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Abstract 
Automatic traffic monitoring is becoming an important investment for transportation 
specialists, especially as the overall volume of traffic continues to increase, as do crashes 
at intersections. Infrastructure cameras can be a good source of information for automatic 
monitoring of traffic situations at intersections. However, efficient computer vision 
methods that can process the video data effectively are required for this endeavor. 
Intersection cameras often record video data that are of low quality and low frame rate, 
making them challenging to use. In this project, we have demonstrated how traffic 
cameras can be used to automatically track roadway agents, find their kinematic 
behavior, and devise a safety measurement strategy, leveraging recent advancements in 
computer vision and deep learning. In this process, we have specifically focused on the 
Virginia Beach area and used publicly available traffic data to demonstrate our results. 
We developed a full computer vision pipeline that trains a custom object detector 
specifically using traffic data. We also used an optical flow method and a graph neural 
network to improve the accuracy of object tracking. The tracked objects from the image 
frames were further used as a point source and mapped to their GPS locations. Finally, 
the speed of each object was calculated to understand the traffic dynamics and determine 
possible crash predictors. This information can be used to quickly alert traffic control 
operators to a specific intersection that likely needs their attention so that crashes can be 
mitigated. 
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Introduction 
Year after year, roadways in the City of Virginia Beach have consistently ranked in the top 10 
crash cluster locations in the state of Virginia (TREDS (Traffic Records Electronic Data System), 
n.d.). Many of these crashes occur at signal-controlled intersections along Virginia Beach 
Boulevard, which runs parallel to I-264, the only major interstate in the city. This corridor controls 
in- and out-flow from the interstate to major residential suburbs. Intersections often involve 
junctions of more than three lanes, representing major arterials that serve a diverse range of 
roadway users such as military personnel, tourists, and local citizens. In addition to vehicular safety 
issues, the Virginia Department of Transportation’s (VDOT’s) Pedestrian Action Plan [1] has 
identified Pacific Avenue, a major oceanfront resort corridor, as a priority pedestrian crash cluster 
location (VDOT, 2018). This resort area represents a number of different types of vulnerable 
roadway users, notably during summer months, where pedestrians, bicyclists, and emerging e-
scooters present a high risk of safety conflicts with vehicles. 

The city, like many municipalities, has invested a significant amount of resources in digitizing 
their transportation system infrastructure. Such is evident at signal-controlled intersections where 
myriad sensors, such as vision-based cameras, thermal-based cameras, radars, loop detectors, Wi-
Fi detectors, Bluetooth detectors and, in some cases, wireless dedicated short-range 
communication road side units, are integrated. However, such assets are used primarily by cities 
to adapt light controller Signal Phase and Timing based on traffic flow rather than on safety 
countermeasures. Further, although the city has invested in deploying such systems, they are 
limited in the amount of resources and technical capabilities available to disseminate the breadth 
of data collected to address safety and mobility problems. 

This project is specifically concerned with the traffic camera recordings and understanding how 
they can be leveraged to provide the city with insight and suggested countermeasures to address 
safety issues on these roadways. Traffic cameras are often used for traffic monitoring, but the 
scope of the review and the monitoring process is largely restricted to manual mode, where an 
operator needs to review the videos of interest. The project explores the opportunity of automatic 
traffic monitoring systems using artificial intelligence.  

Interest in automatic traffic monitoring has grown due to the revolution in computer vision and 
deep neural networks over the last decade. Vehicle behavior at intersections and on highway ramps 
and vehicle interaction with vulnerable road users have always been a major concern for the U.S. 
Department of Transportation. With increasing traffic volume (including ride sharing and delivery 
services), and impending deployment of autonomous vehicles in the coming years, the need for 
automatic monitoring is greater than ever.  
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Traffic Surveillance Using Cameras and Associated Challenges 
Monocular RGB cameras are often useful for monitoring vehicles and pedestrians. In recent years, 
a number of efforts have tried to address challenges in automated surveillance technology [2, 3]. 
Figure 1 shows an ideal surveillance method situation: the camera would detect the position and 
dynamics of each roadway object, including cars, trucks, and pedestrians. In general, it is difficult 
to execute proper object detection and tracking within complex scenarios. With an unconstrained 
interaction between roadway agents, most computer vision algorithms struggle to associate several 
objects from one frame to the next frame. The severity of this problem increases with increasing 
traffic volume. Additionally, a study by Ananthanarayanan and Zhang found that tracking 
algorithms are very costly in terms of their processing time [2, 4].  

 
Figure 1. Schematic of an ideal traffic monitoring system.In Figure 1, the system should identify all 

objects individually and preserve their identity for the duration of their appearance while 
computing their exact GPS location with speed and heading in relation to the roadway scene.  

Most previous work in this area has used high quality videos from private vendors with high spatial 
and temporal resolution. However, most public traffic cameras have low quality (lower than VGA 
quality), low frame rate (5 fps–15 fps), high compression artifacts, and low signal to noise ratio. 
Figure 2 shows some examples of these camera outputs. The video quality specifically deteriorates 
during nighttime with high spatial noise. Also, due to the impending infrastructural cost, it is not 
expected that these camera networks will be updated in the near future. But we cannot deny the 
potential of these cameras in capturing useful information. Therefore, we need to explore the 
effectiveness of the current infrastructure and consider how modern technology may allow us to 
better take advantage of it. Additionally, recent research shows that using transfer learning, deep 
neural networks can be tuned to process low resolution videos [5-12] including those of the vehicle, 
driver’s face, work zone objects, and roadway agents.  
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Figure 2. Example images from the 511 traffic cameras.  

