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Abstract 
 
Roadway safety in low-income and ethnically diverse U.S. communities has long been a 
major concern. This research was designed to address this issue by developing a data-
driven approach and computational tools to quantify equity issues in roadway safety. This 
report employed data from Houston, Texas, to explore (1) the relationship between road 
infrastructure and communities’ socioeconomic and demographic characteristics and its 
association with traffic safety in low-income, ethnically diverse communities and (2) the 
type of driver behaviors and characteristics that affect crash risks in underserved 
communities. The team first built an inclusive road infrastructure inventory database by 
employing remote sensing and image processing techniques. Then, the relationship 
between communities’ socioeconomic and demographic characteristics and traffic safety 
was investigated through the lens of road infrastructure characteristics using data mining, 
deep learning tools, and statistical and econometric models. Clustering analysis was used 
to uncover the role in underserved communities of socioeconomic and demographic 
characteristics of drivers and victims involved in crashes. Structural equation models were 
then used to explore the association between neighborhood disadvantage, transportation 
infrastructure, and roadway crashes. Findings shed light on road safety inequity and 
sources of these disparities among communities using data-driven methods.   
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Introduction 
Improving roadway safety in low-income and ethnically diverse communities in the United States 
has long been a major concern. There are several factors that may contribute to unequal distribution 
of traffic risks in these communities, but one likely culprit is the transportation infrastructure and 
urban planning policies. In the 1960s, transportation infrastructure policies had significant impacts 
on low-income and Black communities. As the interest in building high-capacity roadways took 
off, these new policies were used to further segregate low-income and Black communities by 
building high-capacity highways nearby and dividing the neighborhoods [1, 2]. High-capacity 
roadways, such as interstates and freeways, experience higher traffic volumes, hence increasing 
the probability of traffic-related risks [3]. Moreover, poor roadway infrastructure and limited 
access to frequently used modes of transportation, such as vehicles and/or transit systems, may 
also increase the traffic-related safety risks in these communities [4, 5]. Due to limited access to 
transit and personally owned vehicles, travelers with lower incomes and members of immigrant 
communities are more likely to walk and ride bicycles than their higher-income counterparts [5]. 
However, limitations of the infrastructure (i.e., no sidewalks or bicycle infrastructure) can force 
users to share the road with motorized vehicles, increasing their exposure to traffic crashes [3, 6]. 
In fact, riskier driving behavior has been observed in low-income communities (e.g., not wearing 
seat belt), but the exact reasons for these behaviors have not been researched in detail [7].  

The roadway safety concerns in low-income communities are a multi-dimensional, complex 
problem that requires a solution at various levels. All three major crash-contributing factors—
roadway infrastructure, driver characteristics, and vehicle characteristics—are affected, thereby 
increasing the complexity of addressing roadway safety concerns in these communities. Assessing 
the presence and quality of roadway infrastructure in low-income communities is not a trivial task, 
as the existing roadway inventory databases do not include information regarding the quality of 
the roadway or presence of certain roadway designs such as crosswalks or bike lanes. Moreover, 
due to the dynamic nature of the problem (e.g., drivers are moving), pinpointing the exact driver-
related safety factors may be challenging. Due to these complexities, quantifying equity concerns 
in roadway safety is not a trivial process and requires an interdisciplinary approach. 

This study’s objective was to develop a data-driven approach and computational tools to quantify 
the equity issues in roadway safety. This project assessed two important factors affecting crash 
frequency and severity in low-income communities: 1) roadway infrastructure and 2) road user 
characteristics and behaviors. To that end, we addressed the following two research questions:  

1. What is the relationship between road infrastructure and communities' socioeconomic and 
demographic characteristics, and how it can be associated with traffic safety in low-
income, ethnically diverse communities? 

2. What type of driver characteristics affect the crash risks in underserved communities?  
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Harris County, Texas, served as the study site to accomplish the goals of this project. This county 
includes the Houston metro area, which is one of the most diverse cities in the United States. 

Background 
To establish a knowledge base for this inquiry, we performed a systematic literature review search 
in three academic databases (i.e., Web of Science, Scopus, and PubMed) commonly used in traffic 
safety research. The search query was a combination of three groups of terms in the title and 
abstract of the three databases: “pedestrian OR bicyclist* OR cyclist*” for crash types; “crash* 
OR accident* OR fatal* OR injur* OR death* OR collision* OR casualt*” for outcome variables, 
and “macro* OR area OR meso* OR zone OR zonal OR census OR community OR neighborhood” 
for analysis unit. The literature review search was conducted on Dec 26, 2022, and we limited the 
publication date of the studies from 2000 to 2022. To ensure consistency in selecting relevant 
studies, we defined the following set of inclusion and exclusion criteria to select the eligible studies 
that contained zonal crash prediction models: 1) aggregated pedestrian or bicyclist crashes and 
crash-contributing factors at the community level; 2) the outcome variable was the frequency of 
crashes, not crash rate or other metrics; 3) included actual roadway crashes rather than traffic risk 
perception or risk indicator; and 4) applied quantitative research methodology to model crashes at 
the zonal level. After retrieving the references, we uploaded them in the Covidence 
(https://www.covidence.org/)—a web-based tool the team used to conduct and manage the 
literature review task. We identified the relevant publications by their titles and abstracts in 
Covidence. The literature review process is shown in Figure 1.  

A total of 2,809 unique articles from three databases were identified, and 89 were selected based 
on their title and abstract. After full text assessment, we identified 63 articles that met our criteria, 
including six articles according to a bibliographic check. As shown in Figure 2, there was less 
zonal crash prediction research before 2015, and recent years have witnessed a burst in zonal crash 
prediction research. Among all included articles, there were 37 (58.7%) publications from the 
United States, followed by nine (14.3%) publications from Canada and five (8%) publications 
from the United Kingdom. The remaining publications were from China, Australia, Serbia, South 
Korea, India, the Kingdom of Saudi Arabia, and Belgium. 

We have divided the literature review synthesis into five sections: spatial unit of analysis, safety 
performance measure, modeling approach, crash-contributing factors, and disparities in roadway 
safety.  

Studies included in the literature review involved conducting analysis based on the following 
spatial units: census zoning system, traffic analysis zoning system (TAZ), administrative zoning 
system, and researcher-crafted zoning system. The former three kinds of zoning system vary by 
country or region where the research took place. The number of articles and reasons for choosing 
each analysis unit are summarized in the Appendix (Table A-1). 

https://www.covidence.org/
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Figure 1. Flowchart. Systematic literature review process. 

 

Figure 2. Graphs. Selected literature dates and countries of publication. 

 

Selected studies mostly evaluated pedestrian and bicyclist crashes or both (often referred to as non-
motorized crashes). Non-motorists like pedestrians and bicyclists are usually referred to as 
vulnerable road users (VRUs) in roadway safety research, as they are less protected and prone to 



4 
 

greater severity of injury. Most articles examined all pedestrians/bicyclists as a whole, while some 
researchers categorized crashes by severity level [8-10] or demographic characteristics like age 
[11, 12], gender [13], and ethnicity [14], depending on the research interest and study design. 

Modeling approaches included multiple linear regression and generalized linear regression, spatial 
econometrics model, geographically weighted regression, random effect model, 
bivariate/multivariate model, Bayesian statistical model, and machine learning model. It is worth 
noting that the Bayesian statistical model and machine learning model have become more popular 
in recent years among safety researchers. 

Crash-contributing factors are categorized into social environment factors, built environment 
factors, and exposure. The social environment includes demographic and economic characteristics 
of the communities. Factors from the built environment such as roadway infrastructure, land use, 
and facilities are commonly investigated. Exposure measures include the volume of different 
transportation modes such as walking, bicycling, and driving, and surrogate measures such as 
sociodemographic factors. We have summarized the measurement and influential direction of 
these factors for pedestrian and bicyclist crashes in the Appendix (Table A-2). 

Disparity in roadway crashes is represented by a negative association in the proportion of minority 
population or income level variables, with other socioeconomic, built environment, and exposure 
variables controlled. Most researchers answered the question of whether there is a disparity in 
roadway safety among different neighborhoods by investigating the direction and magnitude of 
coefficients for equity-related variables after controlling other variables, including exposure. 
However, only a few studies scrutinized why there may be a disparity in roadway safety among 
different neighborhoods. We summarized how these studies investigated disparity in roadway 
safety by the types of disparity and methods to investigate the disparity, major factors influencing 
disparity, and major results related to disparity in the Appendix (Table A-3). 

Methods 
To accomplish the objectives of this project, several modeling and machine learning techniques 
were implemented. 

Structural Equation Model 
Our team applied a structural equation modeling (SEM) approach to investigate the relationship 
between neighborhood disadvantage, transportation infrastructure, traffic exposure, and non-
motorist crashes. We also applied confirmatory factor analysis (CFA) under the SEM framework 
to construct latent variables such as neighborhood disadvantage, roadway environment, and lack 
of active transportation infrastructure. SEM and CFA have both been used in roadway safety 
research and transportation equity in active transportation research [14-17]. SEM has demonstrated 
several significant advantages over traditional multiple regression analyses, such as including 
flexible assumption, reducing measurement error, and testing complex causal paths [18]. The team 
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chose to use SEM for this research because of the following advantages:  

• SEM considers the covariance among latent variables and indicators to construct latent 
variables. Crash-contributing factors are usually correlated, such as pedestrian exposure, 
bicyclist exposure, and vehicle exposure, which might cause estimation error when using 
multiple regression based on an assumption of not having severe multicollinearity. 

