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Abstract 
In cooperative perception, reliably detecting surrounding objects and communicating the 
information between vehicles is necessary for safety. However, vehicle-to-vehicle 
transmission of huge datasets or images can be computationally expensive and often not 
feasible in real time. A robust approach to ensure such cooperation involves relative pose 
estimation between two vehicles sharing a common field of view. Detecting the object 
and transferring its location information in real time is necessary when the object is not in 
the ego vehicle’s field of view. In such scenarios, reliable and robust pose recovery of the 
object at each instant ensures the ego vehicle accurately estimates its trajectory. Once 
pose recovery is established, the object’s location information can be obtained for future 
trajectory prediction. Deterministic predictions provide only point estimates of future 
states, which is not trustworthy under dynamic traffic scenarios. Estimating the 
uncertainty associated with the predicted states with a certain level of confidence can 
lead to robust path planning. This study proposed quantifying this uncertainty during 
forecasting using stochastic approximation, which deterministic approaches fail to 
capture. The current method is simple and applies Bayesian approximation during 
inference to standard neural network architectures for estimating uncertainty. The 
predictions between the probabilistic neural network models were compared with the 
standard deterministic models. The results indicate that the mean predicted path of 
probabilistic models was closer to the ground truth when compared with the deterministic 
prediction. The study has been extended to multiple datasets, providing a comprehensive 
comparison for each model. 
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Introduction 
In connected vehicles, cooperative perception enables the ego vehicle to estimate its own pose 
(relative position and orientation) with another vehicle based on common visual features (Figure 
1a). Cooperative perception involves map merging after pose estimation using sensors and is 
critical for object detection, trajectory prediction, and subsequent path planning in connected 
vehicles [1]. Range-based sensors such as lidar and radar can be used to generate spatial maps for 
pose estimation, but these sensors present significant drawbacks in terms of high cost and are often 
prone to interference. Meanwhile, vision-based sensors like monocular or stereo vision cameras 
have been used to test reliability and robustness in cooperative perception [2]. However, object 
localization and transfer of high-resolution images using vehicle-to-vehicle communication can be 
expensive and not feasible in real time. Moreover, in some scenarios, there might be a sudden loss 
of communication between two vehicles, which will affect the overall trajectory estimation in the 
ego vehicle coordinate frame. Hence, to ensure robust cooperative perception in short range, we 
first studied the relative pose estimation between two vehicles sharing a common field of view. 

Estimation of relative pose involves feature detection and description, feature matching, outlier 
rejection, determination of fundamental and essential matrices, and pose recovery [3]. The most 
popular feature descriptor algorithm is SIFT, introduced by D.G. Lowe [4], which uses Difference 
of Gaussian (DoG) to detect features and is invariant to transformations like rotation and scale. A 
more robust and computationally inexpensive feature descriptor, the SURF [5] approach, relies on 
the determinant of Hessian matrix and has been used in relative pose estimation and localization 
of static objects [6]. However, binary feature descriptors are deemed faster and have recently seen 
significant applications in embedded robotics for real-time applications. ORB [7] is the most 
popular binary descriptor and is a blend of the FAST and BRIEF algorithms, where feature points 
are evaluated using the Harris corner method. Meanwhile, AKAZE [8], another binary detection 
description algorithm, is based on modified local binary difference and is computationally 
efficient. Comparative studies in the past have analyzed the efficacy of such methods with 
applications related to image stitching or image reconstruction [9] as well as feature-based ego 
motion estimation in visual odometry [10]. In the current study, however, we have compared the 
traditional descriptors like SIFT, SURF, and KAZE with binary descriptors like ORB, AKAZE, 
and BRISK to estimate the efficacy and robustness of each algorithm in relative pose estimation. 
In addition, we tested the efficacy of each algorithm based on varying levels of camera exposure 
and relative angular orientation between two vehicles. Relative pose estimation is crucial for 
estimating the detected object in the ego vehicle reference frame (Figure 1a). 

Once the relative pose between vehicles is established, the ego vehicle can obtain the estimated 
trajectory of vulnerable road users (VRUs) like pedestrians and bicyclists. This will enable a self-
driving car to use historical trajectory information to predict the future states of detected objects. 
For a self-driving car, awareness of the surrounding environment is crucial for correct and safe 
maneuvering [11] [12]. However, complex maneuvers require a trustworthy estimate of the future 
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states of VRUs [13]. Continuous progress has been made toward predicting the motion of VRUs 
with a certain degree of effectiveness [14] [15]. However, most prediction models are deterministic 
and provide only point estimates of the future states [16]. Such assumptions may be helpful for 
specific scenarios but, in a dynamic environment with multiple interactions, deterministic 
predictions can be overconfident and lack robustness. Since humans tend to change directions 
swiftly, deterministic predictions may fail to capture this randomness in pedestrian trajectory and 
thus ignore the uncertainty associated with the motion. A more robust approach will be to provide 
a probability distribution based on the likelihood of a pedestrian’s location for each predicted state 
rather than a single point estimate. The uncertainty associated with predicted states can enable 
autonomous vehicles to achieve uncertainty-aware motion planning that will be more robust and 
trustworthy compared to planning based on deterministic prediction. 

For instance, deterministic prediction outputs point estimates of future states. However, during 
long-term forecasts or multiple actor interactions, deterministic predictions deviate from the 
ground truth. In such a scenario, the planning algorithm may be uncertain about the future states, 
and the risk of collision will be substantially higher. Therefore, a robust and trustworthy planning 
algorithm requires improvement in confidence of the predicted states. This can be achieved 
through probabilistic prediction of states with associated uncertainty (Figure 1b).  

 

Figure 1. Diagrams. (a) Cooperative perception with relative pose estimation; (b) Trajectory prediction of 
road users with uncertainty quantification. 

The risk-aware region around the future state captures all the probable locations the pedestrian can 
be present at a future time with certain confidence. It enables planning algorithms to either 
completely avoid the region or plan intelligently to execute uncertainty-aware motion planning 
that is more robust and less prone to collision [17]. Hence, we proposed the second study to 
investigate a risk-aware motion prediction model for pedestrians which  can be further integrated 
with intelligent planning algorithms in future. The current model can perform long-term motion 
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prediction with high positional accuracy. The uncertainty in motion is estimated in the form of a 
distribution of trajectories with mean and variance such that the ground truth mostly lies within 
95% of the confidence interval of the predictions. 

