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Abstract 
Roadway construction and maintenance have become increasingly common as the U.S. 
transportation system ages and the population and traffic volume increase. This places 
more and more work zone workers near high-speed vehicles and increases the probability 
of being struck by them. This project innovatively deployed 360-degree LiDAR sensors at 
the roadside and tested their potential to provide work zone safety in terms of detection 
accuracy, efficiency, and ease of use. Researchers developed a set of algorithms to 
collect and interpret real-time information for each approaching vehicle and worker (e.g., 
location, speed, and direction) in and outside work zones using roadside LiDAR. 
Ultimately, the outcome of this pilot study could lead to developing a full-scale warning 
system deployable in a real work zone environment. Such a system could detect and 
analyze live traffic and work zone activity, activate the appropriate warning scheme, and 
deliver information to roadway workers in work zones in a timely manner so they can take 
evasive actions instead of relying on traditional “passive” safety countermeasures. This 
kind of panoramic, trajectory-level data for work zone actors can be used to develop a 
next-generation work zone situational awareness system. 

Acknowledgements 
This project was funded by the Safety through Disruption (Safe-D) National University 
Transportation Center, a grant from the U.S. Department of Transportation – Office of the 
Assistant Secretary for Research and Technology, University Transportation Centers 
Program. The project also received funding through a matching grant from the Texas 
Department of Transportation to support summer undergraduate internships. We wish to 
extend our sincere appreciation to the sponsoring agencies for their generous support for 
this project.  

We also would like to convey our sincere appreciation to Hassan Charara for his 
meticulous review of the final project report as the Subject Matter Expert (SME). His 
profound expertise and guidance played a pivotal role in ensuring the successful 
conclusion of the project.  

  



iii 
 

Table of Contents 

LIST OF FIGURES ...................................................................................................................... V 

LIST OF TABLES ...................................................................................................................... VII 

INTRODUCTION ....................................................................................................................... 1 

Work Zone Safety ........................................................................................................................................................ 1 

Work Zone Safety Applications.................................................................................................................................. 2 

LiDAR and Its Roadside Applications ....................................................................................................................... 3 

Motivations of this Study ............................................................................................................................................ 5 

DATA COLLECTION AND LIDAR DATASETS ........................................................................... 6 

System Development .................................................................................................................................................... 6 
System Configuration and Calibration ...................................................................................................................... 7 
Perception Requirements .......................................................................................................................................... 8 
Communication and Alarm Considerations ............................................................................................................ 11 

Methodology ............................................................................................................................................................... 12 
Platform and Software ............................................................................................................................................ 12 
Background Removal ............................................................................................................................................. 12 

RESULTS AND DISCUSSION .................................................................................................. 17 

Detection Results........................................................................................................................................................ 17 
Trajectory Prediction/Alerting ................................................................................................................................ 18 

FUTURE RESEARCH ................................................................................................................ 20 

ADDITIONAL PRODUCTS....................................................................................................... 20 

Education and Workforce Development Products ................................................................................................. 20 

Technology Transfer Products ................................................................................................................................. 21 

Data Products ............................................................................................................................................................. 21 

REFERENCES ........................................................................................................................... 22 



iv 
 

APPENDIX A: LITERATURE REVIEW ...................................................................................... 32 

Work Zone Safety ...................................................................................................................................................... 32 

Methods to Improve Work Zone Safety .................................................................................................................. 32 

WZIAS ........................................................................................................................................................................ 33 

Roadside LiDAR Data Processing Algorithms ........................................................................................................ 35 

Background Filtering ................................................................................................................................................ 36 
Background Filtering with Static Background Construction .................................................................................. 37 
Background Filtering Algorithms Without Static Background Construction ......................................................... 37 
Algorithms that Improve the Detection Accuracy in the Far Range ....................................................................... 38 

Object Detection ........................................................................................................................................................ 38 

Object Tracking ......................................................................................................................................................... 44 

LiDAR Installation/Configuration ........................................................................................................................... 48 

Data Fusion for Roadside LiDAR Applications ...................................................................................................... 51 

APPENDIX B: MORE INFORMATION FOR DATA COLLECTION ............................................ 52 

Simulated Datasets .................................................................................................................................................... 52 
Simulation ............................................................................................................................................................... 52 
Simulation Procedures ............................................................................................................................................ 53 
Simulink Blocks ...................................................................................................................................................... 53 
Unreal Engine Blocks ............................................................................................................................................. 54 

Data Collection from Test Sites ................................................................................................................................ 56 

Experimental Work Zone Data Collection .............................................................................................................. 57 
Purpose ................................................................................................................................................................... 57 

Experimental Work Zone Tests ............................................................................................................................... 59 
Test 1: One Lane Closure on a High-speed Two-lane Highway (60 mph Speed Limit)......................................... 59 
Test 2: One Lane Closure on a Two-lane Road with Two LiDAR Sensors (30 mph Speed Limit) ....................... 60 
LiDAR Configuration ............................................................................................................................................. 60 
Vehicle Intrusion Scenarios .................................................................................................................................... 60 

Real Work Zone Data Collection ............................................................................................................................. 63 

 
  



v 
 

List of Figures 
Figure 1. Graph. Fatalities and estimated injuries occurring in work zones, 2011 – 2020 [2]. ...... 1 

Figure 2. Images. A LiDAR 3D point cloud data sample from the research team’s previous study 
(unpublished source): (a) Original point clouds displayed in the VeloView™ software; (b) The 
projected point cloud in the polar coordinate system. .................................................................... 4 

Figure 3. Photos and text. Current roadside or infrastructure-based LiDAR ITS applications in 
Nevada and Tennessee [29]. ........................................................................................................... 4 

Figure 4. Photos and diagram. Data collection and LiDAR datasets used in this study. ................ 6 

Figure 5. Flowchart. The developed system and its modules. ........................................................ 7 

Figure 6. Screen shot. Visualization of the system interface. ......................................................... 7 

Figure 7. Graphs. Ak, Bk, and Ck theoretical spacing results. ΣCk + δmin represents the distance from 
the ground, ΣBk − Dh represents the horizontal spacing along the lanes, while ΣAk is the longitudinal 
spacing along the lane [33]. .......................................................................................................... 10 

Figure 8. Graph. Horizontal spacing in XY plane between points for a 2D scan of a flat wall with 
the LiDAR sensor positioned Dh away. n ranges from N = 1 to N = π/φ [33]. ............................. 11 

Figure 9. Graph. Horizontal/vertical spacing between points in the ZX plane at _min. The 
mounting height Dv and setback distance Dh from the road affect the spacing [33]. ................... 11 

Figure 10. Flowchart. The developed system architecture. .......................................................... 12 

Figure 11. Diagram. LiDAR readings for t = 0, 1. At t0, the vehicle occludes beams Pi,j , Pi,j+1 path. 
At t1, the vehicle is gone, and the previous beams fall incident on the world background [121]. 13 

Figure 12. Text image. Vehicle detection algorithm [33]. ............................................................ 14 

Figure 13. Graphs. Image dilation and detection process for two different vehicles (I-II). (a) BeV 
points, (b) points after dilation and corresponding cluster bounding boxes, (c) cluster search on 
original points, and convex hull generation, and (d) refined cluster bounding boxes [33]. ......... 15 

Figure 14. Diagram for the threat alert system. ............................................................................ 16 

Figure 15. Graph and diagram. Threat detection and alarm: a) Trajectory and predicted path of the 
vehicle. b) Visualization of threat alert. ........................................................................................ 18 

Figure 16. Screen shot. Rviz interface of the threat alert system. ................................................ 18 

Figure 17. Diagram. Effectiveness of different types of controls (Source: CDC). ....................... 33 

Figure 18. Graphs. The output point cloud from roadside LiDAR [62]. ...................................... 35 

Figure 19. Diagram. Convolutional neural networks (CNNs) architecture [88]. ......................... 41 

Figure 20. Diagram. PointNet architecture [91]. .......................................................................... 41 



vi 
 

Figure 21. Diagram. Graph neural networks (GNNs) architecture [93]. ...................................... 42 

Figure 22. Diagram. VoteNet architecture [94]. ........................................................................... 42 

Figure 23. Diagram. VoxelNet architecture [95]. ......................................................................... 43 

Figure 24. Illustration. Driving scenario with ghost object presence [123].................................. 49 

Figure 25. Graph. An example of IMU errors [129]. .................................................................... 50 

Figure 26. Diagram. The co-simulation framework that is built on MATLAB/Simulink and Unreal 
Engine [29].................................................................................................................................... 53 

Figure 27. Diagram. Communication flows between MATLAB/Simulink and Unreal Engine [29].
....................................................................................................................................................... 53 

Figure 28. Screen shot. MATLAB/Simulink blocks in a designed simulation model for the SWZ 
case study [29]. ............................................................................................................................. 54 

Figure 29. Diagram. Execution order for Unreal Engine simulation blocks [29]. ........................ 55 

Figure 30. Illustration and screen shot. Visualization of a SWZ application with LiDAR output in 
Unreal Engine [29]. ....................................................................................................................... 55 

Figure 31. Graph and photos. The data collection site on the RELLIS Campus (02-TAMU). .... 57 

Figure 32. Satellite image. The TAMU RELLIS Campus testing facility.................................... 58 

Figure 33. Satellite image and photo. The experimental work zone data collection site in the 
RELLIS Campus. .......................................................................................................................... 58 

Figure 34. Diagram. High-speed two-lane highway work zone configurations. (D is the distance 
to start of the taper; Adapted from Highway IDEA Project 139: Development of a Sensing 
Methodology for Intelligent and Reliable Work-Zone Hazard Awareness). ................................ 59 

Figure 35. Diagram. Low-speed two-lane highway work zone configurations. ........................... 60 

Figure 36. Diagram. Settings of Testing Scenario 1. .................................................................... 61 

Figure 37. Photo and graph. Visualization of Scenario 1’s LiDAR outputs................................. 61 

Figure 38. Diagram. Settings of Testing Scenario 2. .................................................................... 62 

Figure 39. Photo and graph. Visualization of Scenario 2’s LiDAR outputs................................. 62 

Figure 40. Photo and graph. Visualization of Scenario 3’s LiDAR outputs................................. 63 

Figure 41. Satellite image. The identified TxDOT work zone sites. ............................................ 64 

Figure 42. Photo. Site photo of the identified work zone sites on US-380................................... 65 

Figure 43. Photo. The LiDAR setup in the work zone. ................................................................ 65 

 



vii 
 

List of Tables 
Table 1. Existing WZIAS [7], [10] ................................................................................................. 3 

Table 2. Background Filtering Results [33] .................................................................................. 17 

Table 3. Detection Results [33] .................................................................................................... 18 

Table 4. Accuracy of the Intrusion Alerting ................................................................................. 19 

Table 5. Summary of Machine Learning-based Methods for Object Detection ........................... 39 

Table 6. Summary of Features of Deep Learning-based Methods for Object Detection ............. 43 

Table 7. Summary of Object Tracking and Predicting Methods .................................................. 46 

Table 8. Summary of Different Types of LiDAR Sensors ........................................................... 49 

Table 9. Description of 01-TAMU and 02-TAMU Datasets ........................................................ 56 

Table 10. LiDAR Configuration Parameters ................................................................................ 60 

 



1 
 

Introduction 

Work Zone Safety  
Roadway construction and maintenance have become increasingly common as the transportation 
system in the United States ages and the population and traffic volume increase. This fact places 
more and more work zone workers near high-speed vehicles and increases the probability of those 
workers being struck. According to the National Highway Traffic Safety Administration (NHTSA) 
and the National Work Zone Safety Information Clearinghouse, work zone crashes have 
consistently led to hundreds of fatalities and thousands of injuries each year (Figure 1). The 
economic and societal impact of these crashes is substantial, affecting not only those directly 
involved but also their families, communities, and the economy as a whole [1].  

 

Figure 1. Graph. Fatalities and estimated injuries occurring in work zones, 2011 – 2020 [2]. 

Based on the New York State Department of Transportation Work Zone Accident Database, there 
were more than 3,400 traffic crashes and construction crashes over a 6-year period (2000-2005). 
Among them, 7.5% of all daytime crashes (133 in total) involved work zone intrusion, and 12.4% 
of nighttime work crashes (39 in total) involved an intrusion into the workspace. If focusing strictly 
on freeway lane closure work zones, the numbers are 9.7% and 14.2% for daytime and nighttime 
work zone crashes, respectively [3]. Another study from the Center for Construction Research and 
Training (CPWR) also indicated that the most common cause of road construction deaths between 
2011 and 2016 was pedestrian vehicular incidents where a worker (nonoccupant of vehicle) was 
struck by a vehicle or mobile equipment (50.2%). Of the 267 pedestrian vehicular incidents, 61.4% 
were due to a worker (nonoccupant of vehicle) being struck by a forward-moving vehicle in the 
work zone (e.g., an intrusion vehicle from passing traffic),1 followed by being struck by a vehicle 
backing up in the work zone (24.7%) [4]. Although only a small proportion of these intrusion 

 
1 It should be noted that the data does not differentiate between being struck by a motorist's vehicle going forward 
(i.e., a true intrusion) and a construction vehicle (dump truck or other vehicle) that was allowed in the workspace but 
that struck a worker on foot.  
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events involve a worker (approximately 8% to 30% depending on type of work zone and time of 
day) [3], construction workers are twice as likely to be killed by a motor vehicle than workers in 
any other industry sector [5]. Thus, improving work zone safety is one of the leading concerns for 
transportation agencies and highway contractors across the country. 

Work Zone Safety Applications 
Traditionally, efforts to reduce the risk of injuries and deaths have focused on improving work 
zone related traffic control devices, operations, and configurations to minimize collisions 
involving motorists. Such injury prevention measures include optimizing work zone layout, using 
temporary traffic control devices, motorist education and speed enforcement, high-visibility 
apparel, and work zone illumination [6]. However, inattentive or speeding drivers often disregard 
or ignore work zone traffic control devices and other warning information systems, which has led 
to work zone intrusions and serious crashes [7]. Because the work environment on the highway is 
often chaotic and noisy, it can be difficult for personnel to spot an errant vehicle in time to take 
appropriate action. Active strategies, such as deploying intrusion sensing and alerting technologies 
in highway work zones, may be an effective countermeasure in mitigating the risk of potential 
incidents in highway construction and maintenance sites. 

Work Zone Intrusion Alert Systems (WZIAS) use sensing technologies and can help workers avoid 
an impending incident by detecting a vehicle intruding into the work zone and providing advance 
warning to the affected workers. Ideally, these systems would have alarm mechanisms that warn 
workers with enough time to properly react to the impending hazard [8]. The first such system was 
the product of a Strategic Highway Research Program (SHRP) sponsored study [9] and was 
introduced to work zones in 1995. Since SHRP, various departments of transportation (DOTs) 
have developed, evaluated, and implemented several other systems on their highway projects [7], 
[10]. These systems can be divided into three major categories:  

• Mechanical systems use mechanisms, such as impact-activated or pressure-activated 
systems, that are triggered by physical contacts or impacts of intruding vehicles [11]. 

• Electronic systems apply sensing technologies such as ultra-wideband (UWB) [12], [13], 
Global Positioning Systems (GPS) [14], radio-frequency identification (RFID) [15], 
magnetic field [16], radar [17], infrared [18], laser [7], video [19], [20], and several others 
to detect intruding objects.  

• Dedicated observers are workers or flaggers strategically positioned to spot intrusions and 
trigger alarms [19]. 

Although potential benefits were identified from these systems, only a few of them have been 
adopted by highway construction industry organizations. Some of the concerns reported about 
these technologies were effectiveness, cost implications of adopting new technology, and lack of 
technology feature synergy [7]. For example, the major limitation of mechanical systems is that 
the system’s operator must be present at the time of a warning to notice any changes in work-zone 
barricade formations, while the major limitations of electronic systems are the frequency of false 
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alarms and the difficulty in setting up the systems. Table 1 summarizes these applications, with 
commercially available systems in bold. Developing innovative methods to reduce the number of 
crashes and vehicles intruding into the work zone is still critical. 

Table 1. Existing WZIAS [7], [10] 

Intrusion 
Technology 

Type 

Intrusion 
System 

States 
Tested 

Commercially 
Available 

Audible 
Alert 

Visual 
Alert 

Vibratory 
Alert 

Mechanical SonoBlaster New Jersey 
DOT  

Kansas DOT 

Yes Yes No No 

Infrared-Based Safety Line None No Yes Yes No 

Pneumatic and 
Microwave 

Traffic Guard 
Worker Alert 

System 

None Yes Yes Yes Yes 

Pneumatic and 
Microwave 

Intellistrobe Oregon DOT Yes Yes No No 

Radar-Based AWARE System Missouri and 
Texas 

No Yes Yes Yes 

Radio-Based Intellicone Kansas DOT Yes Yes Yes No 

Radio-Based Wireless Warning 
Shield 

None No Yes No Yes 

Laser-Based ProAlert None No Yes Yes No 

LiDAR and Its Roadside Applications  
Using advanced detection technology and edge processing to obtain reliable and enriched 
information about the various users in a multimodal traffic environment is the core function of 
intelligent transportation systems (ITS). The current ITS sensors such as loop detectors, video 
cameras, microwave radars, and Bluetooth sensors mainly provide macro traffic data, namely 
traffic flow rates, average speeds, and occupancy. However, new traffic systems and applications 
such as connected and autonomous vehicles (CAVs), adaptive traffic signal control, near-crash 
analysis, and automatic pedestrian crossing warning system require traffic flow information with 
more detail and higher accuracy—especially high-accuracy, high-resolution trajectory data for all 
users in a multimodal traffic environment. 