• SEM can reduce the measurement error by applying CFA; latent variables, such as 
neighborhood disadvantage, are typically multidimensional and cannot be accurately 
captured using a single indicator. By combining information on neighborhood 
disadvantages from multiple indicators, CFA can create a composite factor that reduces 
measurement errors. 

• SEM can model the complex causal paths taken by mediating variables. SEM can test the 
mediating effect of roadway environment, active transportation infrastructure, and traffic 
exposure from neighborhood disadvantage to non-motorist crashes, while multiple 
regression methods can only identify the bivariate association with other variables 
controlled.  

We performed the SEM analysis on STATA 17 using a maximum likelihood estimation approach. 

Latent Class Clustering and Random Forest 
We applied a latent class clustering analysis (LCA) to identify the patterns in driver-victim pairs 
according to the driver’s and victim’s income and ethnicity in pedestrian and bicyclist crashes. We 
also mapped the crash patterns in the study area to reveal their spatial distribution. Then, we used 
a random forest algorithm to investigate the relative contribution of factors to the crash patterns 
using crash-specific information, economic and demographic characteristics of drivers and 
victims, roadway infrastructure, and exposure. Finally, we drew partial dependence plots (PDPs) 
for the most important factors to interpret their influences on certain crash patterns. The framework 
for this approach is depicted in Figure 3.  

Clustering analysis is an unsupervised machine learning method that can separate the crashes into 
homogenous subgroups that have the largest similarities within and largest dissimilarity between 
each subgroup [19]. We used a probability-based clustering approach (i.e., LCA), which has 
recently been applied in several roadway safety studies [20, 21]. The LCA approach has several 
advantages over other clustering approaches (e.g., K-means) in that it 1) can calculate the 
probability of a crash of being in a certain cluster by maximum likelihood method; 2) does not 
necessarily need to standardize the variables beforehand; 3) does not need to specify the number 
of clusters before performing the clustering; and 4) can generate statistical criteria afterward to 
select the best model with a certain number of clusters [20, 22]. The mathematical formula of the 
LCA approach is as follows [21]: 
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Figure 3. Diagram. Framework for assessing driver and victim pair characteristics. 

 

𝑃𝑃(𝒀𝒀𝑖𝑖 = 𝑦𝑦) = �𝜌𝜌��𝜃𝜃𝑚𝑚𝑚𝑚|𝑙𝑙
𝑙𝑙(𝑦𝑦𝑚𝑚=𝑛𝑛)

𝑟𝑟𝑚𝑚

𝑛𝑛=1

𝑀𝑀

𝑚𝑚=1

𝐾𝐾𝑐𝑐

𝑘𝑘=1

 

Where 𝒀𝒀𝑖𝑖 = (𝒀𝒀𝑖𝑖1, …𝒀𝒀𝑖𝑖𝑖𝑖) is the observation (crash) 𝑖𝑖’s responses in 𝑀𝑀 category and the possible 
values of 𝒀𝒀𝑖𝑖𝑖𝑖  are 1, … , 𝑟𝑟𝑚𝑚; 𝑟𝑟𝑚𝑚 represents the crash 𝑖𝑖’s 𝑟𝑟th attribute in 𝑚𝑚 category; 𝐾𝐾𝑐𝑐 represents 
the number of latent classes to be estimated; 𝑙𝑙(𝑦𝑦𝑚𝑚 = 𝑛𝑛) is the indicator function, 1 if 𝑦𝑦 equals 𝑛𝑛 
and 0 when y is not 1; 𝜌𝜌 is the probability of latent class membership probability; and 𝜃𝜃 is the 
conditional probabilities of responses on latent class membership. The number of clusters can 
influence the goodness-of-fit of the latent class clustering model. We employed Bayesian 
information criteria (BIC) to select the appropriate number of clusters. LCA modeling and BIC 
calculation were conducted using the polPCA package in R. 

A random forest algorithm is a tree-based ensemble machine learning technique. It is built upon a 
multitude of weak decision tree models to form a strong “forest” by averaging the predictions from 
all the individual regression trees or by taking the majority vote from the classification tree. This 
algorithm can be applied in both classification and regression; in this task, we used the random 
forest algorithm for classification. The random forest algorithm employs a bagging technique to 
repeatedly select a random sample from the training dataset and use the sample to fit a decision 
tree. Let feature set 𝑋𝑋  be {𝑥𝑥1, 𝑥𝑥2 … , 𝑥𝑥𝑛𝑛}, target set 𝑌𝑌  be {𝑦𝑦1,𝑦𝑦2 … , 𝑦𝑦𝑛𝑛}, and 𝑖𝑖 = 1, 2, … 𝐼𝐼 ; the 
process of random forest can be represented as follows: 

1) Select a random sample set from {𝑋𝑋,𝑌𝑌}, which is denoted as {𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖}; 
2) Train a decision tree 𝑓𝑓𝑖𝑖 on the sample set {𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖}; 
3) Repeat procedures 1 and 2 for 𝐼𝐼 times to get 𝐼𝐼 decision trees {𝑓𝑓1,𝑓𝑓2 … , 𝑓𝑓𝐼𝐼}; 
4) Aggregate the prediction results for any random sample 𝑥𝑥� to get function 𝑓𝑓 for the 
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random forest. For classification, it takes the majority vote of the target from all 
individual decision trees, denoted as 𝑓𝑓(𝑥𝑥�) = max

𝑖𝑖=1,2,…,𝐼𝐼
𝑓𝑓𝑖𝑖(𝑥𝑥𝑖𝑖) 

Several parameters can affect the performance of the model, such as the number of decision trees 
(𝐼𝐼). To optimize performance, we employed a random search method for optimal parameters with 
successive halving to automatically find the best combination of parameters. To investigate the 
impact of variables in clusters of driver-victim pairs, we calculated the feature importance for each 
variable to assess the relative contribution of all the variables [23]. Furthermore, we used the PDPs, 
which is one of the model-agnostic interpretable machine learning approaches to reveal the 
marginal effect of a feature in machine learning models [23]. A random forest algorithm was 
implemented by Scikit-learn, and PDPs were generated by pdpbox in Python.  

Results 

Role of Road Infrastructure in Traffic Safety Inequities 
Data Collection 
To assess the role of transportation infrastructure in safety disparities, we divided Harris County 
into 2,221 hexagons with a side length of 1 mile and an area of 0.76 square miles to develop SEMs 
for neighborhood disadvantage, transportation infrastructure, traffic exposure, and non-motorist 
crashes. We aggregated all the variables including pedestrian and bicyclist crashes, socioeconomic 
variables, roadway environment, active transportation infrastructure, and traffic exposure on each 
hexagon by taking the weighted averages. The non-motorist crashes (e.g., pedestrian crashes and 
bicyclist crashes) were taken from police-recorded crash data in The Texas Department of 
Transportation’s (TxDOT’s) Crash Records Information System (CRIS) database from 2018-
2020. Socioeconomic variables to measure the neighborhood disadvantage including poverty rate, 
Hispanic and Black ratio, no high school diploma ratio, public assistance ratio, and no health 
insurance ratio were collected from the American Community Survey (ACS) 5-year Data in 2019. 
We obtained roadway environment variables from the roadway inventory from TxDOT (a GIS-
based road network database), including roadway length, roadway without median, intersection 
number, and intersection with four legs or above. We obtained traffic signal data from Houston 
TranStar (http://www.houstontranstar.org/) to identify signalized intersections, as intersection data 
is not readily available from the roadway inventory database. We downloaded bike lane geospatial 
data from Houston Map Viewer (https://mycity.maps.arcgis.com/apps/webappviewer/index.html) 
and updated it to the most recent status by checking Google Maps. We also identified the presence 
of sidewalks in Houston’s street view images using image segmentation analysis that applied a 
deep learning model called Seamless Scene Segmentation (Seamseg) [24] and took the proportion 
of street views without sidewalks as the surrogate measurement of no sidewalk proportion. Finally, 
we calculated the vehicle miles traveled (VMT), bicycle miles traveled (BMT), and pedestrian 
miles traveled (PMT) in 2019 to measure the exposure for vehicles, bicyclists, and pedestrians in 
the hexagon using following equation: 
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𝑉𝑉𝑉𝑉𝑉𝑉/𝐵𝐵𝐵𝐵𝐵𝐵/𝑃𝑃𝑃𝑃𝑃𝑃 =  
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴/𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴/𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 ∗ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ ∗ 365 

1,000,000
 

The average annual daily traffic (AADT) data was obtained from TxDOT’s roadway inventory, 
and average annual daily bicycles/pedestrians (AADB/AADP) data was taken from Strava Metro, 
a crowdsourced database. Because of the bias in the measurement of AADB/AADP, we applied 
the exposure models developed by researchers in previous studies [25]. Table A-4 shows the 
descriptive statistics of the variables, including number of non-motorist crashes, socioeconomic 
variables (poverty rate, Hispanic and Black ratio, no high school diploma ratio, public assistance 
ratio, no health insurance ratio), transportation infrastructure (roadway length, roadway without 
median, intersection number, complex intersections, no sidewalk ratio, no bike lane ratio, no signal 
ratio), and traffic exposure (BMT, PMT, and VMT). 