Related Work 

Cooperative Prediction of VRUs with Uncertainty Estimates 
In recent years, deep neural networks (DNNs) have been used extensively for pedestrian trajectory 
forecasting. Most of the networks are based on recurrent neural network (RNN) architecture, which 
captures the temporal dynamics of sequential data [18]. Although RNNs should retain complete 
information of a temporal sequence, they fail practically to propagate long-term dependencies. 
Hence, long short-term memory (LSTM) [19] [20] approaches have been used for sequential 
prediction due to their improved capability in back propagating long-term error. Seminal works 
like scene-LSTM [21] and social-LSTM [22] have used LSTM network architecture to incorporate 
either scene information or social pooling between multiple pedestrians for enhanced trajectory 
forecasting. However, most prior work on LSTM focused on improving prediction accuracy and 
did not stress quantifying uncertainty. Recently, convolutional neural networks (CNNs) have been 
used for trajectory prediction. Specifically, a fast CNN-based model compared to a 1D 
convolutional model with LSTM showed improvement in temporal representation of trajectory 
[23]. Further, Simone et al. [24] elaborated on previous work by introducing novel preprocessing 
and data augmentation techniques to outperform other complex models. However, the tested 
models output deterministic estimates of future state and did not quantify uncertainty. 
Deterministic predictions may not be trustworthy in complex traffic scenarios. Hence, probabilistic 
inference of predictions can be useful in safety-critical tasks like collision avoidance [25] and 
uncertainty-aware motion planning. 

Traditionally, the Kalman filter has been used for uncertainty estimation [26], but it fails to capture 
nonlinearities during long-term forecasts. Deep learning methods like Gaussian processes (GP) 
[27] and the Gaussian mixture model [28] have been used for probabilistic forecasting, too. For 
instance, a GP model with an unscented Kalman filter (UKF) was used for long-term obstacle 
prediction for collision avoidance [29]. However, GP kernels are infinite-dimensional and require 
extensive parameter-tuning for accurate prediction. Further, methods like stochastic reachability 
analysis have been performed by assigning probabilities to future states in the reachable set [30]. 
However, reachability analysis [31] often estimates all possible future states, resulting in a large 
infeasible set. Recently, nonlinear architectures like neural networks have been used for 
probabilistic trajectory forecasting. A CNN-based architecture was used to capture uncertainty, 
but for short-term forecasts only [32]. Further, an LSTM architecture could predict long-term 
probabilistic estimates of future states using an occupancy grid [33]. The problem was formulated 
as a multi-class classification problem using SoftMax to quantify probabilistic distribution of 
future states over the occupancy grid. However, SoftMax often leads to an overconfident 
prediction, and the model can be uncertain with high SoftMax output [34]. More sophisticated 
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models like Bayesian neural networks (BNNs) [35] have been used recently in an attempt to 
capture the uncertainty in time series data. 

Typically, a BNN uses a prior distribution to formulate a posterior distribution, which is used to 
quantify uncertainty during prediction. The BNN can capture three types of uncertainties: (1) 
model uncertainty, or epistemic uncertainty, (2) inherent noise in data, also known as aleatoric 
uncertainty, and (3) model misspecification that occurs when testing data is different from the 
training dataset. In this report, our focus is to predict epistemic uncertainty associated with future 
trajectories. Although BNNs accurately capture uncertainty, the inference becomes challenging 
due to many model parameters. This often requires incorporating variational methods for Bayesian 
inference that can reduce computational costs. Recently, Monte Carlo (MC) dropout has been used 
as a variational method for uncertainty estimation in time series forecasting [36] without any 
significant change to the network architecture. 

In this report, we elaborate upon this Bayesian approximation of using MC dropout for pedestrian 
uncertainty estimation. Our work primarily focuses on comparing the prediction performance of 
deterministic and probabilistic models. We quantified and compared the uncertainty during 
trajectory forecasting using three popular neural network architectures for time-series forecasting: 
LSTM, 1D CNN, and CNN-LSTM. Our novelty lies in showing the importance of probabilistic 
forecasting of future states over deterministic predictions and providing a detailed performance 
comparison between each probabilistic model and its associated deterministic model. Moreover, 
this work also provides a comprehensive performance comparison of both probabilistic and 
deterministic models on popular pedestrian datasets. 

Method 
We have broadly classified our project into two aspects: cooperative perception and relative pose 
estimation between a pair of vehicles having vehicle-to-vehicle capability. The relative pose 
estimation allows data transfer from another vehicle’s frame of reference to the ego vehicle’s 
reference frame. The methods for pose estimation are listed below. Further, we compared the 
efficacy of popular feature description algorithms like SIFT, ORB, and KAZE in establishing 
accurate pose at different orientation angles and lighting conditions. Apart from perception, we 
also explored the effect of connected autonomy in the prediction pipeline. In cooperative 
prediction of future trajectory for VRUs, we developed a novel Bayesian approach to incorporate 
uncertainty estimation during trajectory prediction.  

Cooperative Perception and Relative Pose Estimation 
Overall estimation of relative pose between two vehicles can be broadly classified into five stages: 
(1) feature detection and description, (2) feature matching, (3) outlier rejection, (4) determination 
of fundamental and essential matrix, and (5) pose recovery through rotation (R) and translation (t). 
At each instant, the rotation and translation vector can be updated to establish cooperative 



5 
 

perception. In such a scenario, the location of vulnerable objects can be made available at the ego 
vehicle’s coordinate frame through the established pose via matrix transformation. 

Feature Detection and Description: During feature detection, we search for key points in an 
image, usually a corner, edge, blob, or flat surface (Figure 2a). Patches or points with large gradient 
intensity like corners of an image act as good descriptors, while a flat region is textureless and 
does not represent a good feature point. The classic Harris detector and the DoG approaches are 
some of the techniques we used for feature detection. Once the features are obtained, pixel 
information about a small patch around each feature is extracted to acquire the feature descriptor 
vector. Some popular feature descriptors are classified into string-based (e.g., SIFT, SURF, 
KAZE) or binary descriptors (e.g., ORB, BRISK). The string-based feature descriptor vector 
contains information about orientation of gradient histograms. Meanwhile, in binary descriptors, 
a filter with each cell having varying grayscale is convolved with the image ,and a logical operation 
is performed to obtain a binary key specific for that feature. 