As a type of active vision sensor, a light detection and ranging (LiDAR) sensor emits pulsed light 
waves into the surrounding environment. These pulses bounce off surrounding objects and return 
to the sensor. The sensor uses the time it took for each pulse to return to the sensor to calculate the 
distance it traveled. Repeating this process millions of times per second creates a precise, real-time 
3D map of the environment. This 3D map is called a point cloud. LiDAR shows its great potential 
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in providing high-resolution micro traffic data (HRMTD) through a 360-degree detection of the 
surrounding environment in real time (Figure 2). It also has advantages of insensitivity to external 
light changes, strong adaptability to complex environments, high accuracy and frequency, wide 
coverage, and enriched depth information [21]. Especially when deployed at the infrastructure 
level, LiDAR can obtain the high‐resolution fine‐grained position, direction, speed, and even the 
trajectory of each road user within the scanning range, which could be used as a valuable data 
input for vehicle-to-everything (V2X) and Cooperative Vehicle Infrastructure System (CVIS) 
applications (Figure 3 shows some examples).  

 

Figure 2. Images. A LiDAR 3D point cloud data:  

(a) Original point clouds displayed in the VeloView™ software; (b) The projected point cloud in the polar 
coordinate system.  

 

Figure 3. Photos and text. Current roadside or infrastructure-based LiDAR ITS applications in Nevada and 
Tennessee [22]. 
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Currently, the most typical LiDAR application is to detect roadway and traffic information for 
automated driving vehicles [23]. However, a growing number of roadside LiDAR applications and 
studies can be found in the field [24], [25], though most are still in the proof-of-concept stage [26], 
exploring this possibility [27], [28], or just providing some system prototypes [29].  

The HRMTD for all work zone “actors” (e.g., workers, construction equipment, passing vehicles) 
can be collected simultaneously and in real time by a LiDAR sensor, including each work zone 
user classification, presence, location, speed, and direction. This kind of panoramic, trajectory-
level data of work zone actors can potentially be used to develop an intelligent and reliable work 
zone situational awareness or intrusion alert system. In other words, LiDAR can be a potentially 
powerful sensing technology to significantly improve intrusion sensing accuracy and speed while 
reducing false alarms.  

Motivations of this Study 
This project innovatively deployed 360-degree LiDAR sensors at the roadside and tested their 
potential for providing work zone safety in terms of detection accuracy, efficiency, and ease of 
use. The objective of this pilot study was to develop a set of algorithms to collect and interpret 
real-time information of each approaching vehicle and worker (e.g., location, speed, and direction) 
in and outside work zones using the roadside LiDAR sensing equipment. Ultimately, the outcome 
of this pilot study could lead to the development of a full-scale warning system that is deployable 
in a real work zone environment. Such a system could detect and analyze live traffic and work 
zone activity, activate the appropriate warning scheme, and deliver information to roadway 
workers in work zones in a timely manner so that they can take evasive actions instead of relying 
on traditional “passive” safety countermeasures. This kind of panoramic, trajectory-level data of 
work zone actors can potentially be used to develop an intelligent and reliable work zone 
situational awareness or intrusion alert system. 

This research addressed the following research questions: 

1) Can we use the emerging 360-degreee roadside LiDAR sensing technology to provide 
advance warning of potential vehicle intrusions? What are potential barriers for a LiDAR-
based intrusion alert system? 

2) How can we develop a set of algorithms to detect, classify, and track vehicles and 
“pedestrian” workers with high accuracy and in real time? Is a LiDAR-based intrusion alert 
system more reliable than other systems (e.g., avoiding false alarms)? 

3) What work zone scenario(s) has/have the most need to be tested for preventing potential 
vehicle intrusions (e.g., two-lane highway with low-medium speed, four-lane freeway with 
high speeds)? 

4) How can we properly test and validate the algorithms in designed experimental scenarios 
in terms of reliability, accuracy, and computational efficiency? 
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5) How can we provide proof of concept for such a work zone awareness system in a real 
work zone environment? What is the optimal detection setup (single vs. multiple sensors, 
location, height, etc.) given specific work zone configurations? 

Data Collection and LiDAR Datasets 
In this section, the datasets utilized in the research project to develop and evaluate a LiDAR-based 
work zone intrusion system will be discussed (Figure 4). By utilizing a variety of datasets, 
including simulated data, data from test sites, data from a controlled work zone experimental site, 
and data from real work zone sites, researchers thoroughly evaluated and refined the LiDAR-based 
work zone intrusion system. The details of each dataset, data collection methodologies, and 
insights gained can be found in Appendix B, providing a comprehensive understanding of our 
system's development and performance. 

 

Figure 4. Photos and diagram. Data collection and LiDAR datasets used in this study. 

System Development 
In this innovative project, 360-degree LiDAR sensors were strategically installed at the roadside 
to evaluate their effectiveness in enhancing work zone safety. The primary focus was on assessing 
the detection accuracy, efficiency, and user-friendliness of these sensors. The pilot study aimed to 
develop algorithms capable of capturing and analyzing real-time data about vehicles and workers, 
including their location, speed, and direction, both within and outside the work zones. The roadside 
LiDAR sensing equipment played a crucial role in achieving this objective, enabling the collection 
and interpretation of valuable information to improve overall work zone safety measures. At a high 
level, the developed system included or consisted of the following functions: 

• Detect 2D (x, y) position of vehicles in the adjacent lanes of the work zone. 
• Perform data association and tracking of detected vehicles (for inflow and outflow 

monitoring and position filtering). 
• Assess tracked vehicles’ behaviors to accurately determine threats. 
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• Accurately determine or predict threats. 
• Send an intrusion alert.   

The system has the following modules (Figure 5 and Figure 6): 

1) Point Cloud to Image Module  
2) Image Module to Clusters Module  
3) Clusters Module to Detection/Tracking Module 
4) Trajectory Extraction Module  
5) Intrusion Risk Prediction/Warning Module 

 

Figure 5. Flowchart. The developed system and its modules. 

 

Figure 6. Screen shot. Visualization of the system interface. 

System Configuration and Calibration  
The success of any LiDAR-based application, especially one focused on detecting work zone 
intrusions, heavily relies on the proper configuration and calibration of the LiDAR system. In this 
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section, we will delve into the details of the system components, their arrangement, and the 
calibration procedures employed to achieve accurate and reliable detection results. 

The LiDAR system utilized in this work zone intrusion detection application is the Ouster OS-1 
32 LiDAR. The LiDAR operates at a wavelength of 1,550 nm and is equipped with a rotating 
mirror mechanism to capture a 360-degree view. The system we developed processes the LiDAR 
point cloud data in real time. The LiDAR sensor is strategically mounted on a sturdy tripod 
approximately 1.5 to 2 m above ground level at the roadside, facing the work zone. The sensor's 
mounting position is selected for an unobstructed 360-degree view of the surroundings, including 
the work zone and potential intrusion paths. Careful consideration is given to avoiding occlusions 
from nearby objects like signposts or vegetation that might hinder the sensor's line of sight. 

The LiDAR system's data is recorded in a local Cartesian coordinate system, with the LiDAR 
sensor as the origin. To georeference the LiDAR measurements to real-world coordinates, a Global 
Navigation Satellite System (GNSS) receiver is co-located with the LiDAR sensor to obtain 
accurate positional information. The GNSS data is post-processed and fused with the LiDAR data 
using a Kalman filter to compute precise georeferenced point cloud data. In this project, we only 
tested the georeferencing process in experiments on the Texas A&M University (TAMU) RELLIS 
Campus. 

Perception Requirements 
Different sensors provide varying levels of fidelity, each with their drawbacks. Commercially 
available traffic monitoring radar systems, including direct and side-fired radars, have been used 
to detect and track vehicles up to 300 m [30]. Radar measurements, however, are lower in fidelity, 
detecting only the vehicle pose/velocity, and can often be noisy, which decreases accuracy [31]. 

Optical machine vision sensors have also been used in traffic detection for both pose and 
orientation [31], though they can suffer from poor accuracy in nighttime operation. Although the 
percentage of work zone nighttime crashes is lower than in daytime traffic (due to higher volumes), 
crash rates per million vehicles are substantially higher at night [32], [3]. Cameras also require 
extrinsic/intrinsic calibration, which relates the image pixels to a physical point in 3D space. A 
work zone is a dynamic site; researchers determined that the sole use of cameras was not feasible 
due to lengthy setup times with calibration, especially if this process must be repeated multiple 
times. Day/night operation requirements also warranted a different or additional sensing modality. 

3D LiDAR offers a higher resolution than radar, which not only allows increased accuracy in 
position estimation but can also allow detection of the orientation of the vehicle. LiDAR is also 
not subject to varying lighting conditions and produces a 3D point cloud rather than 2D pixel 
images. Calibration is more straightforward, as the operator would only need to provide semantic 
information such as the road and work zone area in a 3D map. As LiDAR technology progresses 
with reduced costs, we still forecast its use as a vital component in developing a Smart Work Zone 
(SWZ). These can include systems with multiple LiDARs and in combination with other sensors. 
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2The team started by researching the theoretical capabilities—which vary based on the LiDAR 
model, configuration, and resolution—to issue guidance on the LiDAR model and placement for 
roadside application. For these purposes, a highway posted at 65 mph (104 kph) was defined as 
having four travel lanes 3.6 m wide in each direction. In one direction, the far right lane is closed 
as part of the work zone, including the 2.4 m wide shoulder.  

Let the horizontal placement Dh be the distance between the LiDAR and edge of the closest open 
lane and Dv be the vertical mounting distance from the ground (Figure 9). Setback distances are 
limited to the work zone (i.e., 0 ≤ Dh < 6.0 m). The placements Dh, Dv, horizontal and angular 
resolution γ, φ, and number of LiDAR beams nbeams dictate the spacing between the returned points. 
As the spacing increases with the beam distance, the vehicle detection range diminishes. 

To define the spacing between points, consider two simplified concepts on one side of an eight-
lane highway. In the first scenario, only consider the horizontal spacing Ak distances in the XY 
plane for LiDAR measurements taken against an imaginary flat wall, visualized in Figure 8, with 
Ak given by Equation (1). Extending the imaginary wall to a vehicle, Ak represents the separation 
distance between points taken on the side from bumper to bumper. In another scenario, the 
horizontal Bk and vertical Ck spacing distances are considered for measurements in the XZ plane, 
visualized in Figure 9 and given by Equation (2) through Equation (4). These represent the 
spacings from the tires to roof (Ck) and the distances between points on the roof (Bk). A conically 
shaped blind spot lies directly underneath the LiDAR that varies in angle and radius based on the 
placement. This is characterized by the minimum height δmin, and an object is detectable at distance 
Dh. 

 

There are several competing metrics affected by adjusting the LiDAR placement2. The first priority 
is to ensure that δmin remains low enough that at least a portion of the vehicle side is detectable. It 
is also desirable to keep Ck sufficiently small to observe multiple beams on a vehicle. If there is 
enough resolution, we can design for a δmin that allows us to cover side and vehicle roof. 

The theoretical spacing results for both the popular VLP-16 and the less common Ouster OS1-32 
are shown in Figure 7. Note that only half the VLP-16’s beams are utilized for vehicles shorter 
than Dv. The OS1-32 not only has more than twice as many beams, but it can also be manufactured 

 
2 A control parameter of interest is not studied, β , the pitch relative to the ground. Adjusting the pitch will 
unilaterally increase the utilized in beams in one side. In on-going work we are considering worker detection, which 
may not be possible with certain pitches. Further, in specially designed LiDARs, the pitch may not need to be 
adjusted. 
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to vertically scan below zero (down to −22.5°). This allows the full utilization of the 32 beams and 
concentrates on the γ resolution. 

 

For the spacing analysis, researchers fixed the vertical mounting distance at 2.2 m, as this allowed 
the flexibility to detect both the roofs and the sides of most vehicles. Observing the Ak spacing 
results, the limitations on tracking ranges are quickly evident. Beyond Ak > 0.5, too few points are 
received to reliably detect a vehicle. Results for Bk demonstrate that the VLP-16 cannot observe 
multiple bands of points of the roofs and that the vehicle sides are mostly detected via Ck. Though 
it is possible for vehicles in all lanes to be detected, severe occlusions will occur when the closest 
lane is occupied. However, there are better results for Bk, and the roofs of the vehicles in the closest 
lane can likely be detected with the full utilization of the OS1-32. Researchers did not have a 
below-horizon configured OS1-32 for testing, but we hypothesize that the tracking distances 
should improve ±20 to 25 m, or 45 m in total, based on the spacing distances Ak. Hence, 
considerations of the placement and LiDAR configuration as it relates to the application will allow 
for greater utilization of the sensor. Selecting a sensor configured to scan below the horizon such 
as the OS1-32 with resolutions φ = 0.17° and γ = 0.70° and placement at Dh = 4 − 6, Dv = 2.2 m 
would allow detection of both vehicle sides and roofs for up to one to two lanes, as seen in Figure 
7. 

 

Figure 7. Graphs. Ak, Bk, and Ck theoretical spacing results. ΣCk + δmin represents the distance from the 
ground, ΣBk − Dh represents the horizontal spacing along the lanes, while ΣAk is the longitudinal spacing 

along the lane [33]. 
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Figure 8. Graph. Horizontal spacing in XY plane between points for a 2D scan of a flat wall with the LiDAR 
sensor positioned Dh away. n ranges from N = 1 to N = π/φ [33]. 

 

Figure 9. Graph. Horizontal/vertical spacing between points in the ZX plane at _min. The mounting height Dv 
and setback distance Dh from the road affect the spacing [33]. 

Communication and Alarm Considerations 
Researchers also considered the alarm as it relates to sensor update rates, worker notification, and 
processing requirements. The sensor update rate ranges are given by the LiDAR manufacturer—
the VLP-16 is configurable from 5 to 20 Hz, while the Ouster OS1 series can either be 10 or 20 
Hz. Because the total number of points per second remains the same, the horizontal resolution 
changes depending on the rotation rate ω. An appropriate ω must balance the horizontal resolution 
φ, while also providing a fast enough update rate to accurately predict threats. At 104 kph (65 mph) 
and ω = 10 Hz, the position difference between updates is 3 m. Doubling ω reduces the position 
difference by half, but the resolution φ doubles to 0.4° with the VLP-16. Determining the minimum 
frequency ω required to accurately predict threats is still under active study, but researchers 
selected ω = 10 Hz for the current methodology to balance resolution and the update rate.  
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Figure 10. Flowchart of the developed system architecture. 

For processing requirements, the detection algorithms should run at an update rate at least as fast 
as the sensor frequency. Because the processing happens onsite in real time for threat prediction, 
it is highly desirable to produce lightweight algorithms. 

Methodology 
Platform and Software 
For this work, researchers designed the system architecture using the popular Robotic Operating 
System (ROS) [34] as the middle-ware software. Each system sub-task is designed in components 
to run separately on “ROS-nodes,” as illustrated in Figure 10. The algorithms for this research 
were developed in C++ and Python utilizing the open-source Point Cloud Library (PCL) [35] and 
OpenCV Libraries [36]. With ROS’s portability and standardized messages, researchers were able 
to deploy on multiple types of machines and even use different types of LiDAR sensors. 

Background Removal 
Background removal is the process in which stationary objects, such as the ground readings, are 
removed from the point cloud. In the case where the LiDAR is static, the background removal 
process is much simpler than the dynamic case. Researchers applied a common methodology using 
the “Max Distance” [37] or “Azimuth-Channel-Distance” [38] method. In this procedure, the 
background is subtracted based on maximally recorded distances for each beam of the LiDAR, 
which assumes the background is impenetrable. 
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Figure 11 illustrates a scenario of readings of two beams at t0;1. Because the true background point 
Pi,j|t1 exists outside the region of interest (ROI), Pi,j|t0|2 is incorrectly chosen as the maximum 
background distance. Therefore, it is desired to (1) collect the distances when no or few vehicles 
are present, and (2) set the distance to 1 for any beams not measured during this time. However, 
solving (1) requires manual operation to start the background collection when no vehicles are 
present. To solve this issue, an initial background estimate can be measured for a tunable number 
of frames, which removes the majority of the background (but also includes some false positives). 
Subsequently, the vehicle detection algorithm can be started, and when there are a few numbers of 
detected vehicles, the background can be recomputed online. Further robustness may be added in 
cases where the background changes over time. 

 

Figure 11. Diagram. LiDAR readings for t = 0, 1. At t0, the vehicle occludes beams Pi,j , Pi,j+1 path. At t1, the 
vehicle is gone, and the previous beams fall incident on the world background [33]. 

Bird’s-eye View Image Generation 
Vehicles in LiDAR data are easily distinguishable by a bird’s-eye view (BeV). This 2D projection 
of the LiDAR data provides a simple and efficient way to cluster vehicles. A binary or RGB color 
image can be used, depending on what features are to be encoded. In this methodology, researchers 
utilized a binary image I(x, y) defined by: 

 

Hence, even with multiple point pairs (x, y) at different heights z, the bitmap will remain 1. In other 
methodologies, the height and intensity values can be encoded by using multiple color channels, 
which has been useful in deep learning-based approaches [39]. 

It is recommended that a limit xmin ≤ x ≤ xmax, ymin ≤ y ≤ ymax be applied to bound and pre-allocate 
the image dimensions m × n. The image scale can be empirically chosen; in these experiments, 
researchers found that a scale of 8 to10 worked best for a 15 × 60 m area. The scaling factor affects 
the precision of the data—a scale factor of 10 pixels per meter will have a precision of ±10 cm. 
Computing BeV images spent less than 1 millisecond (ms) of computation time. 
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Vehicle Detection 
1) Clustering: After the BeV image is generated, a clustering scan algorithm can be used to 

generate potential image detections. Density-Based Spatial Clustering of Applications with 
Noise (DBSCAN) has been a popular method for clustering LiDAR data [38], [40]. Two 
parameters, ε and ηmin, are utilized; however, the LiDAR’s characteristic of returning sparse 
point clouds as the radial distances increases makes it difficult to choose a single ε value. 
Zhao proposed a variable ε based on the radial distance from the LiDAR [38]. Researchers 
applied a dilation operation wk to the BeV image ηd times prior to clustering, which 
increases the density of partial vehicle scans. Experimentally, we found that a single 
operation of a 3 × 3 dilation kernel of ones is sufficient for clustering with ε = 8, ηmin = 15.  