Measurement Model 
In our measurement models, we constructed six latent variables to capture the level of 
neighborhood disadvantage, roadway environment, lack of active transportation infrastructure, 
active transportation exposure, and pedestrian and bicyclist crashes using single and multiple 
indicator measurement models (Table 1). We also assessed the contribution of variance explained 
for each indicator, internal consistency, and convergent validity using factor loading, composite 
reliability, and average variance extracted. A good measurement model generally has a factor 
loading for each indicator over 0.7, a composite reliability (CR) over 0.7, and an average variance 
extracted (AVE) over 0.5 [16]. Our measurement models meet all the criteria for a valid 
measurement model, except for three indicators’ factor loading ranging from 0.637 (no bike lane 
ratio) to 0.681 (no signal ratio). This is also acceptable because their CR scores were greater than 
0.7, indicating good internal consistency among indicators, and AVE was greater than 0.5, 
indicating the measurement models have good convergent validity. 

Table 1. Indicators and Latent Variables in Measurement Model 

Latent Variables and Indicators Factor Loading 
Neighborhood disadvantage (CR:0.945; AVE:0.773) - 
Poverty rate 0.936 
Hispanic and Black ratio 0.934 
No high school diploma ratio 0.849 
Public assistance ratio 0.854 
No health insurance ratio 0.792 
Roadway environment (CR: 0.951; AVE:0.829) - 
Roadway length 0.982 
Roadway without median 0.954 
Intersection number 0.910 
Complex intersections 0.673 
Lack of active transportation infrastructure (CR:0.724; AVE:0.547) - 
No sidewalk ratio 0.878 
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Latent Variables and Indicators Factor Loading 
No bike lane ratio 0.637 
No signal ratio 0.681 
Active transportation exposure (CR:0.725; AVE:0.568) - 
Bicycle miles traveled 0.703 
Pedestrian miles traveled 0.809 
Vehicle exposure (CR:1.000; AVE:1.000) - 
Vehicle miles traveled 1.000 
Non-motorist crashes (CR:1.000; AVE:1000) - 
Number of pedestrian and bicyclist crashes 1.000 

Note. All the indicators are significant at 0.01 level (p < 0.01); CR: Composite reliability; AVE: Average Variance 
Extracted 

Structural Equation Models 
Our SEM shows a good model fit. Referring to prior aggregated crash SEM research, a good and 
acceptable model fit is indicated by a comparative fit index (CFI) of over 0.9, a Tucker-Lewis 
index (TLI) of over 0.8, and a Root Mean Squared Error of Approximation (RMSEA) of less than 
0.1 [16]. The unstandardized coefficients of the structural model are shown in Figure 4. As reported 
in the note of Figure 4, our SEM achieves an RMSEA of 0.098, a TFI of 0.918, and a CFI of 0.994, 
all of which are within the accepted range of a good and acceptable model fit.  

 

Figure 4. Diagram. Unstandardized direct path coefficients for the structural model. 

Note. RMSEA = 0.098; CFI = 0.994; TFI = 0.918; Measurement models are omitted for better visualization; ***p < 
0.01; **p < 0.05; *p < 0.1. Neighborhood disadvantage is measured by poverty rate, Hispanic and Black ratio, no 
high school diploma ratio, public assistance ratio, and no health insurance ratio.  

As illustrated, neighborhood disadvantage is significantly associated with roadway environment 
(i.e., roadway segment, intersection), vehicle exposure, lack of active transportation infrastructure, 
active transportation exposure, and non-motorist crashes. The direct path coefficient of 
neighborhood disadvantage to non-motorist crashes is 0.103 (p < 0.01), indicating one factor score 
increase in neighborhood disadvantage will result in 0.103 (10.3%) increase in the number of non-
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motorist crashes. The positive direct relationship of neighborhood disadvantage to non-motorist 
crashes suggests crashes are not equally distributed across neighborhoods and disadvantaged 
neighborhoods are more prone to non-motorist crashes, after controlling roadway environment and 
exposure factors. From the perspective of motor vehicle transportation, disadvantaged 
neighborhoods are associated with a denser roadway environment and more direct vehicle 
exposure. Every factor score increase in the neighborhood disadvantage is associated with a 0.152 
factor score increase in roadway environment and a 2.806 factor score increase in vehicle exposure. 
As expected, the denser roadway environment (0.275) and higher vehicle exposure (0.005) both 
contribute to the increase in non-motorist crashes. For active transportation modes, disadvantaged 
neighborhoods tend to have less active transportation infrastructure and less direct active 
transportation exposure. Every factor score increase in the neighborhood disadvantage is 
associated with a 0.077 factor score increase in lack of active transportation infrastructure and a 
0.69 factor score decrease in active transportation exposure. Meanwhile, lack of active 
transportation infrastructure tends to reduce the number of non-motorist crashes (-0.105), but it 
does not mitigate the active transportation exposure (0.975). This indicates that in neighborhoods 
lacking active transportation infrastructure, there is a higher likelihood of pedestrians and 
bicyclists sharing the road with motor vehicles, which increases their risk of being involved in 
crashes, as evidenced by the positive direct effect of active transportation exposure to non-motorist 
crashes (0.023).  

Overall, these findings suggest that disadvantaged neighborhoods experienced more non-motorist 
crashes with other variables controlled, suggesting a disparity in roadway safety between 
disadvantaged and advantaged neighborhoods. The concentration of motor vehicles in 
disadvantaged neighborhoods, where there are more motor roads, is one of the reasons for such 
inequality. On the other hand, there is less active transportation infrastructure and active 
transportation exposure in disadvantaged neighborhoods, which may have the opposing effects of 
increasing and decreasing the number of non-motorist crashes. 

Direct, Indirect, and Total Effects of Neighborhood Disadvantage 
To better interpret the influence of neighborhood disadvantage on non-motorist crashes through 
the mediating effect of transportation infrastructure and traffic exposure, we have summarized all 
the regression paths and coefficients, ratio for indirect effect to direct effect (RID), and ratio for 
indirect effect to total effect (RIT; Table 2). Our model suggests that there are 17 regression paths 
of neighborhood disadvantages to roadway environment, lack of active transportation 
infrastructure, vehicle exposure, active transportation exposure, and non-motorist crashes, 
including direct effects, indirect effects, and total effects. 

Table 2. Direct Effect (DE), Indirect Effect (IE), and Total Effect (TE) of Neighborhood Disadvantage 

Regression Path Effect Type Coefficient p RIT RID 
Path1: ND→RE TE/DE 0.152 *** / / 
Path2: ND→LA TE/DE 0.077 *** / / 
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Regression Path Effect Type Coefficient p RIT RID 
Path3: ND→VE TE 3.613 *** / / 
Path4: ND→VE DE 2.806 *** / / 
Path5: ND→RE→VE IE 0.806 *** 22.3% 28.7% 
Path6: ND→AE TE -0.616 *** / / 
Path7: ND→AE DE -0.691 *** / / 
Path8: ND→LA→AE IE 0.075 *** 12.2% 10.9% 
Path9: ND→CRA TE 0.141 *** / / 
Path10: ND→CRA DE 0.103 *** / / 
Path11: ND→CRA Total IE 0.037 *** 26.6% 36.2% 
Path12: ND→RE→CRA IE 0.042 *** 29.7% 40.4% 
Path13: ND→VE→CRA IE 0.014 *** 10.0% 13.7% 
Path14: ND→RE→VE→CRA IE 0.004 *** 2.9% 3.9% 
Path15: ND→LA→CRA IE -0.008  5.7% 7.8% 
Path16: ND→AE→CRA IE -0.016 ** 11.5% 15.7% 
Path17: ND→LA→AE→CRA IE 0.002 ** 1.3% 1.7% 

Note. ND = neighborhood disadvantage; VE = vehicle exposure; RD = roadway environment; AE = active 
transportation infrastructure; LA = lack of active transportation infrastructure; CRA = non-motorist crashes; TE = 
total effect; DE = direct effect; IE = indirect effect; RIT = ratio of indirect effect to total effect (absolute value); RID 
= ratio of indirect effect to direct effect (absolute value); *p < 0.1, **p < 0.05, ***p < 0.01. 

Paths 1 and 2 show the positive direct effect of neighborhood disadvantage on the roadway 
environment and the lack of active transportation infrastructure, as discussed earlier. Paths 3 to 5 
represent the direct, indirect, and total impact of neighborhood disadvantage on the level of 
vehicular exposure. The total effect of neighborhood disadvantage on vehicle exposure (3.613) is 
larger than the direct effect (2.806) due to the significant positive indirect effect of roadway 
environment (0.806). The mediating effect of roadway environment is 22.3% of the total effect 
and 28.7% of the direct effect. This suggests that higher vehicle exposure in disadvantaged 
neighborhoods is partially due to the denser roadway distribution (and potentially higher vehicular 
exposure) in these areas.  