 

Figure 2. Photos. (a) Feature descriptors identify the key points in an image; (b) Feature matching between 
key points for a pair of images as seen from different perspectives. 

Feature Matching: Once the features and their descriptors have been established between a pair 
of images, feature matching is applied based on the vectorial distance between the descriptors 
(Figure 2b). Popular matching methods include the brute force method and the FLANN-based 
matcher. In the brute force method, L1 or L2 norm is used for calculating the vectorial distance 
for descriptors like SIFT, SURF, and KAZE, while Hamming distance is used for binary 
descriptors. However, such methods match both the true positive and the false negative features. 
Hence, we used the nearest neighbor distance ratio in SIFT to filter out preferred matches [4]. For 
our current study, we used a threshold ratio of 0.7. 

Reject Outliers: We applied a RANSAC algorithm with 1,000 iterations and 99% confidence to 
the matches to reject any outliers. The final list of features represents the good descriptors and are 
inliers. The ratio of inliers to total detected features gives an estimation of the efficacy of the 
feature descriptors. Moreover, the absence of outliers is essential to determine the fundamental (F) 
and essential matrix (E). 
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Fundamental and Essential Matrix: Any point in the 3D world gets registered in the image plane 
through a simple transform: x = PX. Here, x is a homogeneous image coordinate and X represents 
the point in the 3D world. P = K [R | t] stores the information about camera parameters using both 
the intrinsic camera calibration matrix (K) and extrinsic parameters like rotation (R) and translation 
(t), signifying the pose between a pair of cameras while sharing a common field of view. 

When two cameras look at the same image from different perspective such that the 3D coordinate 
of the object is stored as homogeneous image coordinates x and x0 in the two cameras, then the 
image points must satisfy: 

 x0
T F x = 0 (1) 

 where F is a rank deficient square matrix known as the fundamental matrix. The properties of the 
fundamental matrix can be obtained by direct linear transform based on the set of n matches. There 
are eight utmost correct matches necessary for determining F [37] in a calibrated camera. In turn, 
the intrinsic parameters of a camera are usually known, and the essential matrix (E) can be 
computed from the fundamental matrix as: E = K0

T F K, where K is the upper triangular camera 
calibration matrix. 

  (2) 

fx and fy represent the lens scaling factors along x and y directions, respectively, and β is the 
skewness factor, while x0 and y0 represent the principal coordinates on the image plane. 

Relative Pose Estimation: E can be decomposed to obtain the pose between a pair of images and 
is primarily a product of the skew symmetric translation matrix and the rotation matrix. 

 E = [t]x R (3) 

E has only five degrees of freedom: three for rotation and two for translation. The translation vector 
only shows the relative direction of one camera with respect to the other rather than absolute 
distance. Finally, the rotation matrix can be converted to corresponding Euler angles [ψ, θ, φ], 
which show the relative orientation without any ambiguity. 

Cooperative Trajectory Prediction with Uncertainty Estimation 
Deep learning architectures have been used extensively for prediction tasks. However, most 
networks are deterministic, generating point estimates without any confidence interval (Figure 3a). 
Conversely, a BNN produces uncertainty-aware predictions based on a stochastic network (Figure 
3b). Although stochastic networks might provide better point estimates than other standard neural 
networks, their main aim is to provide trustworthy uncertainty estimates for predictions.  
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Figure 3. Diagrams. (a) Standard neural network with deterministic weights; (b) BNN with prior distribution 
over weights. 

Typically, a BNN has probabilistic distribution over parameters like weights or activation 
functions. The parameters are learned using Bayesian inference as 

 

𝑃𝑃(𝜃𝜃|𝐷𝐷) =
𝑃𝑃(𝐷𝐷|𝜃𝜃) 𝑃𝑃(𝜃𝜃)

𝑃𝑃(𝐷𝐷)   

where P(θ|D) is the posterior (which implies the hypothesis) and θ is statistically updated based 
on data, D. P(θ|D) is the main aspect of a stochastic network and captures the learning of weights. 
The probability P(D|θ) is called likelihood, which is a marginal distribution of data provided by 
the weights. Meanwhile, P(θ) is the prior distribution over weights, while P(D) is the evidence. 
The prior distribution samples from a stochastic distribution of weight with probability P(θ), unlike 
standard NNs, which have deterministic weights (Figure 3). As a result, the posterior distribution 
also becomes stochastic, and the metrics can be estimated by computing the mean of predicted 
distribution along with its associated variance. A BNN has several advantages over traditional 
neural networks, such as estimating uncertainty, decomposing the uncertainty into epistemic and 
aleatoric components, and integrating the knowledge of the prior distribution into the model. For 
instance, provided a set of training states X = x1, x2, …, xT and output labels Y = y1, y2, ..., yT for a 
pedestrian, the distribution of its future predicted states, y∗, can be computed by marginalizing the 
posterior, p(θ| D = X,Y), over some new input data point, x*: 

 𝑝𝑝(𝑦𝑦∗|𝑥𝑥∗,𝑋𝑋,𝑌𝑌) = ∫ 𝑝𝑝(𝑦𝑦∗|𝑥𝑥∗, θ′) 𝑝𝑝(θ′|𝑋𝑋,𝑌𝑌) 𝑑𝑑θ′θ   (5) 

θ′ represents weights and p(θ′) refers to the probability of sampling from prior weight distribution. 
During Bayesian prediction, computing the posterior p(θ′| X,Y) can be quite challenging, and many 
sampling algorithms like MC Markov Chain and variational inference [38] have been used to 
approximate the posterior. However, most sampling methods are either computationally expensive 
or introduce many parameters into the model, which stems into a complex problem. Further, a 
BNN incurs additional computation costs due to its nonlinearity. Hence, we used the MC dropout 

(4) 
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method [34], which has been used to accurately approximate a BNN without significantly 
changing the model. The MC dropout method assumes that weights are stochastically dropped 
during inference. This process is then repeated for N forward passes to generate a random 
distribution of predicted values. Therefore, we applied MC dropout to different neural network 
architectures for uncertainty quantification during predictions. 