2) Vehicle Detection: After the clusters have been generated, classification is needed to 
determine if the track is a vehicle. Common methodology for classification includes 
Support Vector Machines (SVM). In [41], a 28-feature SVM for vehicle classification in 
mixed urban environments was utilized. The current study is primarily interested in 
detecting vehicles, so researchers simply categorized between vehicle and nonvehicle 
based on the area, dimensions, and dimension ratio of the detection. Examples of 
nonvehicle detections can include pedestrians, noise, and small partial scans of vehicles. 
Lastly, the cluster bounds in the dilated image are then used to find the bounding box in 
the original image. A pseudocode of the vehicle detection process is shown (Algorithm 1) 
is shown in Figure 12. The overall detection process is illustrated in Figure 13. 

 

Figure 12. Text image. Vehicle detection algorithm [33]. 



15 
 

 

Figure 13. Graphs. Image dilation and detection process for two different vehicles (I-II). (a) BeV points, (b) 
points after dilation and corresponding cluster bounding boxes, (c) cluster search on original points, and 

convex hull generation, and (d) refined cluster bounding boxes [33]. 

Vehicle Tracking 
Multi-object tracking (MOT) involves four consecutive stages: (1) object detection, (2) data-
association, (3) prediction, and (4) track life-cycle management. Several methods have been 
developed for data association depending on the context and application. Some methods include 
the Joint Probabilistic Data Association Filter (JPDAF) [42] and the Hungarian/Munkres algorithm 
[43]. As a starting point, the team used the Hungarian algorithm due to its simplicity. The cost 
function is based on the Euclidean separation distance between new detections and predicted 
vehicle positions. The detections are assigned to tracks based on the lowest cost, though they must 
be within a maximum distance cost Δ max-cost. A life-cycle observer removes tracks that have had 
more than ηinvisible  frames and tracks whose center position has transitioned near the end of the 
ROI. Unassigned detections typically (though not exclusively) result from the following: (1) a new 
vehicle that is untracked, (2) multiple partial detections for a new or already tracked vehicle, and 
(3) detections from a previously deleted tracked vehicle(s). Lastly, for prediction and filtering, the 
team used a discrete constant velocity Kalman filter running at the same frequency as the LiDAR 
setting. The tracking execution time did not exceed 3 ms. 

Vehicle Trajectory Extraction and Prediction 
The Kalman filter is a mathematical algorithm used to estimate the state of a system based on a 
series of noisy measurements. It was first developed by Rudolf E. Kalman in 1960 and has since 
become a widely used technique in many applications, including vehicle trajectory tracking and 
predicting. An overview of the Kalman filter, its formula, its applications in vehicle trajectory 
tracking and predicting, and its advantages appear in Appendix A. 

Researchers used the Kalman filter to track and predict the trajectory of detected objects [44]. The 
Kalman filter can offer estimates for certain unknown variables observed over time via given 
measurements. Upon initialization, the Kalman filter anticipates the system state for the 
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subsequent step while also giving the prediction's uncertainty. After a measurement has been taken, 
the Kalman filter revises (or adjusts) the prediction and the present state's uncertainty. 
Simultaneously, it predicts future states in a continuous manner.  

Vehicle Intrusion Alerting 
Figure 14 shows the threat alert system. First, researchers set a buffer called the warning zone; the 
distance of the warning zone to the edge of the detection zone is D, and the distance between the 
vehicle and the detection zone is d. When a vehicle approaches the detection zone, if it reaches the 
warning zone (d <= D), it would be considered a threat. At this point, a warning signal is sent.  

 

Figure 14. Diagram for the threat alert system. 

Visualization 
ROS visualization (Rviz) is an application for 3D visualizing robots, sensors, and algorithms [45]. 
Users can observe the robot's perspective of the real world or simulated scenario. In this study, 
researchers applied Rviz to visualize the LiDAR data, trajectory detection and prediction, and 
threat alert. 

The dynamic reconfiguration function in ROS can be used to dynamically change a parameter's 
value while a node is operating. This package provides the ability to alter parameters on the 
parameter server during runtime and send that adjustment to a specific active node that requires 
the parameter's most recent value [46]. In the current research, the size of the work zone and the 
scale of images of multiple views can be adjusted when the program is running. The ability to 
adjust the size of the work zone provides flexibility to adapt to changing conditions or 
requirements. For example, if the user needs to expand or reduce the warning zone, they can easily 
adjust the work zone size to reflect the new requirements. 
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Results and Discussion 

Detection Results 
Researchers collected data with a VLP-16 attached to a heavy-duty tripod with spirit bubble 
indicators to balance the roll and pitch at two real-world test sites (Table 2). Datasets are stored 
for offline use in a “rosbag” format, which can later replay captured sensor data. 

The first (01-TAMU) test site was an urban road intersection near TAMU at Church & University. 
Researchers collected LiDAR vehicle data during the day and windy conditions for about 10 
minutes. The LiDAR was positioned at Dh = 5.0; Dv = 2.2 m. The second test site (02-TAMU) was 
collected during the day on a highway SH-21 near the RELLIS Campus. For safety reasons, the 
LiDAR was positioned further back at Dh = 8.3 m; Dv = 2.2 m. Compared to the urban scenario, 
the point cloud for the highway was much sparser. This was due to both the LiDAR being located 
further away and the high vehicle speeds (75 mph / 120 kph) resulting in shorter detections. 

Researchers tested rosbags offline on two machines to evaluate the performance: (1) a mobile 
laptop with an Intel i7-8750H @ 3.9 GHz, and (2) a Raspberry Pi 4 with a Quad Cortex A72 @ 
1.5 GHz. Relevant statistics and run-time performance were measured on a frame-by-frame basis, 
with averaged results presented. 

For the detection results (Table 3), researchers observed the precision, recall, and mean 
Intersection Over Union (mIOU) averaged over a frame-by-frame basis. We observed these 
metrics in the context of the annotated LiDAR BeV images. In 01-TAMU, there was a very high 
precision where 99.5% of the detections were present in the annotations. Most instances of false-
positives/false-negatives were due to over/under clustering, respectively. The mIOU score (i.e., 
the averaged intersection over union) was around 60% to 65% in both datasets. The remaining 
40% error is majorly attributed to misclustering in vehicles with sparse LiDAR returns and 
marginally due to small error offsets in annotations. The small performance increases in most 
metrics for 02-TAMU may be attributed to the lower number of vehicles per frame. The 
background filtering, image generation, detection, and tracking processes were all within the 100 
ms target time (for ω = 10 Hz) on the i7 laptop. However, in instances with four or more vehicles 
in a frame, the computation time on the Raspberry Pi platform was >100 ms. Further improvements 
can be made by transitioning the detection code into C++ from Python. 

Table 2. Background Filtering Results [33] 

Dataset Avg. error 
[%] 

exec time 
[ms] 

Avg. False 
Positive [%] 

Avg. False 
Positive [pts] 

01_TAMU 0.50 1.90 1.08 60.60 
02_TAMU 0.88 1.00 2.18 119.10 
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Table 3. Detection Results [33] 

Dataset Precision Recall mIOU 
Avg. exec 
time [ms] 

per cluster 
[ms] 

01_TAMU 99.5% 93.9% 58.5% 8.25 3.24 
02_TAMU 100.0% 96.3% 66.7% 5.38 4.90 

Trajectory Prediction/Alerting 
Figure 15a shows the trajectory tracking and prediction results. The vehicle is bounded by a box, 
and five frames of the vehicle’s future trajectory are predicted (as shown by cyan color dots). 
Figure 15b shows the threat alert response. When a vehicle reaches the edge of the warning zone, 
a message “warning” appears (shown in red). When the vehicle leaves, the threat alert disappears. 

 

Figure 15. Graph and diagram. Threat detection and alarm: a) Trajectory and predicted path of the vehicle. 
b) Visualization of threat alert. 

The Rviz interface displays the LiDAR data and how the system works (Figure 16). The box in 
the center shows a 3D view within the detection zone including the work zone LiDAR point cloud 
data. Three windows on the left visualize the top view, the centroid of moving objects, and 
trajectory tracking and prediction. With the dynamic reconfiguration, the size of the work zone 
and the detection zone can be adjusted.  

 

Figure 16. Screen shot. Rviz interface of the threat alert system. 

Researchers tracked and predicted the trajectories of 184 vehicles; 176 of them are accurate, and 
eight are inaccurate. The accuracy of tracking and prediction is 95.65%. There are a few reasons 
that explain the threat alert errors: 
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• Complex driving scenarios: Trajectory prediction assumes that the vehicle will continue to 
behave in a predictable manner. However, complex driving scenarios like sudden stops or 
sharp turns can make trajectory prediction challenging. 

• Model assumptions: The Kalman filter algorithm assumes that the system dynamics and 
sensor noise are normally distributed and linear. However, in real-world scenarios, the 
behavior of vehicles and sensor noise may not always follow a linear or normal distribution. 
In such cases, the accuracy of the Kalman filter algorithm may be limited. 

• Object clustering algorithms: Object clustering algorithms could lead to incorrect or 
delayed threat alerts. DBSCAN, like any clustering algorithm, is designed to group similar 
data points based on the maximum distance between points and the minimum number of 
clustering data points. The accuracy of object clustering being 90%+ could result in 
incorrect threat alerts. For example, if the algorithm is not sensitive enough, it may fail to 
detect clusters or objects actually approaching the work zone, resulting in delayed alerts. 

The result of threat alert appears in Table 4. In the 147 related threat information recorded, 119 
are reported accurately; 25 of the threat information are not actual threats but are predicted as 
threats by the system. The system also considers three of them as not threats (False Positive). 
Overall, the system has an accuracy of 80.95%. 

Table 4. Accuracy of the Intrusion Alerting 

Ground truth 

Prediction 

 TRUE FALSE 
TRUE 119 25 
FALSE 3 / 

There are a several reasons that explain the threat alert errors: 

• System delay can impact the accuracy and timeliness of threat alerts. Processing time varies 
based on algorithm complexity, computational resources, and LiDAR data size. This delay 
occurs between receiving LiDAR data and generating alerts. 

• Vehicle speed is a significant factor in providing timely and accurate threat alerts. The 
LiDAR sensor in this study effectively detects up to 30 m. High-speed approaching 
vehicles reduce the system's time to detect and respond to potential threats. Quick vehicle 
arrival at the work zone necessitates rapid threat detection and response. 

• Incorrect or delayed threat alerts can result from object clustering algorithms. DBSCAN 
clusters similar data points based on distance and minimum cluster size. With a 90% 
clustering accuracy, there may be incorrect alerts. Insensitivity in the algorithm could fail 
to detect approaching object clusters, leading to delayed alerts. 
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Future Research 
In this study, researchers developed a prototype for a work zone vehicle intrusion/alerting system 
by using roadside LiDAR, which helps improve safety for workers. However, this study still has 
a few limitations.  

Currently, the alert system can only show incoming threats that can be displayed on a device in 
the work zone. As we know, the velocity of vehicles is sometimes very high, and traffic crashes 
can happen in just seconds. Displaying threat information in a particular spot in the work zone is 
probably not effective enough for workers to see and react. We will further refine the alert function, 
and one of the solutions is to connect the threat alert to a wearable device such as a vest. When the 
potential threat is found, the signal will be sent and displayed to individual workers directly on 
their wearable devices. This measure will improve efficiency and make more time for workers to 
escape from danger.  

Also, the detection scope in this research is another limitation. The effective detecting and tracking 
distance for the device is 30 m, which is not enough to monitor the traffic condition and alert all 
threats in advance, especially for the potential vehicle threats with high speed on highways. We 
will apply better LiDAR devices to collect data with a larger range in the future. Furthermore, it is 
not our goal to do individual research, gather information, and analyze results in a specific location. 
We hope the information we gain and process via the LiDAR sensor can be connected and 
incorporated into the traffic information platform as a helpful tool to monitor the traffic condition 
around the work zone in real time. 

There are also other relevant research questions that warrant further examination: 

1) The system has been tested in a two-lane work zone (one lane closure for construction). It 
would be beneficial to expand the test to more complicated roadway and work zone 
configurations (e.g., four-lane undivided road, freeway). 

2) The system should also be tested in extreme weather events to see the tolerance of LiDAR 
sensors in extreme conditions (e.g., rain, snow, maximum temperature).  

3) The system and algorithms can be further refined by fusing the data from multiple LiDAR 
sensors (at least two) to reduce occlusion and to increase the warning lead time.    

Additional Products 

Education and Workforce Development Products 
Within the scope of this project, a master's student demonstrated commendable achievement by 
successfully completing their thesis, which focused on the project's central topic. Furthermore, two 
undergraduate students enthusiastically engaged in the project, acquiring valuable learning 
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experience. Additionally, a Ph.D. student made substantial contributions to the project, 
significantly expanding their knowledge and establishing a foundation for future research. 

Technology Transfer Products 
1) IEEE International Intelligent Transportation Systems Conference 2021 (September 2021): 

“Building a Smart Work Zone Using Roadside LiDAR” 
2) TAMU Transportation Data Science Seminar Series (August 26, 2021): “Building a Smart 

Work Zone Using Roadside LiDAR” 
3) TexITE Webinar Series, “ITS, TSMO and Big Data” (August 27, 2021): “Building a 

Roadside LiDAR Based Intrusion Alerting System to Improve Work Zone Safety” 
4) TAMU Design & Analytics for Urban Artificial Intelligence Workshop (June 2022): 

“Leveraging Emerging Data and AI Technologies to Enhance Transportation 
Infrastructures” 

5) Transportation Research Board (TRB) Annual Conference (January 2022): “Simulation of 
Roadside LiDAR Applications: A Smart Work Zone Case Study”  

6) IEEE Sensors Conference (October 2022): “An Automatic Lane Marking Detection 
Method with Low-Density Roadside LiDAR Data” 

7) University of Texas at Arlington Presentation (Nov. 2022): “Development of a Roadside 
LiDAR Based Vehicle Intrusion Altering System for Work Zones” 

8) ASCE International Conference on Transportation & Development 2023 (June 2023): 
“Development of a Roadside LiDAR Based Situational Awareness System to Improve 
Work Zone Safety: A Pilot Study” 

9) TRB Annual Conference (to be planned): “Development of a Roadside LiDAR Based 
Situational Awareness System to Improve Work Zone Safety: A Pilot Study” 

Data Products  
The LiDAR datasets will be uploaded to the Safe-D data portal.  

  



22 
 

References 
[1] L. Blincoe, T. Miller, E. Zaloshnja, and B. Lawrence, The Economic and Societal Impact 

of Motor Vehicle Crashes, 2010, vol. 30. 2014. 
[2] “Work Zone Traffic Crash Trends and Statistics,” Work Zone Safety Information 

Clearinghouse. https://workzonesafety.org/work-zone-data/work-zone-traffic-crash-
trends-and-statistics/ (accessed Apr. 03, 2023). 

[3] M. D. Finley, G. L. Ullman, J. E. Bryden, R. Srinivasan, and F. M. Council, Traffic Safety 
Evaluation of Nighttime and Daytime Work Zones. Washington, D.C.: National 
Academies Press, 2008. doi: 10.17226/14196. 

[4] X. Wang, R. Katz, and X. Dong, “Fatal Injuries at Road Construction Sites among 
Construction Workers CPWR Data Center,” Jul. 2018. 

[5] T. Ore and D. E. Fosbroke, “Motor vehicle fatalities in the United States construction 
industry,” Accident Analysis & Prevention, vol. 29, no. 5, pp. 613–626, Sep. 1997, doi: 
10.1016/S0001-4575(97)00013-4. 

[6] S. G. Pratt, D. E. Fosbroke, and S. M. Marsh, “Building safer highway work zones : 
measures to prevent worker injuries from vehicles and equipment,” 2001–128, Apr. 2001. 
Accessed: Apr. 05, 2023. [Online]. Available: https://rosap.ntl.bts.gov/view/dot/34163 

[7] E. Marks, S. C. Vereen, I. Awolusi, and University Transportation Center for Alabama, 
“Active Work Zone Safety Using Emerging Technologies 2017.,” FHWA/CA/OR-, Jul. 
2017. Accessed: Mar. 03, 2023. [Online]. Available: 
https://rosap.ntl.bts.gov/view/dot/32769 

[8] M.-H. Wang, S. D. Schrock, Y. Bai, R. A. Rescot, and E. and A. E. University of Kansas. 
Dept. of Civil, “Evaluation of innovative traffic safety devices at short-term work zones.,” 
K-TRAN: KU-09-5R, Aug. 2013. Accessed: Mar. 03, 2023. [Online]. Available: 
https://rosap.ntl.bts.gov/view/dot/26339 

[9] K. R. Agent and J. O. Hibbs, “Evaluation of SHRP work zone safety devices,” 1996. 
[10] J. A. Gambatese, H. W. Lee, and C. A. Nnaji, “Work zone intrusion alert technologies: 

Assessment and practical guidance,” Oregon. Dept. of Transportation. Research Section, 
2017. 

[11] L. Osborne, Y. Xiao, and S. Guizani, “Intrusion Detection Techniques in Mobile Ad Hoc 
and Wireless Sensor Networks,” Wireless Communications, IEEE, vol. 14, pp. 56–63, 
Nov. 2007, doi: 10.1109/MWC.2007.4396943. 

[12] W. Han, E. White, M. Mollenhauer, and N. Roofigari-Esfahan, “A Connected Work Zone 
Hazard Detection System for Roadway Construction Workers,” pp. 242–250, Jun. 2019, 
doi: 10.1061/9780784482445.031. 

[13] J. Park, X. Yang, Y. Cho, and J. Seo, “Improving dynamic proximity sensing and 
processing for smart work-zone safety,” Automation in Construction, vol. 84, pp. 111–
120, Dec. 2017, doi: 10.1016/j.autcon.2017.08.025. 