Paths 6 to 8 show the regression paths for neighborhood disadvantage to active transportation 
exposure. The total negative effect of neighborhood disadvantage to active transportation exposure 
(-0.616) is smaller than the direct negative effect (-0.691) because it is reduced by the positive 
mediating effect of lack of active transportation infrastructure (0.075). The indirect effect of lack 
of active transportation infrastructure is 12.2% of the total effect and 10.9% of the direct effect for 
neighborhood disadvantage to active transportation infrastructure. This indicates that the lack of 
active transportation infrastructure cannot suppress the demand for walking and biking in these 
areas. There are people who will still walk or bike in neighborhoods with inadequate active 
transportation infrastructure.  

Paths 9 to 17 demonstrate all the regression paths from neighborhood disadvantage to non-motorist 
crashes. Neighborhood disadvantage has a positive direct effect (0.141), a positive total indirect 



12 
 

effect from all mediating variables (0.037), and a positive total effect (0.103) on non-motorist 
crashes. The total indirect effect from mediation is 26.6% of the total effect and 36.2% of the direct 
effect, which suggests that transportation infrastructure and traffic exposure partially improve the 
crash risk in disadvantaged neighborhoods. A close inspection of different transportation modes 
shows the discrepancy between motor vehicles and active transportation in their influence on non-
motorist crashes. For the motor vehicle mode, the mediating effect of roadway environment 
(0.042), vehicle exposure (0.014), and both roadway environment and vehicle exposure (0.004) 
are all significantly positive. Together, they are 42.6% (29.7%+10.0%+2.9% = 42.6%) of the total 
effect and 58% (40.4%+13.7%+3.9% = 58%) of the direct effect, which means the mediating effect 
of motor vehicle mode has a very strong influence on non-motorist crashes. However, the 
mediating effect of active transportation mode shows a counter effect to non-motorist crashes. The 
total indirect effect of active transportation mode is -0.022 (-0.008-0.046+0.002 = -0.022), with a 
non-significant mediating effect of lack of roadway infrastructure (-0.008), a negative mediating 
effect of active transportation exposure (-0.016-), and a small positive mediating effect of lack of 
active transportation infrastructure and active transportation exposure (0.002). The total indirect 
effect of active transportation mode is 15.9% (|-5.7%-11.5%+1.3%| = 15.9%) of the total effect 
and 21.8% (|-7.8%-15.7%+1.7%| = 21.8%) of the direct effect. Compared to the motor vehicle 
mode, the indirect effect of active transportation mode is both negative and significantly smaller. 
This means active transportation infrastructure and transportation exposure tend to mitigate the 
crash risks in disadvantaged neighborhoods (hence the negative impact). 

Investigating the Sociodemographic Characteristics of Drivers 
Involved in Traffic Crashes in Disadvantaged Communities 
Data Collection 
To assess the sociodemographic and economic characteristics of drivers and victims involved in 
VRU crashes in disadvantaged communities, we used pedestrian and bicyclist crashes, crash-
contributing factors, socioeconomic characteristics of drivers and victims, roadway infrastructure 
characteristics, and traffic exposure in Harris County. Descriptive information of the variables is 
shown in Table A-4. We obtained records of pedestrian and bicyclist crashes in a 4-year period 
(2017-2020) from the TxDOT CRIS database. We identified pedestrian/bicyclist crashes based on 
the type of primary victim (pedestrian or bicyclist) involved in the crash. Eight factors in crash-
specific information were retrieved from the CRIS database, including time of day, whether the 
crash happened on a weekday, season, weather condition, surface condition, whether the crash 
happened in a construction zone, whether the crash occurred at an intersection, and years the 
vehicle had been in use. We also retrieved driver ethnicity, age, and gender and victim ethnicity, 
age, and gender data from the CRIS database (direct measurements). Since drivers’ and victims’ 
income levels were usually not publicly available in police-reported crash data, this research 
represents the economic status of drivers using aggregated census data from drivers’ residential 
ZIP codes [26,27]. Finally, we recoded the driver’s income and victim’s income to ordinal 
variables in five levels: low income (0 to 20th percentile), lower to medium income (20th to 40th 
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percentile), medium income (40th to 60th percentile), medium to high income (60th to 80th 
percentile), and high income (80th to 100th percentile), according to the five quintiles of their 
residential census tracts in the research area. 

Roadway infrastructure data was collected from the TxDOT roadway inventory. Data for the 
roadway inventory is updated annually, and we used the 2020 version, which aligned with the time 
span of our crash events. We selected 11 characteristics of the roadway infrastructure where the 
crash happened, including road functional classification, speed limit, whether the crash occurred 
in an urban area, roadbed width (which comprises shoulder width and surface width), the number 
of lanes, lane width, median width, inside shoulder width, outside shoulder width, existence of left 
curb, and existence of right curb. 

The team also considered vehicular, pedestrian, and bicyclist exposure variables in this study. 
Vehicular exposure of the road segments where the crash happened was measured as the AADT, 
which is available from the TxDOT roadway inventory database for each year of the crash events. 
In this study, we used a scaling approach to estimate the bicyclist and pedestrian counts. We 
obtained the observed data from the Texas Bicycle and Pedestrian Data Exchange (BP|CX) 
(https://mobility.tamu.edu/bikepeddata/). BP|CX is a data repository of pedestrian and bicyclist 
counts across Texas collected using permanent and short-term counters. We then used the 
crowdsourced Strava data to estimate the counts for sites with no pedestrian and bicyclist volumes 
via the scaling approach. In this approach, we first estimated the AADB/AADP using both 
observed and crowdsourced data obtained for the same sites, and then derived the adjustment factor 
by dividing the Strava AADB/AADP by observed AADB/AADP [28]. The scaling approach can 
be adjusted using spatial (e.g., segments vs. intersections) or temporal factors (e.g., weekend vs. 
weekday). We then multiplied the scaling factor with the Strava AADB/AADP data to estimate 
the bicyclist and pedestrian counts for sites with no volume data. 

Clustering Crashes by LCA 
We used the LCA algorithm to automatically group crashes with driver-victim pairs into clusters. 
According to this algorithm, the optimal number of clusters was two. After exploring the crash 
victims’ and drivers’ socioeconomic and demographic backgrounds, the clusters were interpreted 
as crashes involving “lower income non-white driver and lower income non-white victim” (LN-
LN crashes) and crashes involving “higher income white driver and higher income white victim” 
(HW-HW crashes; Figure 5; see [29] for more details).  

https://mobility.tamu.edu/bikepeddata/
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Figure 5. Graphs. Clustering results for pedestrian crashes and bicyclist crashes. 

The descriptive statistics of variables included in each cluster are presented in Table A-5. In the 
pedestrian crash model, two clusters are almost evenly divided (51.5% for LN-LN crashes and 
48.5% for HW-HW crashes). Figure 5a shows the two clusters and the corresponding distribution 
of driver and victim income levels and ethnicity in the pedestrian crash model. For driver 
characteristics, white drivers comprised 9.2% of LN-LN crashes, while their probability was 55% 
in HW-HW crashes. The income level of drivers in LN-LN crashes concentrates in the low income 
to medium income categories. In contrast, the income level of drivers in HW-HW crashes is 
distributed in medium income to high income categories. Victims in LN-LN crashes have a higher 
probability of being non-white (81.9%), while victims in HW-HW crashes have the highest 
probability of being white (49.1%). Victim income level is also distributed from low income to 
medium income in LN-LN crashes and medium income to high income in HW-HW crashes. 
Clustering results in bicyclist crashes appear to have similar patterns of economic and demographic 
characteristics for drivers and victims to pedestrian crashes. The bicyclist LN-LN crashes have a 
higher probability of involving non-white drivers (90.6%), drivers from lower income levels and 
non-white victims (79.7%), and victims from lower income levels. In comparison, bicyclist HW-
HW crashes have a higher chance of involving white drivers (54.7%), drivers from higher income 
levels, white victims (62.1%), and victims from higher income levels. Results revealed notable 
socioeconomic patterns of driver-victim pairs, showing the socioeconomic segregation of 
pedestrian and bicyclist crashes. This social segregation of crashes demonstrates that the driver 
and victim involved in a crash are likely to be similar regarding their income and ethnicity.  

Relative Importance of Selected Variables 
We used the feature importance to quantify the influence of the variables in a random forest 
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algorithm to determine whether a crash belonged in LN-LN crashes or HW-HW crashes for 
pedestrian and bicyclist crashes (Table A-6). Given that we had two clusters in each model, the 
LN-LN crashes served as the baseline or comparison group. Thus, the higher value of feature 
importance a variable has, the larger contribution the variables will make in determining whether 
a crash belongs in the LN-LN crash cluster. The ranks of feature importance imply the relative 
contribution of a feature in the random forest model. Exposures are the most relevant factors in 
determining crash clusters. The estimated pedestrian and bicyclist volumes each rank first in their 
respective models. AADT ranks fifth in pedestrian crashes and ranks fourth in bicyclist crashes. 
The high rank of exposure variables indicates a strong association between the traffic volume of 
both vehicles and pedestrians/bicyclists to the classification of LN-LN or HW-HW crashes. The 
driver and victim ages are also among the most influential variables, while their gender is less 
influential. Driver age and victim age rank second and third in pedestrian crashes, and driver age 
and victim age rank third and second in bicyclist crashes. For crash-specific information, the 
number of years the vehicle was in use ranks fourth in pedestrian crashes and fifth in bicyclist 
crashes, indicating the vehicles involved in LN-LN and HW-HW crashes might have different 
ages. Time of day and season rank eighth and ninth in bicyclist crashes and ninth and eighth in 
pedestrian crashes, indicating a relatively sizeable temporal variation of the crash pattern. For road 
infrastructure characteristics, speed limit and roadbed width rank sixth and seventh in both 
pedestrian and bicyclist crashes, showing the relatively high influence of roadway infrastructure 
characteristics in determining the crash clusters. However, their feature importance is relatively 
low compared to previous factors. 

