fatalities/#national</u>.

Fang, Y., Y. K. Cho, S. Zhang and E. Perez (2016). "Case study of BIM and cloud–enabled real-time RFID indoor localization for construction management applications." <u>Journal of Construction</u> <u>Engineering and Management</u> **142**(7): 05016003.

Nnaji, C., J. Gambatese and H. W. Lee (2018). "Work Zone Intrusion: Technology to Reduce Injuries and Fatalities." <u>Professional Safety</u> **63**(04): 36-41.

Pratt, S. G., D. E. Fosbroke and S. M. Marsh (2001). Building safer highway work zones: Measures to prevent worker injuries from vehicles and equipment, United States. Dept. of Health and Human Services.

Roofigari Esfahan, N., J. Wang and S. Razavi (2015). *An integrated framework to prevent unsafe proximity hazards in construction by optimizing spatio-temporal constraints*. Proc., 5th Int./11th Construction Specialty Conf.

Reference

Teizer, J., B. S. Allread, C. E. Fullerton and J. Hinze (2010). "Autonomous pro-active real-time construction worker and equipment operator proximity safety alert system." <u>Automation in construction</u> **19**(5): 630-640.

Teizer, J. and T. Cheng (2015). "Proximity hazard indicator for workers-on-foot near miss interactions with construction equipment and geo-referenced hazard areas." <u>Automation in Construction</u> **60**: 58-73.

Transpo Industries, I. (2017). "SonoBlaster® Work Zone Intrusion Alarm." 2017, from <u>https://www.transpo.com/roads-highways/safety-products/wz-intrusion-alarm</u>.

Wang, Y., E. Wenjuan, D. Tian, G. Lu and G. Yu (2011). Highway Curve Collision Avoidance Warning System Based on VII. <u>ICCTP 2011: Towards Sustainable Transportation Systems</u>: 1551-1558.

Wang, J. and S. N. Razavi (2015). "Low false alarm rate model for unsafe-proximity detection in construction." *Journal of Computing in Civil Engineering* **30**(2): 04015005.

Zhao, S.-e., Y. Li and X. Qu (2014). "Vehicle chassis integrated control based on multimodel and multilevel hierarchical control." *Mathematical Problems in Engineering* **2014**.