[14] N. Pradhananga and J. Teizer, “Automatic spatio-temporal analysis of construction site 
equipment operations using GPS data,” Automation in Construction, vol. 29, pp. 107–122, 
Jan. 2013, doi: 10.1016/j.autcon.2012.09.004. 

[15] J. Park, E. Marks, Y. Cho, and W. Suryanto, “Performance Test of Wireless Technologies 
for Personnel and Equipment Proximity Sensing in Work Zones,” Journal of Construction 
Engineering and Management, vol. 142, p. 04015049, Jul. 2015, doi: 
10.1061/(ASCE)CO.1943-7862.0001031. 



23 
 

[16] J. M. Sullivan, “Work-zone safety ITS: smart barrel for an adaptive queue-warning 
system,” University of Michigan, Ann Arbor, Transportation Research Institute, Technical 
Report, Feb. 2005. Accessed: Jun. 13, 2023. [Online]. Available: 
http://deepblue.lib.umich.edu/handle/2027.42/3139 

[17] A. Jafarnejad, J. Gambatese, and S. Hernandez, “Influence of Truck-Mounted Radar 
Speed Signs in Controlling Vehicle Speed for Mobile Maintenance Operations: Oregon 
Case Study,” Transportation Research Record, vol. 2617, no. 1, pp. 19–26, Jan. 2017, doi: 
10.3141/2617-03. 

[18] J. A. Epps and M. Ardila-Coulson, “Summary Of SHRP Research And Economic Benefits 
Of Work Zone Safety,” FHWA-SA-98-016, Dec. 1997. Accessed: Jun. 13, 2023. [Online]. 
Available: https://rosap.ntl.bts.gov/view/dot/14138 

[19] Y. Tsai, Development of a Sensing Methodology for Intelligent and Reliable Work-Zone 
Hazard Awareness. IDEA Program, Transportation Research Board of the National 
Academies, 2011. 

[20] J. Teizer and P. A. Vela, “Personnel tracking on construction sites using video cameras,” 
Advanced Engineering Informatics, vol. 23, pp. 452–462, Oct. 2009, doi: 
10.1016/j.aei.2009.06.011. 

[21] C. Lin, H. Liu, D. Wu, and B. Gong, “Background Point Filtering of Low-Channel 
Infrastructure-Based LiDAR Data Using a Slice-Based Projection Filtering Algorithm,” 
Sensors, vol. 20, no. 11, Art. no. 11, Jan. 2020, doi: 10.3390/s20113054. 

[22] D. Wu, A. Darwesh, M. Le, and S. Saripalli, “Simulation of Roadside LiDAR 
Applications: A Smart Work Zone Case Study,” presented at the Transportation Research 
Board 101st Annual MeetingTransportation Research Board, 2022. Accessed: Jun. 15, 
2023. [Online]. Available: https://trid.trb.org/view/1996312 

[23] L. Caltagirone, M. Bellone, L. Svensson, and M. Wahde, “LIDAR–camera fusion for road 
detection using fully convolutional neural networks,” Robotics and Autonomous Systems, 
vol. 111, pp. 125–131, 2019. 

[24] C. Lin, Y. Guo, W. Li, H. Liu, and D. Wu, “An Automatic Lane Marking Detection 
Method With Low-Density Roadside LiDAR Data,” IEEE Sensors Journal, vol. 21, no. 8, 
pp. 10029–10038, 2021. 

[25] H. Liu, C. Lin, D. Wu, and B. Gong, “Slice-based instance and semantic segmentation for 
low-channel roadside LiDAR data,” Remote Sensing, vol. 12, no. 22, p. 3830, 2020. 

[26] “Development of a Roadside LiDAR-Based Situational Awareness System for Work Zone 
Safety: Proof-of-Concept Study | Safe-D: Safety through Disruption.” 
https://safed.vtti.vt.edu/projects/development-of-a-roadside-lidar-based-situational-
awareness-system-for-work-zone-safety-proof-of-concept-study/ (accessed Jul. 31, 2021). 

[27] “Chattanooga DoT deploys digital lidar to improve pedestrian safety,” Ouster. 
https://ouster.com/blog/chattanooga-dot-deploys-digital-lidar-to-improve-pedestrian-
safety (accessed Jul. 31, 2021). 

[28] “Velodyne Lidar Powering Intelligent Traffic Management in Nevada,” Velodyne Lidar. 
https://velodynelidar.com/press-release/velodyne-lidar-university-nevada-reno-
transportation-infrastructure/ (accessed Jul. 31, 2021). 

[29] “Pedestrian behavior study to advance pedestrian safety in smart transportation systems 
using innovative LIDAR sensors,” //, Accessed: Jul. 31, 2021. [Online]. Available: 
https://rip.trb.org/view/1724535 



24 
 

[30] “Traffic Sensor | smartmicro.” https://www.smartmicro.com/traffic-sensor (accessed Jun. 
13, 2023). 

[31] S. Sivaraman and M. Trivedi, “Looking at Vehicles on the Road: A Survey of Vision-
Based Vehicle Detection, Tracking, and Behavior Analysis,” Intelligent Transportation 
Systems, IEEE Transactions on, vol. 14, pp. 1773–1795, Dec. 2013, doi: 
10.1109/TITS.2013.2266661. 

[32] D. Arditi, D.-E. Lee, and G. Polat, “Fatal accidents in nighttime vs. daytime highway 
construction work zones,” J Safety Res, vol. 38, no. 4, pp. 399–405, 2007, doi: 
10.1016/j.jsr.2007.04.001. 

[33] A. Darwesh, D. Wu, M. Le, S. Saripalli, Virginia Tech Transportation Institute, and Safety 
through Disruption (Safe-D) University Transportation Center (UTC), “Building a Smart 
Work Zone Using Roadside LiDAR,” Jan. 01, 2021. Accessed: Mar. 14, 2023. [Online]. 
Available: https://rosap.ntl.bts.gov/view/dot/60121 

[34] “ROS: Home.” https://www.ros.org/ (accessed Jun. 13, 2023). 
[35] R. B. Rusu and S. Cousins, “3D is here: Point Cloud Library (PCL),” in 2011 IEEE 

International Conference on Robotics and Automation, May 2011, pp. 1–4. doi: 
10.1109/ICRA.2011.5980567. 

[36] G. Bradski, The Opencv Library, vol. 25. 2000. 
[37] W. Xiao, B. Vallet, K. Schindler, and N. Paparoditis, “SIMULTANEOUS DETECTION 

AND TRACKING OF PEDESTRIAN FROM PANORAMIC LASER SCANNING 
DATA,” ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information 
Sciences, vol. III–3, pp. 295–302, Jun. 2016, doi: 10.5194/isprs-annals-III-3-295-2016. 

[38] J. Zhao, “Exploring the fundamentals of using infrastructure-based LiDAR sensors to 
develop connected intersections,” Thesis, 2019. Accessed: Jun. 13, 2023. [Online]. 
Available: https://ttu-ir.tdl.org/handle/2346/85580 

[39] N. M. Dzung, “Super Fast and Accurate 3D Object Detection based on 3D LiDAR Point 
Clouds (SFA3D).” Jun. 13, 2023. Accessed: Jun. 13, 2023. [Online]. Available: 
https://github.com/maudzung/SFA3D 

[40] Z. Zhang, J. Zheng, H. Xu, and X. Wang, “Vehicle Detection and Tracking in Complex 
Traffic Circumstances with Roadside LiDAR,” Transportation Research Record, vol. 
2673, no. 9, pp. 62–71, Sep. 2019, doi: 10.1177/0361198119844457. 

[41] J. Zhang, W. Xiao, B. Coifman, and J. P. Mills, “Vehicle Tracking and Speed Estimation 
From Roadside Lidar,” IEEE J. Sel. Top. Appl. Earth Observations Remote Sensing, vol. 
13, pp. 5597–5608, 2020, doi: 10.1109/JSTARS.2020.3024921. 

[42] Y. bar-shalom, F. Daum, and J. Huang, “The probabilistic data association filter,” Control 
Systems, IEEE, vol. 29, pp. 82–100, Jan. 2010, doi: 10.1109/MCS.2009.934469. 

[43] J. Munkres, “Algorithms for the Assignment and Transportation Problems,” Journal of the 
Society for Industrial and Applied Mathematics, vol. 5, no. 1, pp. 32–38, 1957. 

[44] R. J. Meinhold and N. D. Singpurwalla, “Understanding the Kalman Filter,” The American 
Statistician, vol. 37, no. 2, pp. 123–127, May 1983, doi: 
10.1080/00031305.1983.10482723. 

[45] “rviz - ROS Wiki.” http://wiki.ros.org/rviz (accessed Dec. 10, 2022). 
[46] “dynamic_reconfigure - ROS Wiki.” http://wiki.ros.org/dynamic_reconfigure (accessed 

Dec. 10, 2022). 



25 
 

[47] N. J. Garber and M. Zhao, “Distribution and Characteristics of Crashes at Different Work 
Zone Locations in Virginia,” Transportation Research Record, vol. 1794, no. 1, pp. 19–
25, Jan. 2002, doi: 10.3141/1794-03. 

[48] B. Mataei, H. Zakeri, M. Zahedi, and F. M. Nejad, “Pavement Friction and Skid 
Resistance Measurement Methods: A Literature Review,” Open Journal of Civil 
Engineering, vol. 06, no. 04, Art. no. 04, 2016, doi: 10.4236/ojce.2016.64046. 

[49] R. Hussain and S. Zeadally, “Autonomous Cars: Research Results, Issues, and Future 
Challenges,” IEEE Communications Surveys & Tutorials, vol. 21, no. 2, pp. 1275–1313, 
2019, doi: 10.1109/COMST.2018.2869360. 

[50] R. D. Blomberg, R. C. Peck, H. Moskowitz, M. Burns, and D. Fiorentino, “The Long 
Beach/Fort Lauderdale relative risk study,” Journal of Safety Research, vol. 40, pp. 285–
292, 2009, doi: 10.1016/j.jsr.2009.07.002. 

[51] R. Harb, E. Radwan, X. Yan, A. Pande, and M. Abdel-Aty, “Freeway Work-Zone Crash 
Analysis and Risk Identification Using Multiple and Conditional Logistic Regression,” 
Journal of Transportation Engineering, vol. 134, no. 5, pp. 203–214, May 2008, doi: 
10.1061/(ASCE)0733-947X(2008)134:5(203). 

[52] Y. Peng, M. Abdel-Aty, Q. Shi, and R. Yu, “Assessing the impact of reduced visibility on 
traffic crash risk using microscopic data and surrogate safety measures,” Transportation 
Research Part C: Emerging Technologies, vol. 74, pp. 295–305, Jan. 2017, doi: 
10.1016/j.trc.2016.11.022. 

[53] C. Nnaji, J. Gambatese, H. W. Lee, and F. Zhang, “Improving construction work zone 
safety using technology: A systematic review of applicable technologies,” Journal of 
Traffic and Transportation Engineering (English Edition), vol. 7, no. 1, pp. 61–75, Feb. 
2020, doi: 10.1016/j.jtte.2019.11.001. 

[54] K.-F. Wu and P. P. Jovanis, “Crashes and crash-surrogate events: Exploratory modeling 
with naturalistic driving data,” Accident Analysis & Prevention, vol. 45, pp. 507–516, 
Mar. 2012, doi: 10.1016/j.aap.2011.09.002. 

[55] A. K. Debnath, R. Blackman, and N. Haworth, “Common hazards and their mitigating 
measures in work zones: A qualitative study of worker perceptions,” Safety Science, vol. 
72, pp. 293–301, Feb. 2015, doi: 10.1016/j.ssci.2014.09.022. 

[56] H. Yang, K. Ozbay, O. Ozturk, and K. Xie, “Work Zone Safety Analysis and Modeling: A 
State-of-the-Art Review,” Traffic Injury Prevention, vol. 16, no. 4, pp. 387–396, May 
2015, doi: 10.1080/15389588.2014.948615. 

[57] E. Marks and J. Teizer, “Proximity Sensing and Warning Technology for Heavy 
Construction Equipment Operation,” pp. 981–990, Jul. 2012, doi: 
10.1061/9780784412329.099. 

[58] P. García-Teodoro, J. Díaz-Verdejo, G. Maciá-Fernández, and E. Vázquez, “Anomaly-
based network intrusion detection: Techniques, systems and challenges,” Computers & 
Security, vol. 28, no. 1, pp. 18–28, Feb. 2009, doi: 10.1016/j.cose.2008.08.003. 

[59] S. Olariu and M. C. Weigle, Eds., Vehicular Networks: From Theory to Practice. New 
York: Chapman and Hall/CRC, 2009. doi: 10.1201/9781420085891. 

[60] W. Umer and M. K. Siddiqui, “Use of Ultra Wide Band Real-Time Location System on 
Construction Jobsites: Feasibility Study and Deployment Alternatives,” Int J Environ Res 
Public Health, vol. 17, no. 7, p. 2219, Apr. 2020, doi: 10.3390/ijerph17072219. 



26 
 

[61] P. Vanin et al., “A Study of Network Intrusion Detection Systems Using Artificial 
Intelligence/Machine Learning,” Applied Sciences, vol. 12, no. 22, Art. no. 22, Jan. 2022, 
doi: 10.3390/app122211752. 

[62] P. Sun, C. Sun, R. Wang, and X. Zhao, “Object Detection Based on Roadside LiDAR for 
Cooperative Driving Automation: A Review,” Sensors, vol. 22, no. 23, Art. no. 23, Jan. 
2022, doi: 10.3390/s22239316. 

[63] C. Lin, H. Zhang, B. Gong, D. Wu, and Y.-J. Wang, “Density variation-based background 
filtering algorithm for low-channel roadside lidar data,” Optics & Laser Technology, vol. 
158, p. 108852, Feb. 2023, doi: 10.1016/j.optlastec.2022.108852. 

[64] J. Zhao, H. Xu, Z. Chen, and H. Liu, “A decoding-based method for fast background 
filtering of roadside LiDAR data,” Advanced Engineering Informatics, vol. 57, p. 102043, 
Aug. 2023, doi: 10.1016/j.aei.2023.102043. 

[65] J. Wu, H. Xu, Y. Zheng, and Z. Tian, “A novel method of vehicle-pedestrian near-crash 
identification with roadside LiDAR data,” Accident Analysis & Prevention, vol. 121, pp. 
238–249, Dec. 2018, doi: 10.1016/j.aap.2018.09.001. 

[66] J. Zhao, H. Xu, X. Xia, and H. Liu, “Azimuth-Height Background Filtering Method for 
Roadside LiDAR Data,” in 2019 IEEE Intelligent Transportation Systems Conference 
(ITSC), Oct. 2019, pp. 2421–2426. doi: 10.1109/ITSC.2019.8917369. 

[67] Z. Zhang, J. Zheng, X. Wang, and X. Fan, “Background Filtering and Vehicle Detection 
with Roadside Lidar Based on Point Association,” in 2018 37th Chinese Control 
Conference (CCC), Jul. 2018, pp. 7938–7943. doi: 10.23919/ChiCC.2018.8484040. 

[68] Y. Zhang, H. Xu, and J. Wu, “An Automatic Background Filtering Method for Detection 
of Road Users in Heavy Traffics Using Roadside 3-D LiDAR Sensors With Noises,” IEEE 
Sensors Journal, vol. 20, no. 12, pp. 6596–6604, Jun. 2020, doi: 
10.1109/JSEN.2020.2976663. 

[69] Z. Zhang, J. Zheng, H. Xu, X. Wang, X. Fan, and R. Chen, “Automatic Background 
Construction and Object Detection Based on Roadside LiDAR,” IEEE Transactions on 
Intelligent Transportation Systems, vol. 21, no. 10, pp. 4086–4097, Oct. 2020, doi: 
10.1109/TITS.2019.2936498. 

[70] Y. Cui, H. Xu, J. Wu, Y. Sun, and J. Zhao, “Automatic Vehicle Tracking With Roadside 
LiDAR Data for the Connected-Vehicles System,” IEEE Intelligent Systems, vol. 34, no. 
3, pp. 44–51, May 2019, doi: 10.1109/MIS.2019.2918115. 

[71] J. Wu, H. Xu, and J. Zheng, “Automatic background filtering and lane identification with 
roadside LiDAR data,” in 2017 IEEE 20th International Conference on Intelligent 
Transportation Systems (ITSC), Yokohama, Japan: IEEE Press, Oct. 2017, pp. 1–6. doi: 
10.1109/ITSC.2017.8317723. 

[72] B. Lv, H. Xu, J. Wu, Y. Tian, and C. Yuan, “Raster-Based Background Filtering for 
Roadside LiDAR Data,” IEEE Access, vol. 7, pp. 76779–76788, 2019, doi: 
10.1109/ACCESS.2019.2919624. 

[73] Y. Song, H. Zhang, Y. Liu, J. Liu, H. Zhang, and X. Song, “Background Filtering and 
Object Detection With a Stationary LiDAR Using a Layer-Based Method,” IEEE Access, 
vol. 8, pp. 184426–184436, 2020, doi: 10.1109/ACCESS.2020.3029341. 

[74] J. Wu, Y. Tian, H. Xu, R. Yue, A. Wang, and X. Song, “Automatic ground points filtering 
of roadside LiDAR data using a channel-based filtering algorithm,” Optics & Laser 
Technology, vol. 115, pp. 374–383, Jul. 2019, doi: 10.1016/j.optlastec.2019.02.039. 



27 
 

[75] L. Wang and B. Goldluecke, “Sparse-PointNet: See Further in Autonomous Vehicles,” 
IEEE Robot. Autom. Lett., vol. 6, no. 4, pp. 7049–7056, Oct. 2021, doi: 
10.1109/LRA.2021.3096253. 

[76] A. Mammeri, T. Zuo, and A. Boukerche, “Extending the detection range of vision-based 
driver assistance systems application to Pedestrian Protection System,” in 2014 IEEE 
Global Communications Conference, Dec. 2014, pp. 1358–1363. doi: 
10.1109/GLOCOM.2014.7036997. 