PDPs 
PDPs are one of the model-agnostic interpretable machine learning approaches to reveal the 
marginal effect of a feature in machine learning models. They illustrate the change in the 
probability of a crash being clustered with LN-LN crashes along with the increase of each variable 
in both the pedestrian and bicyclist models (Figure A-1). For exposure variables, when AADP 
volumes are less than 2.6 pedestrian trips per day, pedestrian exposure is not influential. When 
AADP volumes are larger than 2.6 pedestrian trips per day, it becomes positively associated with 
the probability of a crash being an LN-LN crash. This indicates that LN-LN crashes will likely 
happen on the road with larger pedestrian exposure, and HW-HW crashes will be less likely. In 
bicyclist crashes, the positive marginal effect of bicyclist exposure on the probability of a crash 
being an LN-LN crash will increase when the bicyclist exposure becomes larger, which indicates 
an increasing non-linear association. This indicates that LN-LN crashes will be more likely to 
happen on the road with larger bicyclist exposure, and the larger the bicyclist exposure, the higher 
the probability of LN-LN crashes. One of the potential explanations for this could be the lack of 
active transportation-friendly infrastructure in low income and minority communities, which may 
force bicyclists to share the road with oncoming traffic, increasing their crash probability. 
However, this speculation requires further investigation and validation, after considering bicyclist 
infrastructure during data analysis. For vehicle volumes, the pedestrian and bicyclist crashes have 
similar patterns, which shows lower AADT does not have significant influence on the probability 
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of a crash being an LN-LN crash. Within the highest quantile of the AADT, vehicle volumes will 
have a larger positive association for both pedestrian and bicyclist crashes. This means both 
pedestrian and bicyclist LN-LN crashes tend to occur on the road with a larger vehicular volume.  

Driver and victim ages are among the most influential factors in socioeconomic characteristics for 
both crash types. In the pedestrian crash model, when the driver’s age is less than 64, the 
probability of a crash being an LN-LN crash will decrease. When the driver’s age is greater than 
64, the probability of a crash being an LN-LN crash will increase. This means younger drivers are 
less likely to be involved in a pedestrian LN-LN crash, while older drivers are more likely to be 
involved in a pedestrian LN-LN crash. The PDP shows that as the victim’s age increases, the 
marginal effect of the probability of being in an LN-LN crash will rise, indicating that older victims 
are more likely to be involved in a pedestrian LN-LN crash. In the bicyclist crash model, the 
driver’s age does not have much influence on the probability of an LN-LN crash in its lower 
quintiles. Driver age only has a positive marginal effect when it exceeds 66 years, indicating that 
older drivers are more likely to be involved in a bicyclist LN-LN crash. For the victim’s age, a 
victim being 32 or younger will increase the probability of a crash being an LN-LN crash, while a 
victim being 33 or older will decrease the probability of a crash being an LN-LN crash. This means 
bicyclist LN-LN crashes are more likely to involve older drivers and younger bicyclists. 

For crash-specific information, years the vehicle was in use, time of day, and season rank among 
the most influential variables. When the age of the vehicle is less than 6 years, it has negligible 
influence on the probability of a pedestrian LN-LN crash, which is also the case for bicyclist 
crashes. As the age of the vehicle increases in pedestrian crashes, its marginal effect will become 
larger in a negative direction (as, again, for bicyclist crashes). This indicates older vehicles are less 
likely to be involved in an LN-LN crash and more likely to be involved in an HW-HW crash for 
both pedestrian and bicyclist crashes. In summer and autumn, the probability of being an LN-LN 
crash is higher than in winter, though the effect of the influence is minimal. For bicyclist crashes, 
6:00 a.m. to 12:00 p.m. and 12:00 to 6:00 p.m. have a higher chance of bicyclist crashes. Lower 
income and non-white groups might choose biking as their mode of transportation to commute 
during the daytime more frequently than their higher income counterparts due to economic 
affordability or behavioral difference, which results in a higher bicyclist crash probability. 

For road infrastructure characteristics, the road speed limit has the same patterns in its influence 
on pedestrian and bicyclist crashes. When the road speed limit is less than 35 miles per hour, its 
impact on the crash clusters is negligible. When the road speed limit exceeds 45 miles per hour, 
the probability of a crash being an LN-LN crash will increase in both pedestrian and bicyclist 
crashes. This indicates that LN-LN crashes for pedestrians and bicyclists are more likely to happen 
on the road with a higher speed limit. Roadbed width has little effect when it is less than 40 feet 
and only has a positive marginal effect on the highest quantile, indicating that LN-LN pedestrian 
crashes are more likely to happen on wider roads. In the bicyclist crash model, the effect of roadbed 
width is not influential when it is less than 24 feet but becomes negative when it is larger than 24 
feet, suggesting that LN-LN bicyclist crashes are less likely to happen on wider roads. 
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Discussion 
Environmental injustice may happen in disadvantaged neighborhoods through two paths related to 
transportation: motor vehicles and active transportation. The regression path of the motor vehicle 
mode suggests that disadvantaged neighborhoods are often characterized by high-density 
roadways with a high volume of motor vehicle traffic. Consistent with most prior research, results 
show that these both directly and indirectly increase crash risks. Reasons for the denser roadway 
and higher vehicular exposure in disadvantaged neighborhoods are multiple. Historically, the 
transportation planning system has tended to place high-capacity roadways near or within 
disadvantaged communities since the release of Federal Aid Highway Act of 1956, which has 
shaped the structural racism and discrimination in transportation planning [30]. Spatially, 
disadvantaged communities tend to be situated in inner-city areas with higher levels of arterial 
traffic, in contrast to more affluent suburban communities [5]. Socioeconomically, disadvantaged 
communities may lack the political and economic power to resist construction of new high-
capacity roadways or to demand existing roadways be rerouted away from their neighborhoods. 

The active transportation mode is less understood and has received less attention in research 
compared to motor vehicles. In the current study, disadvantaged communities are characterized by 
less active transportation infrastructure and less active transportation exposure. Both have a 
negative mediating effect for neighborhood disadvantage on non-motorist crashes. This indicates 
that, while neighborhood disadvantage is associated with a higher risk of non-motorist crashes, 
inadequate active transportation infrastructure and fewer active transportation travelers may 
actually mitigate this risk to some extent. However, this may conflict with the goals of 
transportation planners and urban planners who prioritize the promotion of active transportation 
and value its benefits. While significantly reducing the number of pedestrians and bicyclists 
traveling on the streets could potentially result in fewer non-motorist crashes, this approach would 
forego the multiple benefits associated with active transportation, including improved health 
outcomes for travelers and reduced environmental impact from motor vehicles. Some scholars in 
active transportation have argued that there is a “safety in numbers” effect, which has been 
investigated in some meta-analyses [31, 32] and multiple empirical studies [33-35]. This refers to 
the phenomenon that there will be less risk of injury for each pedestrian or bicyclist when there 
are more people walking or biking [32]. However, the safety in numbers effect may exhibit a non-
linear relationship, possibly even a reversed U-shaped curve, which requires further investigation 
[36]. This effect might appear in Northern European countries, where walking and bicycling are 
dominant modes of transportation [36], but it clearly does not exist in the Houston case, where 
motor vehicles remain the primary mode of transportation. 

Using crash data from Harris County, we applied a probability-based LCA to classify pedestrian 
and bicyclist crashes. The clustering results show that lower income and non-white drivers tend to 
be involved in crashes with lower income and non-white victims (LN-LN crashes), while higher 
income and white drivers tend to be involved in crashes with higher income and white victims 
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(HW-HW crashes). This result showed social segregation in pedestrian and bicyclist crashes, 
indicating that drivers and victims with similar socioeconomic characteristics are more likely to 
be involved in the same crash, while those from different socioeconomic backgrounds are not. We 
further analyzed the trajectories of driver-victim pairs and found all crash types tend to concentrate 
in downtown Houston. The trajectories of HW-HW crashes are sparser in their geographic 
distribution, which suggests higher income and white drivers are driving a longer distance and 
getting involved in crashes in farther geographic areas than their counterparts. 