Encoder-Decoder Model 
We developed an encoder-decoder based simple LSTM architecture (Figure 4) to predict future 
trajectory of pedestrians in multiple time horizons. An encoder creates an embedding of essential 
features as a series of encoded space vectors, which the decoder uses to estimate outputs. Suppose 
{xt} represents the x-position up to T time steps as {x1, x2, …, xT}; then, the encoder embeds the 
data into an encoded space using a nonlinear function as e = g(x). The decoder uses the encoded 
features to construct F forward time steps, {xT+1, xT+2, ..., xT+F}. The current architecture has two 
LSTM cells for the encoder and one for the decoder (Figure 4). Through an ablation study, we 
found encoding both position and velocity of the pedestrian was beneficial for accurate prediction 
rather than encoding only position information. Hence, the input data for LSTM layers is a 
multivariate time series with four features {x, y, u, v} corresponding to x and y position and 
velocity, respectively. The output of the neural network has similar features, and the predicted xˆ 
and yˆ show the pedestrian’s future position. For regularization, we implemented dropout of 
weights with a certain probability, p, followed by tanh activation. The steps are repeated for each 
LSTM layer to create the encoded vector space, which carries the essential features of the training 
data. The decoder then uses the latent encoded vector to predict the future motion. The decoder 
architecture has a single LSTM layer that takes the encoded vector space as input. The LSTM layer 
is then followed by a dropout layer with linear activation to estimate the output. 

 

Figure 4. Flowchart. LSTM neural network architecture with dropout during inference for uncertainty 
quantification. 
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Convolutional Model 
Recently, convolutional networks like 1D CNNs have been used for time series analysis [23]. The 
CNN model is a simple sequence-to-sequence architecture that uses convolutional layers to handle 
temporal representations. In the current 1D CNN model, we represent the past trajectory as a one-
dimensional channel with four features, {x, y, u, v}. We constantly pad the input at each 
convolutional layer so that the number of features in both input and output remains the same. We 
have used “causal” padding for modeling temporal data, which eliminates the problem of auto 
correlation such that the output[t] does not depend upon input[t+1]. In total, three 1D convolutional 
layers with 128, 64, and 64 filters, respectively, have been used to extract features (Figure 5). We 
used a kernel size of 5, which showed better root mean-squared error in an ablation study with 
other odd kernel sizes {3,7}. A single dropout layer with probability p is applied after the first two 
convolutional layers to prevent overfitting. Further, a ReLU activation function has been applied 
to all the convolutional layers. We observed that a 1D Max Pool layer, followed by upsampling, 
performed better than global average pooling. Finally, for many-to-many predictions, a time-
distributed dense layer has been used to predict multiple time steps while simultaneously 
generating a single trajectory. Further, MC dropout can be applied during inference to generate a 
distribution of trajectories. 

 

Figure 5. Flowchart. CNN architecture with dropout. 

CNN-LSTM 
A CNN-LSTM architecture is a hybrid network that uses both convolution and LSTM layers as an 
end-to-end model for time-series forecasting. Unlike the LSTM encoder-decoder model, one-
dimensional convolutional layers are used for feature extraction to create an embedding rather than 
LSTM layers. The current model has two one-dimensional convolution layers with filters 128 and 
64, respectively. Each convolution layer is followed by a dropout layer where weights are dropped 
with a certain probability, p, to prevent overfitting. In order to process the data into the format 
required by the LSTM, a Flatten layer is connected after convolution. Further, the LSTM layer 
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acts as a decoder and utilizes the features for prediction. Like previous models, a time-distributed 
layer at the end enables multi-step forecasting. 

MC Dropout 

Epistemic uncertainty during forecasting problems can be estimated from the mean and variance 
of the marginal distribution, p(y∗|x∗, X,Y). Recall that X and Y represent the training input and 
output samples while y∗ represents the predicted states for some new test sample, x∗. The marginal 
distribution is sampled from posterior p(θ| X,Y) based on test input x∗. The sampling process can 
be challenging and computationally expensive due to nonlinearity in BNNs. Therefore, MC 
dropout can be used as a variational approximation to such BNNs [34] without significantly 
modifying the existing network architecture. Hence, model uncertainty, known as epistemic 
uncertainty, can be estimated with ease without any additional computational cost, unlike other 
inference methods. 

As discussed, MC dropout has been applied to each network architecture during inference to 
quantify uncertainty (Figure 3 and Figure 4). The MC dropout model applies stochastic dropout 
during test time to the neural network. Thus, for any new set of input x∗, we compute the inference 
by random dropout at each layer of the model. The probability of dropout is set as p and the 
inference model is run N times to obtain a set of outputs . We can then estimate the 
mean, 𝑦𝑦∗���, and variance, 𝛴𝛴𝑦𝑦∗ , of the marginal distribution where the variance indicates model 
uncertainty (Equation 6). 

 𝑦𝑦∗��� = 1
𝑁𝑁
� 𝑦𝑦(𝑛𝑛)

∗
𝑁𝑁

𝑛𝑛=1
  (6) 

𝛴𝛴𝑦𝑦∗ =
1
𝑁𝑁
��𝑦𝑦(𝑛𝑛)

∗ − 𝑦𝑦∗����
2

𝑁𝑁

𝑛𝑛=1

 

Results and Discussion 

Cooperative Perception and Relative Pose Estimation 
In relative localization, information obtained in another vehicle’s frame of reference can be 
transferred to the receiver’s reference frame by accurately establishing relative pose between the 
two when sharing a common field of view. For the current study, we have considered a vision-
based monocular camera mounted on Wi-Fi bots to capture images with varying degrees of angular 
orientation and exposure as parameters for comparing different feature matching algorithms. 