[77] Y. Sun, H. Xu, J. Wu, J. Zheng, and K. M. Dietrich, “3-D Data Processing to Extract 
Vehicle Trajectories from Roadside LiDAR Data,” Transportation Research Record, vol. 
2672, no. 45, pp. 14–22, Dec. 2018, doi: 10.1177/0361198118775839. 

[78] M. Ester, H. Kriegel, J. Sander, and X. Xu, “A Density-Based Algorithm for Discovering 
Clusters in Large Spatial Databases with Noise,” presented at the Knowledge Discovery 
and Data Mining, Aug. 1996. Accessed: Apr. 07, 2023. [Online]. Available: 
https://www.semanticscholar.org/paper/A-Density-Based-Algorithm-for-Discovering-
Clusters-Ester-Kriegel/5c8fe9a0412a078e30eb7e5eeb0068655b673e86 

[79] N. Pfeifer, P. Stadler, and C. Briese, “DERIVATION OF DIGITAL TERRAIN MODELS 
IN THE SCOP++ ENVIRONMENT,” 2001. Accessed: Apr. 07, 2023. [Online]. 
Available: https://www.semanticscholar.org/paper/DERIVATION-OF-DIGITAL-
TERRAIN-MODELS-IN-THE-SCOP%2B%2B-Pfeifer-
Stadler/71d326fcb19cf7ef8624e704aad50deacb89c955 

[80] J. Sander, M. Ester, H.-P. Kriegel, and X. Xu, “Density-Based Clustering in Spatial 
Databases: The Algorithm GDBSCAN and Its Applications,” Data Mining and 
Knowledge Discovery, vol. 2, no. 2, pp. 169–194, Jun. 1998, doi: 
10.1023/A:1009745219419. 

[81] R. J. G. B. Campello, D. Moulavi, and J. Sander, “Density-Based Clustering Based on 
Hierarchical Density Estimates,” in Advances in Knowledge Discovery and Data Mining, 
J. Pei, V. S. Tseng, L. Cao, H. Motoda, and G. Xu, Eds., in Lecture Notes in Computer 
Science. Berlin, Heidelberg: Springer, 2013, pp. 160–172. doi: 10.1007/978-3-642-37456-
2_14. 

[82] V. N. Vapnik, The Nature of Statistical Learning Theory. New York, NY: Springer, 1995. 
doi: 10.1007/978-1-4757-2440-0. 

[83] L. Breiman, “Random Forests,” Machine Learning, vol. 45, no. 1, pp. 5–32, Oct. 2001, 
doi: 10.1023/A:1010933404324. 

[84] T. Chen and C. Guestrin, “XGBoost: A Scalable Tree Boosting System,” in Proceedings 
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data 
Mining, in KDD ’16. New York, NY, USA: Association for Computing Machinery, Aug. 
2016, pp. 785–794. doi: 10.1145/2939672.2939785. 

[85] Y. Freund and R. E. Schapire, “A Decision-Theoretic Generalization of On-Line Learning 
and an Application to Boosting,” Journal of Computer and System Sciences, vol. 55, no. 1, 
pp. 119–139, Aug. 1997, doi: 10.1006/jcss.1997.1504. 

[86] M. Ankerst, M. M. Breunig, H.-P. Kriegel, and J. Sander, “OPTICS: ordering points to 
identify the clustering structure,” SIGMOD Rec., vol. 28, no. 2, pp. 49–60, Jun. 1999, doi: 
10.1145/304181.304187. 

[87] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553, Art. 
no. 7553, May 2015, doi: 10.1038/nature14539. 



28 
 

[88] X. Chen, H. Ma, J. Wan, B. Li, and T. Xia, “Multi-View 3D Object Detection Network for 
Autonomous Driving.” arXiv, Jun. 21, 2017. doi: 10.48550/arXiv.1611.07759. 

[89] L. Mutanu, J. Gohil, and K. Gupta, “Vision-Autocorrect: A Self-Adapting Approach 
towards Relieving Eye-Strain Using Facial-Expression Recognition,” Software, vol. 2, no. 
2, Art. no. 2, Jun. 2023, doi: 10.3390/software2020009. 

[90] D. Maturana and S. Scherer, “VoxNet: A 3D Convolutional Neural Network for real-time 
object recognition,” in 2015 IEEE/RSJ International Conference on Intelligent Robots and 
Systems (IROS), Sep. 2015, pp. 922–928. doi: 10.1109/IROS.2015.7353481. 

[91] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “PointNet++: Deep Hierarchical Feature Learning 
on Point Sets in a Metric Space,” in Advances in Neural Information Processing Systems, 
Curran Associates, Inc., 2017. Accessed: Apr. 07, 2023. [Online]. Available: 
https://papers.nips.cc/paper_files/paper/2017/hash/d8bf84be3800d12f74d8b05e9b89836f-
Abstract.html 

[92] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “PointNet: Deep Learning on Point Sets for 3D 
Classification and Segmentation.” arXiv, Apr. 10, 2017. doi: 10.48550/arXiv.1612.00593. 

[93] S. Karagiannakos, “Graph Neural Networks - An overview,” AI Summer, Feb. 01, 2020. 
https://theaisummer.com/Graph_Neural_Networks/ (accessed Apr. 14, 2023). 

[94] A. Schweidtmann, J. Rittig, A. König, M. Grohe, A. Mitsos, and M. Dahmen, “Graph 
Neural Networks for Prediction of Fuel Ignition Quality.” ChemRxiv, May 13, 2020. doi: 
10.26434/chemrxiv.12280325.v1. 

[95] C. R. Qi, X. Chen, O. Litany, and L. J. Guibas, “ImVoteNet: Boosting 3D Object 
Detection in Point Clouds with Image Votes.” arXiv, Jan. 29, 2020. doi: 
10.48550/arXiv.2001.10692. 

[96] Y. Zhou and O. Tuzel, “VoxelNet: End-to-End Learning for Point Cloud Based 3D Object 
Detection,” in 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 
Jun. 2018, pp. 4490–4499. doi: 10.1109/CVPR.2018.00472. 

[97] Y. Yan, Y. Mao, and B. Li, “SECOND: Sparsely Embedded Convolutional Detection,” 
Sensors, vol. 18, no. 10, Art. no. 10, Oct. 2018, doi: 10.3390/s18103337. 

[98] Y. Zhou et al., “End-to-End Multi-View Fusion for 3D Object Detection in LiDAR Point 
Clouds,” in Proceedings of the Conference on Robot Learning, PMLR, May 2020, pp. 
923–932. Accessed: May 05, 2023. [Online]. Available: 
https://proceedings.mlr.press/v100/zhou20a.html 

[99] B. Yan, C. Wang, G. Guo, and Y. Lou, “TinyGNN: Learning Efficient Graph Neural 
Networks,” in Proceedings of the 26th ACM SIGKDD International Conference on 
Knowledge Discovery & Data Mining, in KDD ’20. New York, NY, USA: Association for 
Computing Machinery, Aug. 2020, pp. 1848–1856. doi: 10.1145/3394486.3403236. 

[100] C. R. Qi, O. Litany, K. He, and L. J. Guibas, “Deep Hough Voting for 3D Object 
Detection in Point Clouds.” arXiv, Aug. 22, 2019. doi: 10.48550/arXiv.1904.09664. 

[101] Z. Bai, G. Wu, X. Qi, Y. Liu, K. Oguchi, and M. J. Barth, “Infrastructure-Based Object 
Detection and Tracking for Cooperative Driving Automation: A Survey,” in 2022 IEEE 
Intelligent Vehicles Symposium (IV), Jun. 2022, pp. 1366–1373. doi: 
10.1109/IV51971.2022.9827461. 

[102] P. N. F. bt Mohd Shamsuddin and M. A. bin Mansor, “Motion Control Algorithm for Path 
Following and Trajectory Tracking for Unmanned Surface Vehicle: A Review Paper,” in 
2018 3rd International Conference on Control, Robotics and Cybernetics (CRC), Sep. 
2018, pp. 73–77. doi: 10.1109/CRC.2018.00023. 



29 
 

[103] F. Leon, M. Gavrilescu, and D. N. Sidorov, “A Review of Tracking and Trajectory 
Prediction Methods for Autonomous Driving,” Mathematics (2227-7390), vol. 9, no. 6, 
pp. 660–660, Mar. 2021, doi: 10.3390/math9060660. 

[104] Z. Bai, G. Wu, X. Qi, Y. Liu, K. Oguchi, and M. J. Barth, “Infrastructure-Based Object 
Detection and Tracking for Cooperative Driving Automation: A Survey.” arXiv, Mar. 19, 
2022. doi: 10.48550/arXiv.2201.11871. 

[105] J. Zhang, W. Xiao, and J. P. Mills, “Optimizing Moving Object Trajectories from 
Roadside Lidar Data by Joint Detection and Tracking,” Remote Sensing, vol. 14, no. 9, 
Art. no. 9, Jan. 2022, doi: 10.3390/rs14092124. 

[106] J. Zhao, H. Xu, J. Wu, Y. Zheng, and H. Liu, “Trajectory tracking and prediction of 
pedestrian’s crossing intention using roadside LiDAR,” IET Intelligent Transport Systems, 
vol. 13, no. 5, pp. 789–795, 2019, doi: 10.1049/iet-its.2018.5258. 

[107] S. J. Julier and J. K. Uhlmann, “New extension of the Kalman filter to nonlinear systems,” 
in Signal Processing, Sensor Fusion, and Target Recognition VI, SPIE, Jul. 1997, pp. 
182–193. doi: 10.1117/12.280797. 

[108] R. E. Kalman, “A New Approach to Linear Filtering and Prediction Problems,” Journal of 
Basic Engineering, vol. 82, no. 1, pp. 35–45, Mar. 1960, doi: 10.1115/1.3662552. 

[109] H. E. Emara-Shabaik and C. T. Leondes, “A note on the extended kalman filter,” 
Automatica, vol. 17, no. 2, pp. 411–412, Mar. 1981, doi: 10.1016/0005-1098(81)90062-5. 

[110] M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A tutorial on particle filters 
for online nonlinear/non-Gaussian Bayesian tracking,” IEEE Transactions on Signal 
Processing, vol. 50, no. 2, pp. 174–188, Feb. 2002, doi: 10.1109/78.978374. 

[111] D. Reid, “An algorithm for tracking multiple targets,” IEEE Transactions on Automatic 
Control, vol. 24, no. 6, pp. 843–854, Dec. 1979, doi: 10.1109/TAC.1979.1102177. 

[112] J. Dezert and Y. Bar-Shalom, “Joint probabilistic data association for autonomous 
navigation,” IEEE Transactions on Aerospace and Electronic Systems, vol. 29, no. 4, pp. 
1275–1286, Oct. 1993, doi: 10.1109/7.259531. 

[113] H. Nam and B. Han, “Learning Multi-Domain Convolutional Neural Networks for Visual 
Tracking,” presented at the Proceedings of the IEEE Conference on Computer Vision and 
Pattern Recognition, 2016, pp. 4293–4302. Accessed: Apr. 20, 2023. [Online]. Available: 
https://openaccess.thecvf.com/content_cvpr_2016/html/Nam_Learning_Multi-
Domain_Convolutional_CVPR_2016_paper.html 

[114] A. Sadeghian, A. Alahi, and S. Savarese, “Tracking the Untrackable: Learning to Track 
Multiple Cues With Long-Term Dependencies,” presented at the Proceedings of the IEEE 
International Conference on Computer Vision, 2017, pp. 300–311. Accessed: Apr. 20, 
2023. [Online]. Available: 
https://openaccess.thecvf.com/content_iccv_2017/html/Sadeghian_Tracking_the_Untrack
able_ICCV_2017_paper.html 

[115] L. Bertinetto, J. Valmadre, J. F. Henriques, A. Vedaldi, and P. H. S. Torr, “Fully-
Convolutional Siamese Networks for Object Tracking,” in Computer Vision – ECCV 2016 
Workshops, G. Hua and H. Jégou, Eds., in Lecture Notes in Computer Science. Cham: 
Springer International Publishing, 2016, pp. 850–865. doi: 10.1007/978-3-319-48881-
3_56. 

[116] Y. Li, H. Ai, T. Yamashita, S. Lao, and M. Kawade, “Tracking in Low Frame Rate Video: 
A Cascade Particle Filter with Discriminative Observers of Different Life Spans,” IEEE 



30 
 

Transactions on Pattern Analysis and Machine Intelligence, vol. 30, no. 10, pp. 1728–
1740, Oct. 2008, doi: 10.1109/TPAMI.2008.73. 

[117] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman, “The Pascal 
Visual Object Classes (VOC) Challenge,” Int J Comput Vis, vol. 88, no. 2, pp. 303–338, 
Jun. 2010, doi: 10.1007/s11263-009-0275-4. 

[118] M. Sokolova and G. Lapalme, “A systematic analysis of performance measures for 
classification tasks,” Information Processing & Management, vol. 45, no. 4, pp. 427–437, 
Jul. 2009, doi: 10.1016/j.ipm.2009.03.002. 

[119] C. J. Willmott and K. Matsuura, “Advantages of the mean absolute error (MAE) over the 
root mean square error (RMSE) in assessing average model performance,” Climate 
Research, vol. 30, no. 1, pp. 79–82, Dec. 2005, doi: 10.3354/cr030079. 

[120] A. Wehr and U. Lohr, “Airborne laser scanning—an introduction and overview,” ISPRS 
Journal of Photogrammetry and Remote Sensing, vol. 54, no. 2, pp. 68–82, Jul. 1999, doi: 
10.1016/S0924-2716(99)00011-8. 

[121] S. Slob and R. Hack, “3D Terrestrial Laser Scanning as a New Field Measurement and 
Monitoring Technique,” in Engineering Geology for Infrastructure Planning in Europe: A 
European Perspective, R. Hack, R. Azzam, and R. Charlier, Eds., in Lecture Notes in 
Earth Sciences. Berlin, Heidelberg: Springer, 2004, pp. 179–189. doi: 10.1007/978-3-540-
39918-6_22. 

[122] H. Guan, J. Li, Y. Yu, M. Chapman, and C. Wang, “Automated Road Information 
Extraction From Mobile Laser Scanning Data,” IEEE Transactions on Intelligent 
Transportation Systems, vol. 16, no. 1, pp. 194–205, Feb. 2015, doi: 
10.1109/TITS.2014.2328589. 

[123] H. Wang, C. Wang, and L. Xie, “Lightweight 3-D Localization and Mapping for Solid-
State LiDAR,” IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 1801–1807, Apr. 
2021, doi: 10.1109/LRA.2021.3060392. 

[124] I. Puente, H. González-Jorge, J. Martínez-Sánchez, and P. Arias, “Review of mobile 
mapping and surveying technologies,” Measurement, vol. 46, no. 7, pp. 2127–2145, Aug. 
2013, doi: 10.1016/j.measurement.2013.03.006. 

[125] D. Bolkas, G. Fotopoulos, and C. Glennie, “On the impact of a refined stochastic model 
for airborne LiDAR measurements,” Journal of Applied Geodesy, vol. 10, no. 3, pp. 185–
196, Sep. 2016, doi: 10.1515/jag-2016-0005. 

[126] A. Kamann, P. Held, F. Perras, P. Zaumseil, T. Brandmeier, and U. T. Schwarz, 
“Automotive Radar Multipath Propagation in Uncertain Environments,” 2018 21st 
International Conference on Intelligent Transportation Systems (ITSC), pp. 859–864, 
Nov. 2018, doi: 10.1109/ITSC.2018.8570016. 

[127] B. Höfle and N. Pfeifer, “Correction of laser scanning intensity data: Data and model-
driven approaches,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 62, no. 
6, pp. 415–433, Dec. 2007, doi: 10.1016/j.isprsjprs.2007.05.008. 

[128] C. Glennie and D. D. Lichti, “Static Calibration and Analysis of the Velodyne HDL-64E 
S2 for High Accuracy Mobile Scanning,” Remote Sensing, vol. 2, no. 6, Art. no. 6, Jun. 
2010, doi: 10.3390/rs2061610. 

[129] T. Rabbani, S. Dijkman, F. van den Heuvel, and G. Vosselman, “An integrated approach 
for modelling and global registration of point clouds,” ISPRS Journal of Photogrammetry 
and Remote Sensing, vol. 61, no. 6, pp. 355–370, Feb. 2007, doi: 
10.1016/j.isprsjprs.2006.09.006. 



31 
 

[130] A. Habib, K. I. Bang, A. P. Kersting, and D.-C. Lee, “Error Budget of Lidar Systems and 
Quality Control of the Derived Data,” photogramm eng remote sensing, vol. 75, no. 9, pp. 
1093–1108, Sep. 2009, doi: 10.14358/PERS.75.9.1093. 

[131] J. Skaloud and D. Lichti, “Rigorous approach to bore-sight self-calibration in airborne 
laser scanning,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 61, no. 1, 
pp. 47–59, Oct. 2006, doi: 10.1016/j.isprsjprs.2006.07.003. 

[132] M. Horton, “How to Easily Estimate Vehicle Localization Errors from IMU Specs,” 
ANELLO Photonics, Mar. 01, 2023. https://medium.com/anello-photonics/how-to-easily-
estimate-vehicle-localization-errors-from-imu-specs-31e6174ff065 (accessed Jun. 15, 
2023). 

[133] K. C. Chang, Y. Song, and M. E. L. Ii, “Performance modeling for multisensor data 
fusion,” in Signal Processing, Sensor Fusion, and Target Recognition XII, SPIE, Aug. 
2003, pp. 354–363. doi: 10.1117/12.486868. 

[134] B. Khaleghi, A. Khamis, F. O. Karray, and S. N. Razavi, “Multisensor data fusion: A 
review of the state-of-the-art,” Information Fusion, vol. 14, no. 1, pp. 28–44, Jan. 2013, 
doi: 10.1016/j.inffus.2011.08.001. 