To explore how the LN-LN and HW-HW crash patterns are shaped, we applied a random forest 
algorithm and PDPs to model and interpret the clustering outcomes from LCA models. 
Contributing factors for the crash patterns were selected from crash-specific information, driver 
and victim age and gender, roadway infrastructure, and traffic exposure. Pedestrian/bicyclist 
exposure, driver age, victim age, years the vehicle had been in use, AADT, speed limit, roadbed 
width, time of day, and season are the most influential variables in pedestrian and bicyclist models. 
We drew PDPs for the most influential variables to interpret how the variables are associated with 
crash patterns. The results show that LN-LN crashes tend to happen on the road with larger traffic 
exposure of pedestrians/bicyclists and vehicles, which could be due to the lack of adequate active 
transportation infrastructure [32]. Older drivers and older pedestrians are more likely to be in the 
same LN-LN crash, while older drivers and younger bicyclists are more likely to be in the same 
LN-LN crash. Older vehicles will increase the probability of HW-HW crashes. Higher speed limits 
and wider roads are associated with a higher probability of LN-LN crashes for both pedestrian and 
bicyclist crashes. The results indicated the coexistence of LN-LN crashes and road conditions of 
higher traffic exposure, higher speed limit, and wider roads. The communities where low-income 
and ethnic minorities are concentrated might have higher traffic exposure and less safe road 
environments, which shapes the distribution of LN-LN crashes.  

Conclusions and Recommendations 
Research and data analysis conducted in this project advanced the understanding of environmental 
justice in roadway safety by exploring the relationship between neighborhood disadvantage, 
transportation infrastructure, traffic exposure, and non-motorist crashes theoretically and 
methodologically. It distinguishes the two theoretical pathways of how environmental injustice 
happened in disadvantaged communities related to the motor vehicle transportation mode and 
active transportation mode. Methodologically, this study innovatively applied an SEM approach 
that aligns with the theoretical framework and investigated the direct, indirect, and total effect of 
neighborhood disadvantage on non-motorist crashes, which is superior to a traditional statistical 
approach that does not consider the intercorrelation between crash-related factors. Furthermore, to 
address the limitations of currently available active transportation infrastructure and exposure data 
sources, the study utilized computer vision models to automatically collect sidewalk information 
and adjusted pedestrian/bicyclist exposure using recent crowdsourced data. This study also 
contributes to the foundation of transportation policy aimed at promoting environmental justice by 
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designing and investing in transportation infrastructure that allocates traffic exposure fairly for 
both motor vehicle and active transportation modes. Transportation planners should be mindful of 
the detrimental effects of constructing high-capacity roadways near disadvantaged communities 
and take measures in transportation investment to mitigate the disproportionate impact of roadway 
infrastructure in disadvantaged communities. To harness multiple benefits of the safety in numbers 
effect, transportation planning and policy should prioritize measures to encourage active 
transportation and shift from car-centric urban lifestyles to more diverse transportation modes. 

Additionally, we examined the characteristics of both driver and victim simultaneously by pairing 
the driver and pedestrian/bicyclist involved in the same crash. This served to broaden 
understanding of the socioeconomic and demographic make-up of the two parties involved in 
crashes and the geographic distribution of these crashes and crash-contributing factors. For this 
purpose, we applied the LCA to classify different crash types and analyze the patterns of the 
crashes based on the income and ethnicity of both drivers and victims involved in pedestrian and 
bicyclist crashes. We then used random forest algorithms and PDPs to model and interpret the 
contributing factors of the clusters in both pedestrian and bicyclist models. This research 
contributes to understanding roadway crashes in several ways. First, this study confirms the long-
believed hypothesis that there is a clear sociodemographic and economic segregation of crashes. 
We also found that crash-contributing factors often vary across different communities. These 
results can help safety practitioners in both engineering and planning fields to develop and 
implement practices targeting the main concerns of each community instead of developing one-
size-fits-all strategies. The safe systems approach can be one of the potential strategies to 
accomplish this goal. Another significant contribution of this study concerns the methodological 
approach. We innovatively used machine learning techniques to address a largely unexplored 
research question that involved analyzing driver and victim characteristics simultaneously.  

Additional Products 
Project Page: https://safed.vtti.vt.edu/projects/building-equitable-safe-streets-for-all-data-driven-
approach-and-computational-tools/  

Education and Workforce Development Products 
Education and workforce development products include: 

• Texas A&M Transportation Institute Graduate Assistant Researcher (GAR) Chunwu Zhu 
developed the methods and algorithms for the work conducted in this project. 

• The work initiated in this project will be used in the Ph.D. dissertation of the GAR student 
Chunwu Zhu.  

• A pilot project titled Smart Information Services for Building Equitable Active 
Transportation Culture based on the image segmentation analysis initiated in this project 
has been funded by the Urban AI Lab of Texas A&M University (TAMU) Data Science 

https://safed.vtti.vt.edu/projects/building-equitable-safe-streets-for-all-data-driven-approach-and-computational-tools/
https://safed.vtti.vt.edu/projects/building-equitable-safe-streets-for-all-data-driven-approach-and-computational-tools/
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Institute, led by TAMU Landscape Architecture and Urban Planning Professor and 
research team member Xinyue Ye: https://urbanai.tamids.tamu.edu/2023/02/16/pilot-
project-1-smart-information-services/ 

Technology Transfer Products 
The following products were or will be generated: 

• Zhu, C., Brown, C. T., Dadashova, B., Ye, X., Sohrabi, S., & Potts, I. (2023). Investigation 
on the driver-victim pairs in pedestrian and bicyclist crashes by latent class clustering and 
random forest algorithm. Accident Analysis & Prevention, 182, 106964. 

• Zhu, C., & Dadashova, B. (2023). Investigation on the driver-victim pairs in pedestrian 
and bicyclist crashes by latent class clustering and random forest algorithm. Presented at 
the TRB Annual Meeting, Washington DC, 2023. 

• Zhu, C., Dadashova, Lee, C., B., Brown, C. T., & Ye, X. Structural equation models for 
assessing the neighborhood disadvantage and roadway safety [Unpublished manuscript]. 
In Preparation to be submitted to the Journal of Planning Education and Research. 

• Zhu, C., Sohrabi, S., Dadashova, B., Brown, C. T., Ye, X., & Potts, I. A review of zonal 
crash frequency research for pedestrians and bicyclists and their equity concerns: 
Systematic review of literature [Unpublished manuscript]. In Preparation to be submitted 
to the Health & Place. 

• Smart Information System Dashboard: 
https://tamu.maps.arcgis.com/apps/dashboards/49f9e21e68654cda836b41f4bacf0e2e 

Data Products  
Links to data products from this research are available on project website: 
https://safed.vtti.vt.edu/projects/building-equitable-safe-streets-for-all-data-driven-approach-and-
computational-tools/.  

https://urbanai.tamids.tamu.edu/2023/02/16/pilot-project-1-smart-information-services/
https://urbanai.tamids.tamu.edu/2023/02/16/pilot-project-1-smart-information-services/
https://safed.vtti.vt.edu/projects/building-equitable-safe-streets-for-all-data-driven-approach-and-computational-tools/
https://safed.vtti.vt.edu/projects/building-equitable-safe-streets-for-all-data-driven-approach-and-computational-tools/
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Appendix 
Table A-1. Summary of Zoning System 

Zoning System Number of Articles using the 
zonal unit Major Reasons 

Census zoning 
system 

• CBG (20) 
• CT (13) 
• SA2 (2) 
• LSOA (2) 
• MSOA (1) 
• Daeguyeog (1) 

• Rich available sociodemographic information 
from census data 

• Relatively consistent and homogeneous across 
units 

• Can be a proxy for neighborhood 

Traffic analysis 
zoning system 

• TAZ (20) 
• TAD (1) 
• HAY (1) 

• Compatible with census unit, thus having rich 
sociodemographic information 

• Spatially delineated for traffic analysis 

Researcher-defined 
zoning system 

• Police Patrol (1) 
• Ward (3) 
• ZIP code (2) 
• TPU (2) 

• Limitation on data availability 

Researcher-defined 
zoning system • Researcher-defined (6) 

• Created for special research purpose 
• Overcomes the shortage of other zoning 

systems 
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Table A-2. Measurement and Direction of Crash-related Factors 

Category Variable Positive 
(Pedestrian) 

Negative 
(Pedestrian) 

Insignificant 
(Pedestrian) 

Positive 
(Bicyclist) 

Negative 
(Bicyclist) 

Insignificant 
(Bicyclist) 

Demographic 
Characteristics        

Age Children (age<18, 
proportion) 

  4    

Age Elderly (age>64, 
proportion) 1 5 2 2  2 

Gender Male (proportion)   1 1   

Race and 
ethnicity 

White 
(proportion) 

   2   

Race and 
ethnicity Black (proportion) 4 1 2 1  2 

Race and 
ethnicity 

Hispanic 
(proportion) 2   1  1 

Race and 
ethnicity Asian (proportion) 1 1    2 

Education 
College degree or 
higher 
(proportion) 

 1 2  1 1 

Language 
Speaking limited-
English 
(proportion) 

  1 1   

Economic 
Characteristics        

Income Median household 
income 1 3 3 1  1 

Poverty Below poverty 
line (proportion) 3   1   

Vehicle 
ownership 

Households 
without vehicle 
(proportion) 

7  1 4  1 

House 
ownership 

Own house 
(proportion) 1 1   1  

Roadway 
infrastructure        

Road Road (density) 2  1 1  1 
Road Highway (density)      1 

Road Highway 
(proportion) 1      

Road Highway (length)  1    1 

Road Arterial road 
(density) 