In the current study, three angles of relative orientation between the bots signifying yaw were 
selected. Figure 6 shows the schematic for relative angular orientation where the other vehicle 
(white) was kept fixed at 0° while the orientation of the second bot was subsequently varied from 
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10° to 30° such that the second bot translated unidirectionally away from the first bot while 
maintaining the relative orientation (Figure 6a). Moreover, pose estimation and feature matching 
performance under different illumination is critical in determining the efficacy and robustness of 
various feature descriptors. Hence, the current study considered three levels of exposure settings—
500, 1,000, and 2,000 lumens. Apart from understanding the effect of relative angle and exposure 
on feature description and matching for a pair of images, our focus was to compare the efficacy 
and robustness of various feature descriptor algorithms on the above parameters. We used the 
PyCharm platform with OpenCV 3.3 for the current study, and Table 1 shows feature descriptors 
with their corresponding parameters. To have a fair comparison for computational cost, the 
parameters for each algorithm were selected so the size of descriptors is approximately the same. 

 

Figure 6. Diagram and Photos. Comparison of feature descriptor algorithms with varying (a) relative angle 
(10°, 20°, 30°) between Wi-Fi bots and (b) exposure level: top -1,000, bottom -2,000 lumens. 

Table 1. Parameters For Proposed Study 

Feature Descriptor OpenCV Parameters 

SIFT cv2.SIFT (CT = 0.04, σ = 1.6) 

KAZE cv2.KAZE (Octave Layers = 3) 

ORB (1,000) Cv2.ORB (n features = 1,000) 

BRISK cv2.BRISK() 

AKAZE cv2.AKAZE (Octave Layers = 3) 

For the current study on relative orientation, we procured a vision-based monocular camera 
mounted on Wi-Fi bots to capture images. A pair of images must share a common field of view 
for pose recovery. Once the key points are detected and features are matched, outliers are rejected 
through RANSAC to retain only a few good matches necessary for estimating fundamental and 
essential matrices. Eventually, the method must show repeatability while recovering pose and be 
robust to image transformations like scale, rotation, lighting, and affine transforms. The 
performance of considered feature descriptor algorithms was gauged per the indicators below: 
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• Total Features: Individual key points detected on each image. 
• Feature Matches: Total matches between two images including outliers. 
• Rejection Ratio = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀ℎ𝑒𝑒𝑒𝑒

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂
 

• Matching Time: Total matching time between a pair of images signifying computational 
cost. 

Table 2 provides comparative performance among various feature descriptors at a specific 
orientation of 20° and an exposure setting of 1,000 lumens. ORB detects almost double the 
maximum features detected by any other method. ORB is closely followed by SIFT and KAZE, 
while other binary descriptors like BRISK and AKAZE detected fewer features. Although ORB 
detects the maximum features, the total matches between the pair of images for SIFT and ORB 
(1,000) are comparable, closely followed by AKAZE. However, total matches do not fully signify 
the efficacy of pose recovery, as some of the matches can be inaccurate and act as outliers. Hence, 
an approximate estimate of robustness of feature matching can be related to rejection ratio, 
signifying good matches or inliers. Although SIFT has the highest total matches, the rejection ratio 
is also high, around 16%, meaning one sixth of total matches are outliers. However, the binary 
descriptors like ORB and AKAZE have a very low rejection rate compared to SIFT and KAZE, 
signifying most of the found matches are good matches. The presence of outliers is important 
because it can significantly alter the fundamental and essential matrices necessary for correct pose 
recovery. Finally, the feature matching time signifies the computational time each method needs 
to detect, match, and reject outliers for computation of rotation and translation matrices. It is 
observed that KAZE takes maximum time while BRISK takes the least time and is computationally 
inexpensive. The current results show only a preliminary performance estimation of all the feature 
descriptors for a specific exposure and angular orientation.  

Table 2. Performance Comparison for Feature Matching Algorithms at Exposure = 1,000 and Relative 
Orientation = 20° 

Feature 
Descriptor 
Algorithm 

Total 
Features 
Detection 
– Image 

1 

Total 
Features 
Detection 
– Image 

2 

Total 
Matched 
Features 

Outliers 
Rejected 

Outlier 
Total 

Feature 
Matching 
Time (s) 

SIFT 294 366 73 12 0.165 0.232 
KAZE 244 259 43 7 0.163 0.552 
ORB 492 500 43 6 0.1395 0.304 
ORB 

(1,000) 746 795 71 4 0.056 0.285 

BRISK 195 224 39 3 0.0769 0.071 
AKAZE 196 200 68 7 0.103 0.324 
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Cooperative Prediction of Future Trajectory with Uncertainty 
Quantification 
In this section, we discuss the uncertainty estimation and performance metrics of pedestrian 
trajectory prediction. Initially, we quantified uncertainty in prediction using the probabilistic 
models based on the ETH dataset [39]. We also provide a confident estimation of our predictions 
with respect to the ground truth. Finally, we provide a comprehensive comparison of performance 
metrics among all the models across multiple datasets. 

We have discussed the datasets, data augmentation, implementation details for each network, and 
the performance metrics. Following common practice from literature [22], we trained our models 
on publicly available pedestrian datasets. The two most popular datasets are the ETH dataset [39], 
which contains the ETH and HOTEL scene, and the UCY dataset [40], which contains the UNIV, 
ZARA1, and ZARA2 scenes. In order to draw parallels with past works [23], we studied 8 (3.2 
secs) historical steps to predict 12 (4.8 secs) steps into the future. Further, we extended our study 
to predict multiple time horizons with long-term forecasts up to 8 seconds into the future. 

Data Augmentation 
Initially, we trained our model on the ETH dataset only, which contains approximately 420 
pedestrian trajectories under varied crowd settings. However, a small number of trajectories is 
insufficient for training. Therefore, we performed data augmentation using the Takens Embedding 
theorem [41]. We used a sliding window of T = 1 step to generate multiple small trajectories out 
of a single large trajectory. For instance, a pedestrian’s trajectory of 29 steps will result in 10 small 
{x, y} trajectory pairs of 20 steps each if past trajectory information of 8 steps is used for predicting 
12 steps into the future. In total, we constructed 1,597 multivariate time series sequences that we 
split into 1,260 training and 337 testing sequences for the ETH HOTEL dataset. Further, we will 
also show results for the ZARA1 and ZARA2 datasets to provide a comprehensive comparison of 
uncertainty quantification across all the models. 