[135] C.-X. Li et al., “SCRATCH: A Scalable Discrete Matrix Factorization Hashing for Cross-
Modal Retrieval,” in Proceedings of the 26th ACM international conference on 
Multimedia, in MM ’18. New York, NY, USA: Association for Computing Machinery, 
Oct. 2018, pp. 1–9. doi: 10.1145/3240508.3240547. 

[136] B. Zhang, Z. Yan, J. Wang, Y. Luo, S. Yang, and Z. Fei, “An Audio-Visual Quality 
Assessment Methodology in Virtual Reality Environment,” in 2018 IEEE International 
Conference on Multimedia & Expo Workshops (ICMEW), Jul. 2018, pp. 1–6. doi: 
10.1109/ICMEW.2018.8551522. 

[137] “Automated Driving Toolbox.” https://www.mathworks.com/products/automated-
driving.html (accessed Jul. 31, 2021). 

  



32 
 

Appendix A: Literature Review 

Work Zone Safety  
Work zone crashes can be attributed to various factors, which can be broadly categorized into 
human-related factors and environmental or external factors. Understanding these causes can help 
mitigate the risks associated with work zones. 

Human-Related Factors: 

• Driver inattention: As previously mentioned, driver inattention is a significant cause of 
work zone crashes, with distractions leading to slower reaction times [47]. 

• Speeding: Driving at excessive speeds in work zones increases the likelihood of collisions 
due to reduced reaction time and increased stopping distance [48]. 

• Aggressive driving: Aggressive behaviors, such as tailgating, sudden lane changes, and 
frequent acceleration or deceleration, can lead to crashes in work zones [49]. 

• Impaired driving: Driving under the influence of alcohol or drugs severely impairs a 
driver's ability to safely navigate work zones, resulting in an increased risk of crashes [50]. 

Environmental or External Factors: 

• Work zone design: Poorly designed or maintained work zones with unclear signage, 
insufficient lighting, or inadequate lane markings can cause confusion and increase the risk 
of crashes [51]. 

• Construction equipment and workers: The presence of construction equipment and workers 
in work zones creates additional hazards for drivers, who may be unfamiliar with the 
movements and operations of such machinery [6]. 

• Weather conditions: Adverse weather conditions, such as rain, fog, or snow, can reduce 
visibility and create hazardous driving conditions in work zones [52]. 

• Road surface conditions: Uneven or slippery road surfaces due to construction activity or 
weather can cause drivers to lose control of their vehicles, resulting in crashes [48]. 

Methods to Improve Work Zone Safety 
Improving work zone safety requires a multifaceted approach that addresses various aspects; the 
methods are list below: 

• Engineering: Implementing proper work zone design and traffic control can help reduce 
the risk of crashes. This includes using clear signage, adequate lighting, and well-defined 
lane markings. Additionally, portable barriers and rumble strips can help channel traffic 
and alert drivers to changing conditions [53]. 

• Enforcement: Strict enforcement of work zone regulations, such as speed limits and lane 
restrictions, can deter unsafe driving behaviors. Automated enforcement systems, like 
speed cameras, can be used to supplement traditional police enforcement [54]. 
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• Education: Public awareness campaigns and driver education programs can help drivers 
understand the risks associated with work zones and promote safe driving behaviors [55]. 

Despite the potential benefits of these measures, they also have limitations. Engineering solutions 
can be costly to implement and maintain, and they may not fully address issues related to driver 
behavior or unforeseen circumstances. Enforcement efforts can be resource-intensive, and public 
acceptance of automated enforcement systems may be limited due to privacy concerns. The 
effectiveness of education measures may be limited by drivers' willingness to change their 
behaviors and the difficulty of reaching all drivers with the intended message. Figure 17 shows the 
effectiveness of different types of work zone safety controls.  

 

Figure 17. Diagram. Effectiveness of different types of controls (Source: CDC). 

WZIAS 
WZIAS are safety technologies designed to monitor and detect unauthorized vehicles, pedestrians, 
or objects entering a designated work zone. These systems provide real-time alerts to construction 
crews and supervisors, allowing them to respond quickly to potentially dangerous situations [53]. 
WZIAS aim to reduce the risk of crashes, injuries, and fatalities in work zones.  

• Enhancing safety: WZIAS help protect construction workers, drivers, and pedestrians by 
providing real-time alerts and warnings about potential hazards in work zones. By detecting 
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intrusions and alerting those in the vicinity, these systems help prevent crashes and save 
lives. 

• Reducing crashes: Work zones often have reduced speed limits, lane closures, and other 
changes in traffic patterns that can lead to increased crashes [56]. By monitoring and 
managing work zones using WZIAS, the number of crashes can be significantly reduced. 

• Improving work zone management: WZIAS can improve work zone management by 
providing real-time data on traffic conditions, worker locations, and equipment status [57]. 
This information can be used to optimize work zone layouts, scheduling, and overall 
operations, leading to more efficient project delivery. 

• Enhancing public perception: WZIAS can contribute to positive public perception by 
demonstrating that transportation agencies are proactive in implementing safety measures 
to protect workers and the public. Improved public perception can lead to increased support 
for infrastructure projects and funding. 

The development of WZIAS can be traced back to the growing awareness of work zone safety 
issues and the need to protect construction crews from crashes. Their development has been a 
gradual process, driven by advancements in technology and research on work zone safety. In the 
early 1990s, the focus on work zone safety increased as the Federal Highway Administration began 
emphasizing the importance of reducing work zone fatalities and injuries [8]. This led to the 
development of various traffic control devices and technologies aimed at improving work zone 
safety, including intrusion alarm systems. Initial work zone intrusion detection systems utilized 
sensors and alarms, which were designed to alert construction workers of unauthorized intrusions 
by vehicles or pedestrians [58]. These early systems faced challenges in terms of reliability and 
false alarms, prompting further research and development. Over the years, advancements in 
technology have led to the improvement of WZIAS. For example, the introduction of radar and 
wireless technologies has improved the accuracy and effectiveness of intrusion detection systems 
[59]. Additionally, the integration of GPS and other location-based technologies has further 
enhanced the ability of WZIAS to provide real-time alerts to construction crews and supervisors 
[60]. As research on work zone safety continues, new technologies and strategies are being 
developed and refined to improve WZIAS. For instance, the use of artificial intelligence and 
machine learning algorithms may further enhance the effectiveness of WZIAS by reducing false 
alarms and increasing the accuracy of intrusion detection [61].  

The systems mentioned can be categorized into three main types: 

 Mechanical systems utilize mechanisms such as impact-activated or pressure-activated 
systems. These mechanisms are triggered by physical contact or impacts caused by 
intruding vehicles [11]. 

 Electronic systems employ various sensing technologies such as UWB [12], [13], GPS 
[14], RFID [15], magnetic field sensors [16], radar [17], infrared sensors [18], laser sensors 
[7], video cameras [19], [20], and others to detect intruding objects. 
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 Dedicated observers are individuals positioned strategically as workers or flaggers whose 
primary task is to identify intrusions and activate alarms [19]. 

Although these systems offer potential benefits, their adoption in the highway construction 
industry has been limited. Some concerns raised about these technologies include their 
effectiveness, the cost implications associated with adopting new technology, and the lack of 
synergy among different technological features [7]. For instance, mechanical systems have a 
significant limitation, as they require the operator to be present during a warning in order to notice 
any changes in work-zone barricade formations. On the other hand, electronic systems face 
challenges such as frequent false alarms and difficulties in system setup. 

Roadside LiDAR Data Processing Algorithms 
LiDAR technology utilizes laser beams to accurately detect and determine the positions of objects. 
It comprises a swiftly rotating array of detector pairs housed within a fixed structure, allowing 
efficient scanning of the surroundings. By emitting and receiving laser beams, LiDAR gathers 
highly detailed 3D information about the surrounding environment. The detection range is 
typically 0 to 200 meters. Each laser is fired approximately 18,000 times per second, generating a 
real-time stream of comprehensive 3D point data. The recorded attributes of a laser point include 
distance, intensity, x-coordinate, y-coordinate, z-coordinate, azimuth, and timestamp. The point 
cloud output from roadside LiDAR is shown in Figure 18 [62].   

 

Figure 18. Graphs. The output point cloud from roadside LiDAR [62]. 
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Compared to traditional traffic detectors like video, infrared, radar, radio frequency, and 
geomagnetic sensors, LiDAR sensors offer a more extensive and detailed range of traffic flow 
characteristics and parameters. Within the scanning range of LiDAR, it becomes possible to extract 
high-resolution, fine-grained data regarding the position, direction, speed, and even the trajectory 
of each road user. The micro-level traffic data collected by a roadside LiDAR sensor holds great 
value as an input for various traffic applications, including vehicle-infrastructure cooperation 
systems, connected/autonomous vehicle systems, analysis aimed at reducing vehicle-to-pedestrian 
crashes, intelligent traffic signals, and other related fields [63]. 

The objectives and requirements for processing roadside data differ significantly from onboard 
LiDAR data [64]: 

• Onboard LiDAR sensors, usually equipped with a minimum of 64 lasers, are mounted on 
moving vehicles to capture high-density point cloud data. In contrast, roadside LiDAR 
sensors, which are cost-effective and typically have 16 or 32 lasers, are installed on the 
infrastructure side. The data they capture are relatively low-density. 

• Onboard LiDAR sensors primarily focus on the immediate surroundings of the vehicle. In 
contrast, roadside LiDAR sensors face the challenge of covering a much larger area, such 
as an entire intersection. Therefore, the detection and tracking task becomes more 
challenging for roadside LiDAR within the designated ROI.  

• Onboard LiDAR sensors are commonly considered secondary sensors in autonomous 
vehicles. They work in conjunction with other sensors like video cameras and rely on 
additional data sources such as high-resolution 3D maps and GPS information. Conversely, 
roadside LiDAR sensors are expected to operate independently, without relying on 
additional sensors or data sources. 

Considering the unique characteristics of roadside LiDAR, different data processing approaches 
have been proposed and developed recently. A common processing pipeline for roadside LiDAR 
data includes four major tasks: background filtering (or removal), object clustering or detection, 
object classification, and real-time tracking.  

Background Filtering 
Background filtering in a roadside LiDAR project refers to the process of separating and removing 
unwanted data points or noise from the main objects of interest, such as vehicles, pedestrians, and 
infrastructure [65]. Background points will significantly increase the computational resource and 
time in point cloud processing. For example, when scanning an intersection, about 30,000 points 
can be generated in a point cloud frame from a roadside LiDAR sensor (i.e., Velodyne VLP- 16). 
However, the point number of road users within the scanning range for HRMTD extraction is just 
about 500 points (less than 1.7% of the total points) [66]. In addition, the background filtering 
result will also influence the precision of HRMTD extraction. If background points are not filtered 
correctly and completely, the remaining background points will be identified as road users and 
cause misidentification of targets. In contrast, incorrect point cloud rejection can also result in 
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missing road users. In this regard, background filtering is crucial for improving the accuracy and 
efficiency of subsequent data analysis and interpretation. 

Background Filtering with Static Background Construction  
Static background construction is a commonly employed technique for filtering background points 
in point cloud processing. Zhao et al. [66] conducted a comparison between the raw LiDAR point 
cloud and the static background point cloud using a predefined azimuth-height table to classify 
points as belonging to target objects or the background. Similarly, Zhang et al. [67] determined 
background points by calculating the distance of each point to the static background. However, 
these methods necessitate manual selection of an ideal background point cloud frame, which is 
labor-intensive, time-consuming, and incompatible with real-time point cloud data processing and 
online HRMTD extraction [68]. 

To address this background filtering gap, Z. Zhang et al. [69] proposed a method that automatically 
constructs the background point cloud by utilizing the farthest and mean distance measurements 
for each azimuth in the LiDAR data. Y. Zhang et al. [68], on the other hand, employed a 
classification approach that groups subspace-frames and identifies the background group based on 
background characteristics. The presence of subspace frames without road users indicates the 
background group, with the corresponding points in that subspace designated as background 
points. 

Alternatively, some researchers have adopted the approach of rasterizing the 3D space into 
isometric small cubes to construct the background. Among these methods, Wu's 3D density 
statistic filtering [70], [71] is widely utilized. This method involves segmenting the 3D space and 
overlapping frames. If the density of points within a cube exceeds a predefined threshold after 
overlapping, the cube is classified as background space. Additionally, some scholars have 
introduced a method based on changes in cube point cloud density between adjacent frames [16]. 
These methods exhibit high accuracy in background filtering and eliminate the need for manual 
frame selection. However, they require dividing the 3D space into small cubes, some as small as 
0.05 m x 0.05 m per cube, to ensure accuracy, resulting in a significant increase in background 
construction time. Furthermore, in high-density traffic flow scenarios, achieving the desired 
accuracy and robustness remains challenging [68], [72]. 

Background Filtering Algorithms Without Static Background Construction 
Several researchers have developed background filtering algorithms that do not rely on the 
construction of a static background. One approach is the layer-based method, which analyzes the 
distance distribution of LiDAR points within each layer's horizontal angles to remove background 
points [73]. Another method, known as channel-based filtering, utilizes channel ID information to 
exclude noise points from the background [74]. Additionally, a DBSCAN algorithm has been 
employed to filter noise based on the differences in point density and shape between ground and 
non-ground points. In a different study, the slice-based projection filtering (SPF) method was 
proposed to filter background points [21]. This method involves projecting the 3D point cloud onto 
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2D polar coordinates, and traffic objects are identified within an individual frame using an artificial 
neural network (ANN)-based model. These methods can identify objects without the need for 
constructing a background, resulting in improved efficiency. However, it should be noted that 
these algorithms or models may encounter challenges when applied to sparse point clouds, 
particularly in the far range of the LiDAR scanning area. 

Algorithms that Improve the Detection Accuracy in the Far Range 
It has been observed that the point density decreases as the distance increases [74]. This issue poses 
a challenge in accurately detecting road users at longer distances, where the point cloud becomes 
sparser. To address this issue, Zhang et al. [69] employed a projection technique on horizontal and 
vertical angles to construct a background dataset, thereby expanding the detection space and 
enhancing accuracy in further distance. Wang and Goldluecke [75] utilized the complementary 
properties of LiDAR, radar, and camera data to filter valid radar points as critical points, providing 
additional cues for the network to exploit. Moreover, some researchers have employed multiple 
detections to improve the detection performance of pedestrians in far-reaching areas [76]. These 
methods have shown promising results in the farther distant range. 

While numerous innovative methods exist for background filtering in roadside LiDAR, each with 
its own advantages in algorithmic accuracy or operational efficiency, there remains a challenge in 
further enhancing the precision of background filtering algorithms. Therefore, more research is 
required to develop automated and highly accurate approaches for removing background points, 
particularly in the far detection range. 

Object Detection 
Object detection refers to the process of identifying and locating objects of interest, such as 
vehicles, pedestrians, and infrastructure, within the acquired LiDAR point cloud data [77]. This is 
essential for various applications, including autonomous driving, traffic monitoring, and 
infrastructure management [62].   

It is noted that numerous LiDAR detection models are developed for self-driving applications, in 
which LiDAR sensors are mounted on the top of a vehicle. Recently, roadside LiDAR applications 
began to gain momentum as a new promising measure of traffic data collection for safety analysis 
and connected vehicle applications. Compared to the mobile LiDAR models that are developed 
for an automated vehicle to explore and understand its ever-changing surrounding environment, 
the roadside or stationary LiDAR is mainly to detect moving objects in a fixed setting. In a roadside 
LiDAR point cloud, vehicles and other road users are distributed randomly within the LiDAR 
scanning range. Their point features, such as density and shape, change dynamically in the space. 
In this case, the models that are developed based on the mobile LiDAR scanning need to be 
investigated for their suitability and adaptability for the detection of roadside LiDAR point clouds. 

Most current object detection methods can be classified as traditional machine learning and deep 
learning.  
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Machine learning-based methods have seen significant development over the years, evolving and 
refining to better address object detection tasks in roadside LiDAR projects (Table 5). DBSCAN 
is a popular clustering algorithm that has been applied to object detection tasks in roadside LiDAR 
projects.  

DBSCAN was introduced by Ester et al. (1996) as a density-based clustering algorithm that 
identifies dense regions in the data while separating noise [78]. The algorithm works by grouping 
points based on their density, with a user-defined distance parameter (ε) and a minimum number 
of points (η_min) in a neighborhood. Initially, DBSCAN was applied to generic spatial datasets. 
However, researchers soon recognized its potential for object detection in LiDAR data, given its 
ability to separate dense clusters from sparse noise points [79]. DBSCAN has been integrated with 
other algorithms to improve object detection performance. For example, [8] combined DBSCAN 
with the Hough Transform to detect and track moving vehicles in LiDAR data. A key challenge in 
using DBSCAN for object detection in LiDAR data is determining the optimal values for Eps and 
MinPts. Researchers have proposed various techniques for parameter optimization, such as using 
the k-distance graph to estimate Eps [80]. Several extensions and variations of DBSCAN have 
been proposed to address specific challenges in object detection tasks, including handling variable 
density clusters and reducing the sensitivity to parameter choices. Examples include OPTICS, 
which creates a hierarchical representation of the data, and HDBSCAN [81], which automatically 
determines the optimal number of clusters. 

Machine learning-based methods have evolved over time, with various techniques and 
improvements being introduced to enhance object detection performance in roadside LiDAR 
projects. The progression from DBSCAN to ensemble methods, coupled with advancements in 
feature engineering and selection, has contributed to the refinement and success of these 
approaches.  