   1   

Road Arterial road 
(length) 3      

Road Arterial road 
(proportion) 3   2   

Road Local road 
(density) 

    1  

Road Local road 
(proportion) 2   2   
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Road 
Higher speed road 
(usually >55 mph, 
proportion) 

1 3    2 

Road 
Lower speed road 
(usually <30 mph, 
proportion) 

3  1 1 1  

Active 
transportation 
infrastructure 

Bike lane 
(density) 

   2   

Active 
transportation 
infrastructure 

Sidewalk (length) 3   2  1 

Intersection Intersection 
(density) 

  1 1   

Intersection Intersection 
(number) 1  1 1   

Traffic signal Traffic signal 
(number) 3      

Traffic signal Traffic signal 
(density) 2   4   

Land use        

Residential area Residential area 
(proportion) 2   1  2 

Industrial area Industrial area 
(proportion) 2     3 

Commercial  Commercial 
(proportion) 3  1 1  2 

Urban area Urban area 
(proportion) 1   2   

Land-use 
mixture 

Land-use mixed 
index 1  1 1   

Facilities        

Bus stop Bus stop/transit 
(number) 2      

Bus stop Bus stop/transit 
(density) 1   1   

School School (number) 1      

School School (density) 3      

Hotel Hotel (density) 5   2   

Exposure        
Vehicular 
exposure VKT/VMT 7  1 8   

Vehicular 
exposure ADT/AADT 7  1 1  1 

Vehicular 
exposure 

Heavy vehicles 
millage in VMT 
(proportion) 

1 1   2  

Vehicular 
exposure 

Heavy vehicles 
(proportion)  2   3  

Pedestrian 
exposure Walking trips 2      

Bicyclist 
exposure 

Bicycle Miles 
Traveled 

   3   
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Surrogate 
measurement 

Population 
(density) 6 2 1 4 1 2 

Surrogate 
measurement 

Population 
(number) 7  1 5  1 

Surrogate 
measurement 

Employment 
(density) 4   2  1 

Surrogate 
measurement 

Employment 
(number) 4   3   

Surrogate 
measurement 

School enrollment 
(density) 2 2  1 1 1 

Surrogate 
measurement 

Walk commuters 
(number) 3   3   

Surrogate 
measurement 

Walk commuters 
(proportion) 3  1 1   

Surrogate 
measurement 

Public transit 
commuters 
(number) 

2   2   

Surrogate 
measurement 

Public transit 
commuters 
(proportion) 

1  1   1 

Surrogate 
measurement 

Bicycle 
commuters 
(number) 

1  1 3  1 

Surrogate 
measurement 

Bicycle 
commuters 
(proportion) 

1  1 2   

 

Table A-3. Summary of Selected Publications Investigating the Disparity in Roadway Safety 

Research Types of 
disparity 

Methods to investigate the 
disparity 

Major factors 
influencing 
disparity 

Major results related to disparity 

[37] 
Racial and 
income 
disparity 

Divided the census tracts into 
EJ (environmental justice) 
and non-EJ tracts by income 
and ethnicity, compared the 
environmental and behavioral 
factors among EJ and non-EJ 
tracts by t test and put a 
dummy variable for whether 
the tract is EJ area in 
pedestrian crash frequency 
model 

Environmental 
factors including 
number of 
schools, crime 
rate, and 
behavioral 
factors like 
income, vehicle 
ownership, 
commercial area, 
proportion of 
children, etc. 
 

• EJ areas with higher income 
and majority population are 
significantly less in pedestrian 
crashes. 

• Most of the environmental 
factors and behavioral factors 
are significantly different 
between EJ and non-EJ areas. 

[38] Racial 
disparity 

Compared non-motorized 
crash model with and without 
variables related to 
immigrants (years since 
entering the U.S., country of 
origin, etc.) 

Immigrants from 
different country 
of origin, 
Immigrants of 
different entering 
time 
 

• Areas with more Latin 
American, Eastern European, or 
Asian immigrants tend to have 
more pedestrian and bicyclist 
crashes after controlling for 
members of minority groups 
born in the U.S. 
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Research Types of 
disparity 

Methods to investigate the 
disparity 

Major factors 
influencing 
disparity 

Major results related to disparity 

[39] Income 
disparity 

Manually collected roadway 
infrastructure data from 
Google Street View and 
regressed roadway 
infrastructure data on the 
median income of the block 
groups 

Speed limit, 
Sidewalk 
presence, 
Sidewalk buffer, 
Traffic signal, 
Intersection 

• Areas with lower income and 
higher minority population 
have more pedestrian crashes. 

• Lower speed limit, more 
sidewalk, less sidewalk buffer, 
and more pedestrian signals are 
associated with poorer 
neighborhoods. 

[13] Gender 
disparity 

Categorized traffic injuries by 
gender and transportation 
mode (vehicle driver, vehicle 
passenger, active mode user), 
and compared zonal crash 
prediction models (ZCPMs) 
for each category 

Income level, 
Vehicle 
ownership 

• Income level and vehicle 
ownership rates are positively 
associated with both male and 
female traffic injuries, but these 
effects are minor in female 
traffic injuries compared with 
male traffic injuries. 

[5] Racial 
disparity 

Developed four bicyclist 
crash frequency models for 
White, Black, Hispanic, and 
Asian and compared the 
socioeconomic, land use, and 
transportation characteristics 
among four models 

Arterial road 

• Arterial roadways have larger 
positive effect in Black and 
Hispanic bicyclist crash models 
than White bicyclist crash 
models. 

• Bicycle infrastructure and low 
traffic street are not 
significantly associated with 
Black and Hispanic bicyclists. 

[40] 
Racial and 
income 
disparity 

Used t test to compare the 
difference in crash-related 
factors between Census 
Block Groups (CBGs) with 
percentage of nonwhite 
higher/lower than median 
value and with percentage of 
population below poverty 
line higher/lower than median 
value; Compared two sets of 
ZCPMs for pedestrians with 
percentage of nonwhite 
higher/lower than median 
value and with percentage of 
population below poverty 
line higher/lower than median 
value for total crash, fatal 
crash, injurious crash, and 
no-injury crash, respectively. 

Schools 

• Percentage of school area is 
positively associated with both 
injurious and no-injury crashes 
but is only significant in areas 
with higher percentage of 
nonwhites and higher 
percentage of poverty. 
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Research Types of 
disparity 

Methods to investigate the 
disparity 

Major factors 
influencing 
disparity 

Major results related to disparity 

[41] Income 
disparity 

Divided high-income and 
low-income block groups and 
compared influencing factors 
in pedestrian crash models 
for low-income, high-income, 
and all block groups 

Arterial road, 
Buffered 
sidewalk, Black 
proportion 

• Arterials are a risk factor for all 
block groups; their negative 
effects are greater in low-
income neighborhoods, and 
they are insignificant in high-
income neighborhoods. 

• Buffered sidewalks, usually 
presumed as safety 
enhancement measures, have no 
significant effect with 
pedestrian crashes in low-
income areas and positive effect 
in high-income areas. 

• Percentage of Black people is 
not associated with pedestrian 
crashes in high-income areas 
but positively associated with 
pedestrian crashes in low-
income areas. 
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Table A-4. Descriptive Information of the Variables 

Variable Description Unit Mean SD Min. Max. 

Non-motorized crashes  Number of pedestrian and 
bicyclist crashes # 2.28 5.32 0 142.00 

Poverty rate 
Proportion of population 
with income below poverty 
line in the past 12 months  

% 13.80 9.17 1.04 46.87 

Hispanic and Black ratio 
Proportion of population 
who is Hispanic American 
or African American 

% 56.48 23.93 7.65 99.25 

No high school diploma ratio Proportion of population 
without high school diploma % 17.72 12.26 .58 58.53 

Public assistance ratio 

Proportion of households 
with cash public assistance 
or Food Stamps in the past 
12 months 

% 12.17 8.18 .00 47.13 

No health insurance ratio 
Proportion of population 
with no health insurance 
coverage 

% 17.74 9.75 1.15 58.02 

Roadway length Length of arterials, 
collectors, and local roads Miles 12.16 8.52 0 59.22 

Roadway without median 
Length of arterials, 
collectors, and local roads 
without median 

Miles 11.69 8.40 0 59.13 

Intersection number Number of intersections # 29.81 30.91 0 231.00 

Complex intersections Intersections with four legs 
or above # 9.29 15.81 0 170.00 

No sidewalk ratio 

Proportion of street view 
image that is identified 
without presence of 
sidewalk  

% 43.21 31.64 0 100.00 

No bike lane ratio Proportion of the roadway 
without bike lane % 92.33 22.40 0 100.00 

No signal ratio Proportion of intersection 
without traffic signal % 77.58 36.39 0 100.00 

Bicycle miles traveled Sum of number of miles 
traveled by all bicycles Miles 11.51 37.01 0 618.12 

Pedestrian miles traveled Sum of number of miles 
traveled by all pedestrians Miles 23.51 121.53 0 2897.33 