Implementation Details 
All the neural networks are trained end-to-end using TensorFlow. Adam optimizer with a learning 
rate of 1e – 3 was used to compute the mean-squared error loss. Each model was trained for 100 
epochs with a batch size of 32. The LSTM encoder-decoder model was trained with tanh activation 
while the other two models had ReLU activation. Ten percent of the training data was used for 
validation. The mean-squared error was monitored on the validation loss with callback functions 
like EarlyStopping and ReduceLRonPlateau. The model was compiled and fitted using training 
and test data. 

Performance Metrics  
The trained model was then used to predict the future position of the pedestrian. By default, the 
model predicts deterministic future states. However, probabilistic predictions can be inferred using 
MC dropout. We can run the stochastic inference using MC dropout repeatedly to generate a 
distribution of trajectories (Figure 7a). The mean of the distribution represents the predicted path, 
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while the associated variance quantifies uncertainty. We adopted widely used performance metrics 
[22], namely average displacement error (ADE) and final displacement error (FDE), for prediction 
comparison between the deterministic and probabilistic models. 

• Average Displacement Error, ADE = 1
𝑇𝑇
� �𝑌𝑌�(𝑡𝑡) − 𝑌𝑌(𝑡𝑡)�

𝑡𝑡𝑓𝑓
𝑡𝑡=𝑡𝑡0

 .  The mean of Euclidean 

distance over all estimated points of a trajectory with the ground truth. Here, 𝑌𝑌�(𝑡𝑡) is the 
predicted location at timestamp t and 𝑌𝑌(𝑡𝑡) is the ground truth position. 

• Final Displacement Error, FDE = �𝑌𝑌�(𝑡𝑡) − 𝑌𝑌(𝑡𝑡)�. The mean of Euclidean distance between 
the predicted destination and true destination across all trajectories.  

For predicting uncertainty and evaluating its trustworthiness, we generated a distribution of 
trajectories using MC dropout. We have shown the uncertainty estimation of a single pedestrian 
trajectory from the ETH dataset using the 1D CNN network (Figure 7). For the current scenario, 
we predicted 12 steps or 4.8 seconds into the future based on 3.2 seconds of past trajectory data. 
A single trajectory (red) is generated by deterministic prediction and provides point estimates of 
future states. However, we generated probabilistic predictions by applying MC dropout to each 
neural network model. For instance, the 1D CNN with MC dropout model was sampled N = 30 
times during inference with a stochastic dropout, p = 0.2 (20% of the weights are randomly 
dropped) to generate a distribution of N different trajectories (Figure 7a). The mean and variance 
of the distribution quantifies the uncertainty during trajectory prediction. 

 

Figure 7. Graphs. (a) Trajectory prediction using MC dropout with the 1D CNN network; (b) Bivariate 
Gaussian distribution of future state uncertainty. Pedestrians move from left to right. 

The predicted trajectory distribution (Figure 7a) shows the pedestrian’s motion along both x and y 
directions, with predominant motion along x. Therefore, we needed to quantify the mean and 
variance along both the directions and treat the predicted trajectory cluster as a bivariate 
distribution. At each prediction step, the trajectories can be represented as a cluster of N points 
distributed on the x-y domain. Assuming Gaussian distribution for each point cluster, we can then 
estimate the mean and covariance showing the associated uncertainty at each step (Figure 7b). The 
Gaussian representation of the predicted states thus shows the future states with associated 
uncertainty. Further, we can compute the mean and covariance of this bivariate Gaussian 
distribution as: 
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 �𝑋𝑋𝑦𝑦�~𝑁𝑁 ��𝑋𝑋𝑦𝑦� , �𝛴𝛴𝑋𝑋𝑋𝑋   𝛴𝛴𝑋𝑋𝑋𝑋
𝛴𝛴𝑌𝑌𝑌𝑌   𝛴𝛴𝑌𝑌𝑌𝑌

�� (7) 

Here, {µx, µy} and {Σxx , Σxy, Σyy} represent the mean and covariance of the pedestrian’s movement 
along the x-y domain, respectively. Each covariance term shows the correlation of motion along 
one direction with respect to another. However, instead of variance Σ, only the standard deviations 
σ = √Σ along x and y were considered to quantify the uncertainty during trajectory prediction. 

We compared the estimated uncertainty during prediction of each probabilistic model with the 
ground truth, ▲ (Figure 8). We have shown the mean predicted path with two standard deviations 
(2σ) along x and y directions to quantify uncertainty. The model takes 8 input states (•, green dot) 
to predict 12 states into the future. One can visualize the mean of the predicted distribution (•, blue 
dot) along with the standard deviations (+) along x and y for a single trajectory chosen from the 
ETH dataset (Figure 8). On inspection, it seems the uncertainty predicted by the CNN-LSTM 
model grows with the prediction horizon while both the LSTM and 1D CNN models provide 
conservative probabilistic estimates that neither decrease nor increase with time. Further, it appears 
that the FDE is minimum for 1D CNN while it is maximum for LSTM. However, to obtain 
conclusive evidence on predictive accuracy of each model, we need to consider the performance 
metrics of all possible trajectories and estimate whether the ground truth lies within the 95% (2σ) 
confidence interval of our predictions. 

 

Figure 8. Graphs. Pedestrian future trajectory prediction (12 steps, black) with 95% confidence interval 
based on past input trajectory (8 steps, green) for (a) LSTM, (b) 1D CNN, and (c) CNN-LSTM. 

Confidence Score 
We defined a parameter known as confidence score (CS) to check whether the ground truth {xtrue, 
ytrue} lies within two standard deviations (2σ) of our predicted distribution. 
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  (8) 

Here, F represents the number of predicted states in the future. We predict the confidence score 
along x and y for each test trajectory and then take the mean across all trajectories to obtain a single 
confidence score for that prediction horizon. Further, we also show the variation of confidence 
score with prediction time horizon TF = 3.2, 4.8, 6.4, and 8 seconds into the future. 

 

Figure 9. Bar Charts. Variation of confidence score with prediction horizon TF along (a) x and (b) y. 