Table 5. Summary of Machine Learning-based Methods for Object Detection 

Citation Method Features Classifier Pros Cons 

[82] SVM 

Handcrafted 
features (e.g., 
geometric, 
statistical 
properties) 

Support 
Vector 
Machines 

Effective at 
finding optimal 
decision 
boundaries, good 
generalization 
performance 

Requires 
appropriate choice 
of kernel function, 
sensitive to noise 
and outliers 

[83] Random 
Forest 

Handcrafted 
features (e.g., 
geometric, 
statistical 
properties) 

Random 
Forest 

Robust to noise 
and overfitting, 
handles high-
dimensional data 
well 

Can be slow to 
train and predict, 
requires parameter 
tuning (e.g., 
number of trees) 

[84] GBM 

Handcrafted 
features (e.g., 
geometric, 
statistical 
properties) 

Gradient 
Boosting 
Machines 

Can achieve high 
accuracy, handles 
high-dimensional 
data well 

Requires 
parameter tuning, 
can be slow to 
train, sensitive to 
noise and outliers 
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Citation Method Features Classifier Pros Cons 

[85] AdaBoost 

Handcrafted 
features (e.g., 
geometric, 
statistical 
properties) 

AdaBoost 

Combines weak 
classifiers to 
create a strong 
classifier, can 
achieve high 
accuracy 

Sensitive to noise 
and outliers, 
requires parameter 
tuning (e.g., 
number of 
iterations) 

[80] DBSCAN Spatial coordinates 
Density-
based 
clustering 

Automatically 
detects clusters of 
varying shapes, 
handles noise well 

Requires 
appropriate choice 
of parameters 
(Eps, MinPts), not 
suitable for 
clusters with 
varying densities 

[86] OPTICS Spatial coordinates 
Density-
based 
clustering 

Automatically 
adapts to varying 
density clusters, 
does not require 
specifying Eps 

Requires 
specifying MinPts, 
slower than 
DBSCAN 

[81] HDBSCAN Spatial coordinates 
Density-
based 
clustering 

Automatically 
determines 
optimal number 
of clusters, 
handles noise and 
varying densities 
well 

Slower than 
DBSCAN, 
requires specifying 
MinPts 

 

The emergence of deep learning-based methods has further pushed the boundaries of object 
detection performance thanks to their ability to automatically learn hierarchical feature 
representations (Table 6). 

• Convolutional neural networks (CNNs) 

CNNs were introduced as a method to learn local and hierarchical feature representations 
in image data through a series of convolutional and pooling layers (Figure 19) [87]. 
Researchers have adapted CNNs to process 3D LiDAR data by first converting it into a 2D 
image-like representation, such as a BeV or range image [88]. 
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Figure 19. Diagram. Convolutional neural networks (CNNs) architecture [89]. 

• 3D CNNs 

3D CNNs extend traditional CNNs to process 3D volumetric data directly by applying 3D 
convolutional and pooling operations. Researchers have utilized 3D CNNs for object 
detection in LiDAR data by discretizing the point cloud into voxels and feeding the 
volumetric representation into the network [90]. 

• PointNet and PointNet++ 

PointNet [91] was introduced as a pioneering method for processing unordered point 
clouds directly, eliminating the need for data conversion or voxelization. The architecture 
consists of a series of fully connected layers, shared Multi-Layer Perceptrons (MLPs), and 
a symmetric function (e.g., max pooling) to handle permutation invariance (Figure 20). 
PointNet++ extended PointNet by incorporating a hierarchical structure to capture local 
and global contextual information [91]. 

 

Figure 20. Diagram. PointNet architecture [92]. 

• Graph neural networks (GNNs) 

GNNs were introduced to process irregularly structured data, such as point clouds or 
graphs, by modeling the relationships between nodes through graph convolutions (Figure 
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21). For LiDAR data, GNNs can be used to capture the relationships between points in the 
point cloud, enabling more effective object detection [93]. 

 

Figure 21. Diagram. Graph neural networks (GNNs) architecture [94]. 

• VoteNet 

VoteNet is a deep learning-based method for 3D object detection in LiDAR data that uses 
PointNet++ as a backbone to learn point features. VoteNet utilizes a voting mechanism to 
generate 3D bounding box proposals by aggregating votes from points in the point cloud 
(Figure 22). The method is robust to varying point densities and achieves high accuracy 
and efficiency [91]. 

 

Figure 22. Diagram. VoteNet architecture [95]. 

• Voxel-based methods 

Voxel-based methods, such as VoxelNet [96] and SECOND [97], discretize the LiDAR 
point cloud into a 3D voxel grid and use 3D CNNs or sparse convolutions to process the 
data efficiently. These methods achieve high accuracy and have been widely adopted in 
the autonomous driving industry. 
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Deep learning-based methods for object detection have evolved and been refined over time through 
a series of innovations, including the adaptation of CNNs to process 3D LiDAR data, the 
development of PointNet and PointNet++ for direct point cloud processing, the introduction of 
GNNs for modeling relationships in point clouds, and the development of Voxel-based methods 
for efficient and accurate object detection (Figure 23). These advancements have led to significant 
improvements in performance and paved the way for the adoption of deep learning in real-world 
LiDAR applications, such as roadside LiDAR object detection. 

 

Figure 23. Diagram. VoxelNet architecture [96]. 

Table 6. Summary of Features of Deep Learning-based Methods for Object Detection 

Citation Method Architecture Data 
Requirement 

Pros Cons 

[98] Multi-view 2D CNNs 2D image-like 
representation 

Utilizes 
existing 2D 

CNN 
architectures 

Information 
loss during 
conversion 

[90] VoxNet 3D CNNs Voxelized 
point cloud 

Processes 
volumetric 

data directly 

High 
computational 

cost and 
storage 

requirements 

[91] PointNet 

Fully 
connected 

layers, shared 
MLPs, max 

pooling 

Raw point 
cloud 

Direct point 
cloud 

processing 

Limited in 
capturing local 

structures 

[91] PointNet++ Hierarchical 
PointNet 

Raw point 
cloud 

Captures local 
and global 
contextual 

information 

Slightly 
increased 

complexity 
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Citation Method Architecture Data 
Requirement 

Pros Cons 

[99] Dynamic 
Graph 

Graph Neural 
Networks 
(GNNs) 

Raw point 
cloud 

Models 
relationships 

in point 
clouds 

Higher 
computational 

resources 
required 

[96] VoxelNet 3D CNNs Voxelized 
point cloud 

High accuracy 
and efficient 
processing 

Loss of fine-
grained 
details, 

increased 
memory 

[97] SECOND Sparse 
convolutions 

Voxelized 
point cloud 

Efficient and 
accurate 
object 

detection 

Loss of fine-
grained 
details, 

increased 
memory 

[100] VoteNet 
PointNet++ 
with voting 
mechanism 

Raw point 
cloud 

Robust, high 
accuracy, and 

efficient 
processing 

Relatively 
complex 

architecture 

 

However, the current research on object detection has several limitations: 

• High computational cost: Deep learning methods, especially 3D CNNs and GNNs, can 
require significant computational resources for processing large-scale point cloud data. 

• Loss of fine-grained details: Voxel-based methods and early approaches that convert point 
clouds to 2D image-like representations may result in loss of fine-grained details due to 
discretization or transformation. 

• Sensitivity to noise and varying point densities: Some methods may be sensitive to noise 
or varying point densities in the point cloud data, which can affect the performance of 
object detection [91]. 

• Limited generalization capability: Machine learning and deep learning models, such as 
SVMs, Random Forests, or CNNs, may not generalize well across different LiDAR sensors 
or environments, as their performance is heavily influenced by the training data. 

• Labeling and annotation challenges: Supervised learning methods require large annotated 
datasets, which can be expensive and time-consuming to generate for 3D LiDAR data. 

• Scalability: Many methods may not scale well to handle large-scale, high-resolution, and 
real-time LiDAR data, which is crucial for practical applications such as autonomous 
driving. 

Object Tracking  
Object tracking and prediction involve the continuous monitoring, identification, and estimation 
of the future positions of objects, such as vehicles and pedestrians, within the field of view of the 
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LiDAR sensor. This process is crucial for various traffic monitoring and management applications 
and for the safety and efficiency of autonomous vehicles and advanced driver assistance systems. 

Key problems that need to be addressed specifically for object tracking and prediction in roadside 
LiDAR projects include: 

• Data association: Associating the detected objects across consecutive LiDAR frames is 
essential for tracking objects over time. This involves determining which object in the 
current frame corresponds to which object in the previous frame, considering potential 
issues like missed detections, false alarms, and occlusions [101]. 

• Object state estimation: Estimating the state (e.g., position, velocity, and orientation) of the 
tracked objects is a crucial aspect of object tracking. Techniques such as Kalman filtering 
or particle filtering can be used to estimate and update the object state based on the 
measurements from the LiDAR sensor [77]. 

• Motion modeling and prediction: Developing accurate motion models for different object 
types is essential for predicting their future positions and velocities. These models should 
account for various factors, such as road geometry, traffic rules, and typical driving 
behaviors [102]. 

• Handling occlusions and partial visibility: Roadside LiDAR sensors may not always have 
a complete view of the objects in the scene, leading to occlusions and partial visibility. 
Robust tracking algorithms should be capable of handling these situations and maintaining 
accurate object tracking and prediction [103]. 

• Real-time processing: Object tracking and prediction algorithms should be capable of 
processing the data in real-time to ensure timely and accurate information for traffic 
monitoring and management applications. This often involves optimizing the algorithms 
for computational efficiency and minimizing the latency [104]. 

For object tracking, the distance characteristics of objects between adjacent frames are commonly 
used in mainstream methods, such as the Hungarian method. Predictive tracking algorithms using 
Kalman and particle filtering are also another major type of methods [105]. Zhang et al. proposed 
an adjacent-frame fusion method for vehicle detection and tracking in complex traffic 
circumstances. In addition, the occlusion problem can be improved as well [40]. Another research 
study developed a tracking framework from roadside LiDAR to detect and track vehicles with the 
aim of accurate vehicle speed estimation [41]. Zhao et al. proposed a detection and tracking 
approach for pedestrians and vehicles [106]. To track the detected objects, researchers used a 
discrete Kalman filter to identify the same object in continuous data frames [107]. Table 7 
summarizes tradition tracking methods and deep learning-based tracking methods.  
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Table 7. Summary of Object Tracking and Predicting Methods 

Category Method Feature Pros Cons Reference 

Traditional 
Method 

Kalman Filtering Linear, recursive 
state estimation 

Computationally 
efficient, easy to 
implement 

Limited to 
linear, Gaussian 
systems 

[108] 

Extended Kalman 
Filtering 

Non-linear state 
estimation using 
linearization 

Handles non-
linear systems, 
computationally 
efficient 

Inaccuracies due 
to linearization [109] 

Unscented 
Kalman Filtering 

Non-linear state 
estimation using 
deterministic 
sampling 

Robust to non-
linearities, 
improved 
accuracy 

Computationally 
more expensive 
than EKF 

[107] 

Particle Filtering 

Non-linear, non-
Gaussian state 
estimation using 
particles 

Flexible, handles 
complex systems 

Computationally 
intensive [110] 

Multiple 
Hypothesis 
Tracking 

Data association 
technique 
maintaining 
multiple 
hypotheses 

Handles 
complex 
scenarios with 
interactions, 
occlusions 

Computationally 
demanding [111] 

Joint Probabilistic 
Data Association 

Estimation of 
association 
probabilities 
between 
measurements and 
tracks 

Handles 
uncertainties in 
data association, 
reduces track 
loss risk 

Computationally 
intensive in 
high-object 
situations 

[112] 

Neural 
Network 

Convolutional 
Neural Networks 

Learning spatial 
hierarchies of 
features from raw 
data 

State-of-the-art 
performance, 
handles complex 
data 

Requires large 
labeled data, 
computationally 
expensive 

[113] 

Recurrent Neural 
Networks (RNNs) 
and Long Short-
Term Memory 
(LSTM) 
Networks 

Modeling 
temporal 
dependencies in 
sequential data 

Learns complex 
patterns and 
relationships in 
sequences 

Requires large 
labeled data, 
computationally 
expensive 

[114] 

Siamese Neural 
Networks 

Learning 
similarity metric 
between image 
patches 

Computationally 
efficient, 
suitable for real-
time tracking 

  [115] 
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Category Method Feature Pros Cons Reference 

Graph Neural 
Networks 
(GNNs) 

Modeling complex 
relationships and 
interactions 
between objects 

Handles 
occlusions, 
interactions, and 
long-term 
dependencies 

Requires large 
labeled data, 
computationally 
expensive 

[99] 

 

There are multiple methods to evaluate the accuracy of object tracking and prediction. The 
commonly used evaluation metrics include: 

• Multiple Object Tracking Accuracy (MOTA): 
MOTA is a commonly used metric that considers three error types: false positives, false 
negatives, and identity switches. MOTA combines these errors into a single measure, 
which provides a comprehensive evaluation of a tracking algorithm's performance [116]. 

• Multiple Object Tracking Precision (MOTP): 
MOTP measures the average localization error of correctly tracked objects. It provides a 
quantitative measure of the tracker's ability to precisely estimate object positions [116]. 

• Precision and Recall: 
Precision and recall are widely used evaluation metrics for object detection and tracking 
tasks. Precision measures the proportion of true positive detections among all positive 
detections, while recall measures the proportion of true positive detections among all 
ground-truth objects [117]. 

• Intersection over Union (IoU): 
IoU is a measure of the overlap between predicted bounding boxes and ground-truth 
bounding boxes. It is defined as the area of intersection divided by the area of union of the 
two bounding boxes. A higher IoU score indicates better tracking performance [117]. 

• F1 Score: 
The F1 score is the harmonic mean of precision and recall, providing a single measure that 
balances the trade-off between these two metrics. A higher F1 score indicates better 
tracking performance [118]. 

• Root Mean Square Error (RMSE): 
RMSE is a commonly used metric for evaluating the accuracy of object prediction. It 
measures the average squared difference between predicted and ground-truth object 
positions. A lower RMSE indicates better prediction performance [119]. 

The limitations of current research in object tracking and prediction for roadside LiDAR projects 
include: 

• Sensitivity to noise and occlusions: 
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LiDAR sensors can be affected by noise, which might lead to false detections or missed 
objects. Additionally, occlusions caused by other objects or the environment can make it 
challenging to maintain accurate tracking and prediction. 

• Complexity and computational demands: 
Advanced tracking and prediction algorithms, particularly those based on deep learning, 
often require significant computational resources and memory. This can limit their 
deployment in real-time or resource-constrained environments. 

• Limited generalization: 
Object tracking and prediction models might not generalize well to new environments or 
scenarios, especially if they have not been exposed to sufficient diverse data during 
training. This could lead to degraded performance in real-world applications. 

• Challenges in data association: 
Data association, which involves matching detected objects with existing tracks, remains a 
challenging problem in object tracking and prediction. Ambiguities in data association can 
lead to identity switches or track fragmentation, affecting overall tracking performance. 

LiDAR Installation/Configuration 
The major types of LiDAR sensor include (Table 8): 

• Airborne LiDAR 
Airborne LiDAR systems are mounted on aircraft, such as planes or helicopters, and are 
commonly used for large-scale topographic mapping and environmental monitoring [120]. 
They can cover vast areas quickly, making them ideal for forestry, floodplain mapping, 
coastal zone management, and infrastructure monitoring. 

• Terrestrial LiDAR 
Terrestrial LiDAR systems are ground-based and can be either stationary or mobile. They 
are used for detailed 3D modeling of objects, structures, and landscapes [121]. Applications 
include architectural documentation, structural analysis, mining, archaeology, and 
transportation infrastructure assessment. 

• Mobile LiDAR 
Mobile LiDAR systems are mounted on moving platforms, such as vehicles or boats, 
allowing for rapid data acquisition in urban environments and transportation corridors 
[122]. Applications include road and railway infrastructure management, asset inventory, 
and urban planning. 

• Solid-State LiDAR 
Solid-state LiDAR systems are compact and have no moving parts, making them more 
durable and cost-effective than traditional mechanical LiDAR sensors [123]. They are ideal 
for applications that require small, lightweight sensors, such as robotics, drones, and 
autonomous vehicles. 
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Table 8. Summary of Different Types of LiDAR Sensors 

Classification Feature Application Reference 

Airborne 
LiDAR 

Mounted on aircraft, 
large-scale data 
collection 

Forestry, floodplain 
mapping, coastal zone 
management 

[120] 

Terrestrial 
LiDAR 

Ground-based, 
stationary or mobile, 
high-resolution 

Architectural 
documentation, 
archaeology, 
infrastructure 

[121] 

Mobile 
LiDAR 

Mounted on moving 
platforms, rapid data 
acquisition 

Road and railway 
management, asset 
inventory, urban 
planning 

[122] 

Solid-State 
LiDAR 

Compact, no moving 
parts, durable, cost-
effective 

Robotics, drones, 
autonomous vehicles [123] 

 

Several factors can cause positional accuracy issues for LiDAR sensors: 

• Occlusion: In roadside environments, objects like buildings, trees, vehicles, and other 
structures can obstruct the LiDAR sensor's line of sight, leading to occlusion and 
incomplete data collection [124]. 

• Multipath effects: The LiDAR sensor's laser pulses can bounce off multiple surfaces before 
returning to the sensor, causing false distance measurements (Figure 24). This phenomenon 
is common in urban environments where there are reflective surfaces, such as glass 
windows and metallic structures [125]. 

 

Figure 24. Illustration. Driving scenario with ghost object presence [126]. 
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• Sensor motion: For mobile LiDAR systems, abrupt changes in speed, direction, or the 
sensor’s angle due to road unevenness or sudden maneuvers can introduce errors in the 
data [122]. 

• Shadowing effects: When a laser pulse is obstructed by an object, a shadow is created in 
the scanned area behind the object. The shadowing effect can cause data gaps, making it 
difficult to reconstruct the complete scene [127]. 

• Sensor calibration: Errors in the calibration of the LiDAR sensor, including range, 
boresight, and mounting parameters, can result in positioning inaccuracies [128]. 

• Atmospheric conditions: The presence of dust, fog, rain, or snow can affect the propagation 
of laser pulses, causing errors in the measured distances. In addition, variations in air 
temperature, pressure, and humidity can impact the speed of light, leading to inaccuracies 
in distance measurements [129]. 