Vehicle miles traveled Sum of number of miles 
traveled by all vehicles Miles 96.16 163.76 0 1774.18 
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Table A-5. Descriptive Statistics of Driver and Victim Sociodemographic Factors 

Variable Pedestrian Crashes Bicyclist Crashes 

Categorical Variables Number (proportion) Number (proportion) 
CR_TimeDay 1 = 0:00-6:00 254 (9.0%) 51 (4.5%) 
CR_TimeDay 2 = 6:00-12:00 749 (26.5%) 303 (27.0%) 
CR_TimeDay 3 = 12:00-18:00 839 (29.7%) 449 (40.0%) 
CR_TimeDay 4 = 18:00-24:00 980 (34.7%) 320 (28.5%) 
CR_Workday 1 = Monday to Friday 2199 (77.9%) 856 (76.2%) 
CR_Workday 2 = Saturday to Sunday 623 (22.1%) 267 (23.8%) 
CR_Season 1 = Spring 746 (26.4%) 243 (21.6%) 
CR_Season 2 = Summer 679 (24.1%) 300 (26.7%) 
CR_Season 3 = Autumn 606 (21.5%) 293 (26.1%) 
CR_Season 4 = Winter 791 (28.0%) 287 (25.6%) 
CR_Weather 1 = Clear 2093 (74.2%) 873 (77.7%) 
CR_Weather 2 = Others 729 (25.8%) 250 (22.3%) 
CR_Surface 1 = Dry 2495 (88.4%) 1039 (92.5%) 
CR_Surface 2 = Others 327 (11.6%) 84 (7.5%) 
CR_Construct 1 = At construction zone 51 (1.8%) 5 (0.4%) 
CR_Construct 2 = Not at construction zone 2771 (98.2%) 1118 (99.6%) 
CR_Intersec 1 = At intersection 1034 (36.6%) 661 (58.9%) 
CR_Intersec 2 = Not at intersection 1788 (63.4%) 462 (41.1%) 
DR_Income 1 = low income 454 (16.1%) 193 (17.2%) 
DR_Income 2 = low to medium income 614 (21.8%) 229 (20.4%) 
DR_Income 3= medium income 814 (28.8%) 280 (24.9%) 
DR_Income 4 =medium to high income 368 (13.0%) 161 (14.3%) 
DR_Income 5 = high income 572 (20.3%) 260 (23.2%) 
DR_Ethnicity 1 = White 888 (31.5%) 384 (34.2%) 
DR_Ethnicity 2 = Hispanic 896 (31.8%) 350 (31.2%) 
DR_Ethnicity 3 = Black 800 (28.3%) 297 (26.4%) 
DR_Ethnicity 4 = Asian 185 (6.6%) 70 (6.2%) 
DR_Ethnicity 5 = Others 47 (1.7%) 20 (1.8%) 
DR_Gender 1 = Male 1632 (57.8%) 626 (55.7%) 
DR_Gender 2 = Female 1190 (42.2%) 497 (44.3%) 
VT_Income 1 = low income 600 (21.3%) 211 (18.8%) 
VT_Income 2 = low to medium income 762 (27.0%) 286 (25.5%) 
VT_Income 3= medium income 559 (19.8%) 210 (18.7%) 
VT_Income 4 =medium to high income 389 (13.8%) 156 (13.9%) 
VT_Income 5 = high income 512 (18.1%) 260 (23.2%) 
VT_Ethinicity 1 = White 935 (33.1%) 485 (43.2%) 
VT_Ethinicity 2 = Hispanic 852 (30.2%) 274 (24.4%) 
VT_Ethinicity 3 = Black 843 (29.9%) 299 (26.6%) 
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Variable Pedestrian Crashes Bicyclist Crashes 

VT_Ethinicity 4 = Asian 131 (4.6%) 52 (4.6%) 
VT_Ethinicity 5 = Others 54 (1.9%) 11 (1.0%) 
VT_Gender 1 = Male 1659 (58.8%) 924 (82.3%) 
VT_Gender 2 = Female 1163 (41.2%) 199 (17.7%) 
RD_FuncCls 1 = Collectors 782 (27.7%) 268 (23.9%) 
RD_FuncCls 2 = Local roads 2044 (72.4%) 855 (76.1%) 
RD_Urban 1 = Urban area 2818 (99.9%) 1117 (99.5%) 
RD_Urban 2 = Rural area 4 (0.1%) 6 (0.5%) 
RD_CurbL 1 = Left curb exists 2689 (95.3%) 1092 (97.2%) 
RD_CurbL 2 = No left curb 133 (4.7%) 31 (2.8%) 
RD_CurbR 1 = Right curb exists 2690 (95.3%) 1093 (97.3%) 
RD_CurbR 2 = No right curb 132 (4.7%) 30 (2.7%) 
RD_LnWth (feet) 1 = Less than 10 1527 (54.1%) 187 (16.7%) 
RD_LnWth (feet) 2 = 10 to 12 884 (31.3%) 534 (47.6%) 
RD_LnWth (feet) 3 = 12 to 14 139 (4.9%) 313 (27.0%) 
RD_LnWth (feet)4 = Greater than 14 272 (9.6%) 89 (7.9%) 

Continuous Variables Mean Min Max SD Mean Min Max SD 

CR_CarUsedYr 8.3 0.0 43.0 5.8 8.2 0 43 6.1 

DR_Age 41.6 15.0 118.0 16.6 43.4 8 118 17.3 

VT_Age 39.3 1.0 100.0 19.5 37.5 3 100 19 

RD_SpdLmt (miles per hour) 36.7 20.0 65.0 11.2 37.4 20 65 12 

RD_RdWth (feet) 33.3 14.0 106.0 14.1 30.7 16 106 12.8 

RD_LnNum 2.9 1.0 6.0 1.1 2.7 2 6 1 

RD_LnWth 11.4 5.0 27.0 2.8 11 5 27 2.3 

RD_MedWth (feet) 0.3 0.0 138.0 3.6 1.1 0 138 9.4 

RD_SWthIn (feet) 0.1 0.0 10.0 0.6 0.1 0 10 0.6 

RD_SWthOut (feet) 0.1 0.0 10.0 0.8 0.1 0 10 1 

EX_Ped 36.3 0.3 340.7 104.0 / / / / 

EX_Cyc / / / / 14.1 0.1 340.7 30.8 

AADT 9864.7 50.0 49968.0 9954.5 8601 69 49968 9565.4 
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Table A-6. Feature Importance of Random Forest Model for Pedestrian and Bicyclist Crashes 

Variables for 
Pedestrian Crash 

Model 

Feature Importance Rank Variables for 
Bicyclist Crash 

Model 

Feature Importance Rank 

EX_Ped 0.260 1 EX_Cyc 0.227 1 
DR_Age 0.132 2 VT_Age 0.114 2 
VT_Age 0.117 3 DR_Age 0.103 3 

CR_CarUsedYr 0.100 4 EX_AADT 0.091 4 
EX_AADT 0.098 5 CR_CarUsedYr 0.089 5 

RD_SpdLmt 0.049 6 RD_SpdLmt 0.066 6 
RD_RdWth 0.045 7 RD_RdWth 0.056 7 
CR_Season 0.033 8 CR_TimeDay 0.037 8 

CR_TimeDay 0.031 9 CR_Season 0.034 9 
RD_LnWth 0.024 10 RD_LnWth 0.031 10 
VT_Gender 0.014 11 VT_Gender 0.025 11 
CR_Intersec 0.013 12 RD_LnNum 0.019 12 
RD_LnNum 0.013 13 CR_Workday 0.015 13 
DR_Gender 0.012 14 CR_Weather 0.015 14 
CR_Surface 0.012 15 CR_Intersec 0.015 15 

CR_Workday 0.011 16 DR_Gender 0.014 16 
CR_Weather 0.010 17 RD_FuncCls 0.014 17 
RD_FuncCls 0.010 18 CR_Surface 0.011 18 
CR_Construt 0.005 19 RD_MedWth 0.006 19 
RD_CurbR 0.004 20 RD_SWthIn 0.005 20 
RD_CurbL 0.004 21 RD_SWthOut 0.005 21 
RD_SWthIn 0.002 22 RD_CurbL 0.004 22 

RD_SWthOut 0.001 23 RD_CurbR 0.003 23 
RD_MedWth 0.001 24 RD_Urban <0.001 24 
RD_Urban <0.001 25 CR_Construt <0.001 25 
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(continued) 
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Figure A-1. Graphs. PDPs for variables in pedestrian and bicyclist crash model. 


	06-001_Cover.pdf
	06-001_Final-Report.pdf
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Background
	Methods
	Structural Equation Model
	Latent Class Clustering and Random Forest

	Results
	Role of Road Infrastructure in Traffic Safety Inequities
	Data Collection
	Measurement Model
	Structural Equation Models
	Direct, Indirect, and Total Effects of Neighborhood Disadvantage

	Investigating the Sociodemographic Characteristics of Drivers Involved in Traffic Crashes in Disadvantaged Communities
	Data Collection
	Clustering Crashes by LCA
	Relative Importance of Selected Variables
	PDPs


	Discussion
	Conclusions and Recommendations
	Additional Products
	Education and Workforce Development Products
	Technology Transfer Products
	Data Products

	References
	Appendix