The LSTM model with MC dropout (gray) provides a high mean confidence score over other 
models for forecasts up to 4.8 seconds. For instance, at TF = 3.2 seconds, the LSTM model has a 
mean CSx ≈ 90%, which signifies the percentage of ground truth that lies within the 2σ confidence 
interval of the predictions (Figure 9a). However, for long-term forecasts beyond 4.8 seconds, the 
CNN-LSTM model (orange) outperforms the other two models with a mean CSx ≈ 80%. A similar 
trend can be observed for CSy for both short-term and long-term forecasts (Figure 9b). However, 
the confidence score along y is less than x for each model. This shows the model is more confident 
and captures uncertainty effectively along the direction of predominant motion and is suitable for 
long-term linear motions. However, when the motion is significantly small along any direction, 
the model is less confident, and uncertainty is not captured accurately. Among all models, the 1D 
CNN probabilistic model (blue) has the lowest confidence score along both x and y across all time 
horizons. Our results thus indicate that the LSTM model (gray) performs better for short-term 
probabilistic predictions, while the CNN-LSTM model (light maroon) has better long-term 
probabilistic accuracy. Further, the confidence score along y gradually decreased with the 
prediction horizon for each model. This shows the positional accuracy along y for predicted states 
becomes more uncertain with the increase in prediction horizon. To understand how prediction 
horizon affects uncertainty estimates, we studied its effect on performance metrics like ADE and 
FDE. Further, we compared each probabilistic model against its deterministic prediction. We also 
studied the effect of stochastic dropout probability p on performance metrics. 
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Quantitative Evaluation 
In this section, we evaluate the current probabilistic methods and compare them to state-of-the-art 
pedestrian forecasting models across the ETH [28] and UCY [29] datasets. Evaluation of error 
metrics ADE and FDE for the state-of-the-art models is based on the best-of-20 protocol from a 
list of 20 trajectories. As a preferred practice in literature, we observed 8 steps to predict 12 steps 
into the future. Table 3 summarizes the performance metrics, ADE/FDE, based on our predictions 
for the current models. In total, there are three probabilistic models trained with MC dropout and 
three standard neural network architectures that generate single deterministic predictions. All 
probabilistic models with MC dropout are inferred using dropout probability p = 0.2. 

Table 3. Quantitative ADE/FDE For Predicting 12 Future Steps Given 8 Previous Time Steps 

Models ETH HOTEL ZARA1 ZARA2 UNIV AVERAGE 

S-LSTM 
[12] 1.09/2.35 0.79/1.76 0.47/1.00 0.56/1.17 0.67/1.40 0.72/1.54 

SGAN 
[32] 0.87/1.62 0.67/1.37 0.35/0.68 0.42/0.84 0.76/1.52 0.61/1.21 

Sophie 
[33] 0.70/1.43 0.76/1.67 0.30/0.63 0.38/0.78 0.54/1.24 0.54/1.15 

Social-
BiGAT 

[34] 
0.69/1.29 0.49/1.01 0.30/0.62 0.36/0.75 0.55/1.32 0.48/1.00 

LSTM 0.54/0.94 0.33/0.46 0.51/0.96 0.53/0.96 0.75/0.93 0.53/0.85 
1D CNN 0.71/0.90 0.71/1.04 0.75/1.02 0.86/1.16 0.95/1.24 0.79/1.07 

CNN-
LSTM 0.68/1.11 0.98/1.29 0.73/0.99 0.95/1.27 0.87/1.11 0.84/1.15 

LSTM + 
MC 0.55/0.94 0.32/0.45 0.51/0.96 0.54/0.96 0.59/0.84 0.50/0.83 

1D CNN + 
MC 0.69/0.84 0.58/0.79 0.73/0.99 0.85/1.15 0.71/0.85 0.71/0.92 

CNN-
LSTM + 

MC 
0.48/0.82 0.3/0.48 0.50/0.83 0.77/1.12 0.53/0.86 0.51/0.82 

Lower ADE/FDE is better and represented in bold. 

We compared our model against the following state-of-the-art-models: 

• S-LSTM [12]: Each person is modeled using LSTM with a social pooling layer. 
• SGAN [32]: A generative model that uses social information. 
• Sophie [33]: A generative model that uses both social and image information. 
• Social-BiGAT [34]: Attention-based generative network for multi-modal forecasting. 

The current results indicate that the novel CNN-LSTM model with MC dropout has the lowest 
error among the considered probabilistic and deterministic networks for the ETH and HOTEL 
scenes. The mean predicted path has a minimum ADE/FDE (0.3/0.48) for the HOTEL scene. We 
speculate that the CNN captures features more efficiently than a standard LSTM encoder. 
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Moreover, the probabilistic CNN-LSTM model outperforms every other generative baseline 
model across the ETH and HOTEL scenes, which shows inclusion of social information like agent 
interaction may not necessarily produce better performance metrics. As suggested in the literature 
[14], the simple linear velocity model [32] outperforms many state-of-the-art architectures. 
Moreover, the consideration of pedestrian velocity information during training improved the 
performance of current models without the consideration of social information. 

Although probabilistic CNN-LSTM achieves state-of-the art performance for the ETH and 
HOTEL scenes, the same is not true across ZARA scenes. In the ETH and HOTEL scenes, the 
pedestrian density is low, and the scenario is simple. In these situations, the inclusion of only 
position and velocity information produced better predictions. Meanwhile, the pedestrian density 
is higher and includes significant pedestrian interactions in the ZARA scenes. For those scenes, 
the current proposed model performs worse than generative models. Nonetheless, the overall 
average error for probabilistic LSTM and CNN-LSTM networks was minimum across all datasets. 
Although the social-BiGAT had a comparable ADE, the final FDE was considerably larger 
compared to current probabilistic models. Interestingly, the probabilistic models had a smaller 
FDE over all state-of-the-art generative models. This observation may be due to the averaging of 
multiple trajectories generated from probabilistic models. Overall, the current probabilistic models 
outperform the state-of-the-art generative models across the ETH dataset while performing worse 
for the ZARA scenes. This finding shows that it is not always necessary to consider contextual or 
social information to accurately predict trajectories. Furthermore, the current model is much faster 
and easier for real-time implementation, as it does not rely on social interaction or contextual cues. 