• GPS errors: Airborne and mobile LiDAR systems rely on GPS for georeferencing, and any 
errors in GPS positioning can lead to inaccuracies in the LiDAR data [130]. Factors 
contributing to GPS errors include satellite geometry, signal multipath, atmospheric 
effects, and receiver noise. 

• Inertial Measurement Unit (IMU) errors: IMUs are used in combination with GPS to 
estimate the platform’s orientation. Errors in IMU measurements, such as biases, drifts, 
and noise, can lead to inaccuracies in the LiDAR data (Figure 25) [131]. 

 

Figure 25. Graph. An example of IMU errors [132]. 

• Systematic errors: Errors inherent to the LiDAR sensor itself, such as range measurement 
errors, laser beam divergence, and scanning angle errors, can impact positioning accuracy 
[130]. 

• Target surface properties: The reflectivity, color, and texture of the target surface can 
influence the return signal strength and quality, affecting the accuracy of distance 
measurements [113]. 



51 
 

Data Fusion for Roadside LiDAR Applications 
Data fusion is the process of integrating data from multiple sources to obtain a more 
comprehensive and accurate understanding of a system, often resulting in improved decision-
making or enhanced performance [133]. In the context of traffic data, data fusion methods are used 
to combine information from various traffic sensors and data sources to obtain a more complete 
and reliable picture of traffic conditions, travel times, and other traffic-related parameters. 

The limitations of current research on data fusion for roadside LiDAR projects include: 

• Heterogeneous data sources: 
Roadside LiDAR projects often involve fusing data from multiple, diverse sensors, such as 
cameras, radar, and LiDAR. Integrating heterogeneous data effectively remains a challenge 
due to differences in data formats, resolutions, and measurement errors [134]. 

• Scalability and computational complexity: 
Data fusion techniques can be computationally demanding, particularly when dealing with 
large-scale, high-dimensional, or streaming data. This can limit the real-time applicability 
of data fusion methods in roadside LiDAR projects [135]. 

• Sensor noise and uncertainty: 
Sensor noise and uncertainty can adversely affect data fusion performance. Developing 
robust methods to handle sensor noise and model uncertainties is a key challenge in data 
fusion research for roadside LiDAR projects [134]. 

• Synchronization and alignment: 
Temporal synchronization and spatial alignment of data from multiple sensors is crucial 
for accurate data fusion. Achieving precise synchronization and alignment can be 
challenging, particularly when dealing with large-scale, dynamic environments [136]. 

• Lack of standardized evaluation methods: 
There is a lack of standardized evaluation methods and benchmarks for assessing the 
performance of data fusion techniques in roadside LiDAR projects. This makes it difficult 
to compare different approaches and gauge their real-world applicability [134]. 
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Appendix B: More Information for Data Collection 

Simulated Datasets 
This project aimed to develop and implement a set of algorithms for a roadside LiDAR-based work 
zone intrusion system. The system can conduct vehicle trajectory analysis and threat assessment 
needed to accurately provide advanced warning to workers for any possible vehicle intrusion in 
the work zone. However, researchers found that recreating these intrusion scenarios and the needed 
traffic environment in the real world requires significant time, resources, and expense, and may 
present high risks in tests. Therefore, simulation of the system seems like a particularly safer and 
more efficient option before we implement it in the field. 

The main purpose of the simulation study was to use a 3D virtual environment to enable testing of 
roadside LiDAR applications, which will significantly reduce the amount of required road tests in 
the real world. The simulation was based on a co-simulation framework for modeling and 
visualizing driving algorithms in MATLAB Simulink® in a rich simulation environment powered 
by Unreal Engine®. The testing results facilitated the development of perception and control 
algorithms, verified the system’s functionality, and improved robustness at the system level. The 
developed simulation framework also demonstrated that it can run at sufficient frame rates for real-
time computations on a reasonable desktop workstation leveraging the power of a graphics 
processing unit (GPU). The major contributions of this simulation work are the following: 

• Development of a co-simulation framework for roadside LiDAR applications by using 
MATLAB, Simulink, and Unreal Engine. 

• Demonstration of the developed simulation framework in a SWZ case study to show its 
capacity for assisting the system development and its adaptability to other roadside LiDAR 
applications. 

Simulation  
In the simulation, researchers used MATLAB as the basic simulation software development 
platform to verify the rationality of the design parameters of the roadside LiDAR-based system. 
The simulation results showed that the software platform consistently and robustly achieved the 
purpose of evaluating and guiding the design process of system parameters.  

MATLAB provides a co-simulation framework for modeling and visualizing driving algorithms 
in Simulink in a rich simulation environment powered by the Unreal Engine from Epic Games 
(Figure 26). With this simulation environment, researchers can configure prebuilt scenes, place 
and move vehicles within the scene, and set up and simulate sensors (i.e., camera, radar, or LiDAR) 
on the vehicles or at the roadside. A photorealistic 3D environment and sensor detections of objects 
can be simulated and outputted for analysis by generating simulated driving scenarios. 
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Figure 26. Diagram. The co-simulation framework that is built on MATLAB/Simulink and Unreal Engine 
[22]. 

Simulation Procedures 
In the simulation, Unreal Engine creates 3D virtual driving environments and dynamic scenarios, 
supports the exporting of data to MATLAB over shared memory, and acquires data about the 3D 
environment necessary to generate synthetic sensor data (i.e., camera and LiDAR data). 
Environments created in this method can achieve a realistic, detailed appearance and geometry for 
the generation of synthetic camera and LiDAR data. Meanwhile, MATLAB and Simulink can 
process this data and develop prototype perception and control algorithms. This includes toolboxes 
for computer vision, image processing, and LiDAR point cloud processing, which is integrated in 
MATLAB Automated Driving Toolbox [137]. Therefore, an interface is enabled between 
MATLAB/Simulink and Unreal Engine, which allows a full pipeline to be tested that includes 
these capabilities. The following diagram in Figure 27 summarizes the communication between 
MATLAB/Simulink and the visualization engine (Unreal Engine).  

 

Figure 27. Diagram. Communication flows between MATLAB/Simulink and Unreal Engine [22]. 

Simulink Blocks 
Simulink blocks related to the simulation environment can be found in the automated driving 
toolbox in MATLAB. These blocks provide the ability to: 1) configure scenes in the simulation 
environment; 2) place and move vehicles within these scenes; 3) set up camera, radar, and LiDAR 
sensors on the vehicles; 4) simulate sensor outputs based on the environment around the vehicle; 
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and 5) obtain ground truth data for semantic segmentation and depth information. Figure 28 shows 
the Simulink blocks created for the SWZ case study. 

 

Figure 28. Screen shot. MATLAB/Simulink blocks in a designed simulation model for the SWZ case study 
[22]. 

Unreal Engine Blocks 
During the simulation, Unreal Engine executes its simulation blocks in a specific order. First, the 
simulation 3D Vehicle with Ground Following blocks initialize the vehicles and send their X, Y, 
and Yaw signal data to the Simulation 3D Scene Configuration block. Next, the Simulation 3D 
Scene Configuration block sends the data to the sensor blocks. Finally, the sensor blocks use the 
data to accurately locate and visualize the vehicles. The priority property of the blocks controls 
this execution order (as shown in Figure 29). By default, Simulation 3D Vehicle with Ground 
Following blocks have a priority of -1, Simulation 3D Scene Configuration blocks have a priority 
of 0, and sensor blocks have a priority of 1. 
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Figure 29. Diagram. Execution order for Unreal Engine simulation blocks [22]. 

In conjunction with vehicle models and driving algorithms, these blocks can be used to perform 
realistic closed-loop simulations that encompass the entire automated driving stack, from 
perception to control. Figure 30 shows a roadside LiDAR-based SWZ application with LiDAR 
output results. The LiDAR sensor was placed at the beginning of the work zone transition area (as 
delineated by traffic cones). 

 

Figure 30. Illustration and screen shot. Visualization of a SWZ application with LiDAR output in Unreal 
Engine [22]. 
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Data Collection from Test Sites 
Two datasets, which will be publicly available for other researchers, 3  were collected with a 
Velodyne VLP-16 sensor, mounted at 2.2 meters high on a portable tripod in two different sites 
(Table 9). The first dataset, named 01-TAMU, was collected on a six-lane urban road segment, 
though the primary ROIs covers one travel direction (three lanes). The second dataset (Figure 31), 
named 02-TAMU, was collected on a four-lane highway segment, with again the primary ROI 
covering one travel direction (two lanes). Quantitative analysis of 01-TAMU and 02-TAMU was 
made available through hand-annotated LiDAR data of several hundred frames with vehicles in-
scene. 

This dataset contains two approximately 10-minute segments on an urban (45 mph) and highway 
segment (75 mph), consisting of >1,000 frames labeled of measurements taken with a Velodyne 
VLP-16. The dataset format is as follows: 

• Raw (unprocessed ROI filtering) data in rosbag data format4  
• BeV projection images of LiDAR data 
• Labels in .csv format for each image 

Table 9 summarizes the dataset: 

Table 9. Description of 01-TAMU and 02-TAMU Datasets 

 

 
3 The dataset will be available through the SAFE-D Data Portal 
4 Rosbag format data refers to recorded bags of messages in the Robot Operating System (ROS), which are 
commonly used for storing and replaying robotic system data 
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Figure 31. Graph and photos. The data collection site on the RELLIS Campus (02-TAMU). 

Experimental Work Zone Data Collection 
Purpose 
The data from this experimental work zone collection was to test and validate the developed 
detection and tracking algorithms through some designed scenarios under a controlled testing 
environment on the TAMU RELLIS Campus. The test aimed to measure/quantify the system’s 
reliability, accuracy, and computation efficiency. Through the experiment, researchers also 
investigated the optimal LiDAR detection system setup for given specific work zone 
configurations (e.g., single vs. multiple sensors, location, height and alignment of the sensors) and 
vehicle intrusion scenes (e.g., high speed or low speed intrusions, different intrusion types). The 
test data were used to improve the algorithms and prepare the team for the implementation in a 
real work zone environment.  

The research facilities on the RELLIS Campus allow faculty, students, and private-sector partners 
to collaborate on cutting-edge research and technology development activities while benefiting 
from the use of the proving grounds and testbeds that will be available at the RELLIS Campus. 
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These testbeds and proving grounds afford large-scale testing of the technologies developed 
through these collaborations in a safe and controlled environment.  

The proving grounds of the facility have multiple runways, aprons, and transportation-related 
pavements, signs, and markings, which make them ideal research testing sites (Figure 33). The 
proving ground (or runaway) area reserved for this field experiment is highlighted in yellow in 
Figure 32: 35L Sect 1, 35L Sect 2, 35L Sect 3, 35L Sect 4, Taxi 7 Sect 5. The area has two painted 
lanes on the west side of runaway.  

 

Figure 32. Satellite image. The TAMU RELLIS Campus testing facility. 

 

Figure 33. Satellite image and photo. The experimental work zone data collection site in the RELLIS 
Campus.  
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Experimental Work Zone Tests 
In the experimental data collection, the team collected the data under several controlled work zone 
settings and vehicle intrusion scenarios. There are many possible work zone configurations in the 
real world. However, due to time and resource limits, this proof-of-concept study only investigated 
a specific work zone configuration based on the literature review and expert suggestions: a single 
lane closure on a four-lane highway segment (two-lane in each direction). Researchers designed 
two tests for this specific work zone configuration:  

• Test 1: One lane closure on a high-speed four-lane highway (60 mph) 
 Single LiDAR sensor settings  
 Multiple LiDAR sensor settings (two LiDAR sensors) 

• Test 2: One lane closure on a low-speed four-lane road (30 mph) 
 Single LiDAR sensor settings  
 Multiple LiDAR sensor settings (two LiDAR sensors) 

Various LiDAR setup factors were also considered in the experiments, including but not limited 
to: mounting or installation method, height and location of LiDAR sensor(s) in the work zone, 
detecting range, alignment of multiple sensors (if needed), etc. The optimal configuration for 
LiDAR sensor(s) was determined for this specific work zone configuration by the testing results 
and the theoretical analysis. Temporary traffic cones or barriers were placed to indicate work zone 
areas for the target vehicles. No other installation was required. 

Test 1: One Lane Closure on a High-speed Two-lane Highway (60 mph Speed Limit)  
In this test, the team designed a one-lane closure scenario on a high-speed two-lane highway 
segment. The highway has a standard lane width of 12 ft and shoulder width of 10 ft. However, 
the shoulder on 35L has a width of 12 ft, which allowed additional room in the experimental 
testing. The posted speed limit for the highway is set as 60 miles per hour.  

Figure 34 shows the designed work zone configurations. In this case, the transition area (or the 
buffer area) of the work zone should be at least 720 ft long according to the Manual on Uniform 
Traffic Control Devices (MUTCD); 250 ft is advanced signing before transition area. 

 

Figure 34. Diagram. High-speed two-lane highway work zone configurations [19]. (D is the distance to start of 
the taper). 
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Test 2: One Lane Closure on a Two-lane Road with Two LiDAR Sensors (30 mph Speed 
Limit) 
In this test, the team designed a one-lane closure scenario on a low-speed road segment (the posted 
speed limit is 30 mph), which was intended to represent a construction work zone on a local street.   

Figure 35 shows the designed work zone configurations. In this case, the transition area (or the 
buffer area) of the work zone should be at least 180 ft long.  

 

Figure 35. Diagram. Low-speed two-lane highway work zone configurations. 

LiDAR Configuration 
The LiDAR configuration was changed depending on whether one or two sensors were operated 
at a time. There are three parameters of interest for this study: the longitudinal placement along 
the travel direction, the lateral placement across the lane, and the mounting height. The LiDAR’s 
roll, pitch, and yaw angles were fixed to 0 degrees.  

When testing a single LiDAR, the placement was closest to the intrusion area, labeled with a 
numeral 1 in the two scenarios below. When testing two LiDARs, an additional LiDAR (labeled 
2) was added to the work zone with overlapping coverage from the first LiDAR. The separation 
distance should not exceed 30 m between two LiDARs to maintain overlapping coverage.  

Table 10. LiDAR Configuration Parameters 

Parameter Testing Range Unit 
𝑫𝑫𝒗𝒗 (vertical mounting distance) 1.6-2.5 Meter 
𝑫𝑫𝒉𝒉(horizontal setback distance) 1.0-8.0 Meter 
𝚫𝚫𝐱𝐱(longitudinal separation distance) 15.0-30.0 Meter 

 

Vehicle Intrusion Scenarios 
Two work zone collision types have been investigated in the test. Since these are experiments, the 
actual work zone cones should not be placed. Instead, the cones were used to create channeling 
guides for the test vehicles to maneuver safely into the work zone. 

Testing Scenario 1: Buffer Zone Collision 
The buffer zone collision test collected data from a simulated full-frontal collision from the buffer 
zone as shown in Figure 36 and Figure 37. This test was planned to be conducted at 30 and 60 
mph. A minimum stopping distance of 1,000 ft allowed the vehicle to safely slow after the 
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maneuver was complete. The width of the lane for travel was at a minimum 12 ft. No testing 
personnel were in the work zone area due to safety concerns.  

 

Figure 36. Diagram. Settings of Testing Scenario 1. 

 

Figure 37. Photo and graph. Visualization of Scenario 1’s LiDAR outputs. 

Testing Scenario 2: Side Sweep Collision 
The second scenario to be tested was the side sweep collision scenario (Figure 38, Figure 39). For 
safety, this scenario was conducted at only 30 mph. Personnel were behind or in front of the work 
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zone collision, depending on the number of LiDARs used. Cones were used to channel the vehicle 
safely into the work zone, emulating a gradual intrusion crash. A minimum stopping distance of 
1000 ft allowed the vehicle to safely slow after the maneuver was complete. The width of the lane 
for travel should be at a minimum 12 ft. 

 

Figure 38. Diagram. Settings of Testing Scenario 2. 

 

Figure 39. Photo and graph. Visualization of Scenario 2’s LiDAR outputs. 



63 
 

Testing Scenario 3: Detection of Work Zone Workers 
In this scenario, the testing team used LiDARs to collect simulated workers’ activities by having 
personnel walk around in the work zone area (Figure 40). 

 

Figure 40. Photo and graph. Visualization of Scenario 3’s LiDAR outputs. 

Real Work Zone Data Collection 
The research team continued to collect data from a real work zone environment. Researchers 
worked closely with the Texas DOT (TxDOT) Dallas District to identify work zone sites 
appropriate for the purpose of this project. Two sites were located on US-380, as shown in Figure 
41. US-380 is a major highway located in the areas of Denton and Collin counties in Texas. It 
serves as a critical transportation route, connecting various cities and communities within the 
region. The highway plays a pivotal role in facilitating transportation and supporting economic 
activities in the region. With its proximity to populated areas and diverse traffic conditions, US-
380 offers a suitable environment for conducting research, testing, and implementing innovative 
technologies and safety measures aimed at enhancing the efficiency and safety of the roadway 
system. 

These sites represented typical cross-sections of the highway and work zone elements, including 
traffic lanes, shoulders, median, signage, and temporary barriers (Figure 42). The posted speed 
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limit at the sites (50 mph5) was recorded to establish a baseline for system performance. LiDAR 
technology was utilized as the primary sensor system, generating detailed 3D point clouds to detect 
and track vehicles and potential intrusions within the work zone. The collected data will contribute 
to refining intrusion detection algorithms and enhancing work zone safety measures on US-380 
(note that this may not be within the scope of this project).  

 

Figure 41. Satellite image. The identified TxDOT work zone sites. 

 
5 Due to safety concerns, the speed limit on US-380 at the locations designated for data collection, where a 
construction widening project is currently in progress, is being decreased to 50 mph. 
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Figure 42. Photo. Site photo of the identified work zone sites on US-380. 

 

Figure 43. Photo. The LiDAR setup in the work zone. 
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