Conclusions and Recommendations 
This report presents a two-fold approach to integrating cooperative perception and cooperative 
prediction. In cooperative perception, we compared the efficacy of different feature descriptors 
like SIFT, ORB, and KAZE in relative pose estimation. We found that SIFT and ORB 
outperformed other descriptors in total matched features and matching time. Pose recovery enables 
the ego vehicle to estimate VRU trajectory in its own frame of reference. Next, with the available 
information, we can predict the future trajectory of VRUs. We used a Bayesian approach with MC 
dropout to quantify the uncertainty in pedestrian trajectory prediction. The method was evaluated 
on a real-world pedestrian dataset to generate a distribution of trajectories instead of a single 
trajectory. The results indicate that the mean predicted path of the probabilistic models is better 
and closer to the ground truth than the predictions from deterministic models [42]. The 
probabilistic models also had a lower average error than state-of-the-art methods for the ETH 
dataset.  

In the future, we plan to improve the probabilistic predictions by incorporating perception 
uncertainty into the prediction module [43]. Usually, the sensors that track an object are noisy, and 
deterministic estimates cannot be trusted. Therefore, our research inclination lies in capturing the 
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sensing uncertainty and propagating the information into the prediction architecture. The 
prediction module can then take the upstream uncertainty into consideration to make more robust 
future predictions. Overall, this method will help make robust future state prediction directly from 
noisy raw sensor information.  

Additional Products 

Education and Workforce Development Products 
1. One Ph.D. student and one post-doctoral associate have been involved in the project 

throughout its duration. The student developed a state-of-the-art algorithm for robust 
trajectory prediction of vehicles and VRUs that predicts both future states and associated 
uncertainty. This work will help uncertainty-aware cooperative planning in the future. The 
project greatly contributed to the student’s Ph.D. dissertation. Further, the student is 
currently working on a journal manuscript that incorporates the sensing uncertainty 
elements in the current work and will be submitted for publication in the future. 

2. As a part of knowledge transfer, the research on “Uncertainty estimation of pedestrian 
future trajectory” using Bayesian approximation was presented at the Annual Mechanical 
Student Research Symposium held at Virginia Tech.  

3. Further, the perception and prediction algorithms developed from this project have been 
implemented in a 1/10 scaled autonomous car [44], which will help other graduate and 
undergraduate students in their own research projects.  

Technology Transfer Products 
1. Nayak, A., A. Eskandarian, and Z. Doerzaph, Uncertainty Estimation of Pedestrian Future 

Trajectory Using Bayesian Approximation. IEEE Open Journal of Intelligent 
Transportation Systems, Vol. 3, 2022, pp. 617-630. 
https://doi.org/10.1109/OJITS.2022.3205504  

2. Ghorai, P., A. Eskandarian, Y.-K. Kim, and G. Mehr. State Estimation and Motion 
Prediction of Vehicles and Vulnerable Road Users for Cooperative Autonomous Driving: 
A Survey. IEEE Transactions on Intelligent Transportation Systems, Vol. 23, No. 10, 2022. 
pp. 16983-17002.  

3. Nayak, A., A. Eskandarian, P. Ghorai, and Z. Doerzaph. A Comparative Study on Feature 
Descriptors for Relative Pose Estimation in Connected Vehicles. ASME International 
Mechanical Engineering Congress and Exposition, Vol. 85628, American Society of 
Mechanical Engineers, 2021, p. V07BT07A022. https://doi.org/10.1115/IMECE2021-
70693 

4. Ghorai, P., A. Eskandarian, A. Nayak, and Z. Doerzaph. Relative Pose Estimation for 
Cooperative Vehicles and Tracking of Multiple Dynamic Objects. In ASME International 
Mechanical Engineering Congress and Exposition, Vol. 85628, American Society of 
Mechanical Engineers, 2021, p. V07BT07A017. https://doi.org/10.1115/IMECE2021-
69651 

https://doi.org/10.1109/OJITS.2022.3205504
https://doi.org/10.1115/IMECE2021-70693
https://doi.org/10.1115/IMECE2021-70693
https://doi.org/10.1115/IMECE2021-69651
https://doi.org/10.1115/IMECE2021-69651
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5. The manuscript “Pedestrian Trajectory Forecasting Using Deep Ensembles Under Sensing 
Uncertainty” is complete and has been submitted soon to IEEE Transactions on Intelligent 
Transportation Systems.  

Data Products  
• Link to Dataset – https://doi.org/10.15787/VTT1/BTEWCS  
• Project Description – The goal of the project was to establish cooperative perception with 

relative pose recovery to estimate the position of objects and predict the future trajectory 
of objects with associated uncertainty. 

• Data Scope – Five publicly available pedestrian datasets ETH, HOTEL, ZARA1, ZARA2, 
and UNIV were processed to generate more than 9,000 training trajectories. Each trajectory 
contains information on pedestrian ID, position, and velocity along x, y, and z. 

• Data Specification – A detailed description of each variable in the dataset is provided in 
the Appendix. 

  

https://doi.org/10.15787/VTT1/BTEWCS
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Appendix: Data Description 

# Variable Description 

1 ID Pedestrian ID 

2 Time Time in Frames 

3 x Pedestrian x coordinate 

4 y Pedestrian y coordinate 

5 z Pedestrian z coordinate 

6 vx Velocity of pedestrian along x 

7 vy Velocity of pedestrian along y 

8 vz Velocity of pedestrian along z 
 


	05-115 Cover
	05-115_Final Report
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Related Work
	Cooperative Prediction of VRUs with Uncertainty Estimates

	Method
	Cooperative Perception and Relative Pose Estimation
	Cooperative Trajectory Prediction with Uncertainty Estimation
	Encoder-Decoder Model
	Convolutional Model
	CNN-LSTM
	MC Dropout


	Results and Discussion
	Cooperative Perception and Relative Pose Estimation
	Cooperative Prediction of Future Trajectory with Uncertainty Quantification
	Data Augmentation
	Implementation Details
	Performance Metrics
	Confidence Score

	Quantitative Evaluation


	Conclusions and Recommendations
	Additional Products
	Education and Workforce Development Products
	Technology Transfer Products
	Data Products

	References
	Appendix: Data Description