The cameras used to take the videos shown in Figure 2 often vary by distance and camera angle. 
The appearance of the videos taken during the night versus the day are also quite different.   

In this work, we have investigated how to use the already established traffic camera system to 
inform traffic operation centers of potential conflicts. This work includes a simple mapping 
algorithm to estimate the kinematic behavior of traffic to identify crashes or areas that that may 
pose a traffic safety risk. 

Scope of the Project  
This project aims to use current intersection traffic camera video feeds to detect, track, and 
calculate the kinematics of each vehicle that goes through the intersection. These kinematic 
calculations are then used, along with crash precursor surrogate measures, to detect potential 
conflicts in real-time. This process is broken down into the following five procedures: 

1. Object detection 
a. We specifically focused on pedestrian tracking.  

2. Multi-object tracking 
3. Image pixel coordinate to GPS transformation 
4. Kinematic calculation 
5. Conflict identification 

 
The object detection and tracking algorithms are validated by comparing them to many different 
algorithms currently in use, as well as comparing calculated pixel values to manually tracked pixel 
locations. The GPS and kinematic calculations were compared observationally to the given traffic 
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video feed, but needed further validation to compare with a test-vehicle traveling in the specified 
intersection equipped with an accurate GPS and speed recording device. The conflict identification 
is a proposed application that could be used to predict traffic conflicts in real time to notify traffic 
control operators of potential crashes and conflicts. Known surrogate measures were used to 
validate any conflict identification, though this requires some crash and safety analysis of each 
intersection to be used effectively.1 We specifically focused on the nine intersections shown in 
Figure 3. These are the traffic intersections at the aforementioned Pacific Avenue corridor.  

 
Figure 3. Google Earth view of the Pacific Avenue crash corridor. The circles indicate the traffic 

intersections.  

Computer Vision Based Object Detection  
This chapter describes the steps taken to demonstrate our process in developing object detection 
and tracking algorithms using deep neural network models. Deep learning models require training 
data with proper annotations. We started with a collection of data from nine intersections on 
Virginia Beach Boulevard to train the algorithms. In order to develop a more focused approach 
towards the pedestrian detection and tracking, we leveraged a public dataset (the MOT Dataset) 
from motchallenge.net. This dataset is a benchmark dataset used in the computer vision community 
to develop multi-object tracking.  

Data Collection and Annotations 
To validate the output of the traffic surveillance method described in the previous section, a 
naturalistic data collection experiment was performed. The collection of intersection video data 
was done by utilizing the FFMPEG application (a set of open-source libraries for recording and 

 
 

1 This project originally ended in 2021. Hence the methods and results presented in this report are from 2021 and all the algorithms presented 
are referenced until 2021.  
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converting digital audio and video recordings in various formats), and publicly available live 
intersection streaming video URLs extracted from the Virginia511 website 
(https://www.511virginia.org/). To collect video data for processing by the computer vision traffic 
surveillance method, a script was developed to automatically download and save target streaming 
intersection videos to an MP4 file. Video was simply recorded throughout several days in varying 
lighting and weather conditions. Video data was then used to evaluate the performance of the 
computer vision methods, as highlighted in the proceeding sections.  

We selected eight videos from four different intersections for annotations. The videos were chosen 
from both day and nighttime recordings. The annotations were done at pixel level using CVAT 
software. The CVAT annotation tool provides an interface for annotating objects in image frames 
and draws bounding boxes. We annotated a total of 9,158 frames and a total of 170 k instances of 
objects. We used four object categories: vehicle, person, bicycle, and motorcycle. It should be 
noted that the object categories of SUV, car, pickup truck, bus, and truck were joined in a common 
category of vehicle.” More details on the annotations can be found in Appendix A: Data 
Annotation.  

Object Detection  
Object detection refers to identifying and locating roadway objects in the image or video frame. 
Recent developments in computer vision and convolutional neural networks (CNNs) have 
substantially accelerated the accuracy of object detection. In this project, we first used standard 
and state-of-the-art object detectors. We used both single step (YOLO) and two step detectors 
(Mask-RCNN, Cascade-Net, Retina-Net, Faster-RCNN). Due to the lower quality of the traffic 
camera videos, these methods often failed to identify the objects. In many cases, the objects were 
not detected for a few consecutive frames, and then were redetected at a later frame. This created 
sparsity in the object detection and tracking framework and often interfered in the association task 
of tracking (see the Multi Object Tracking (MOT) section for details). Apart from the low quality 
of the videos, other major reasons for such failures include low illumination, high contrast shadow, 
high spatial noise, and the fact that most of the networks were trained with a separate dataset. In 
recent work, it has been shown that most of these CNNs are sensitive to spatial noise and texture 
[13], and we believe that the special noise and video compression creates distortions and often 
confuses the detection ability. In this work, we conducted a number of experiments to understand 
how noise may affect detection. Eight different filters ranging from median and gaussian filters to 
edge preserving filters were used.  

Finetuning Object Detectors 
In this section we describe the testing of different deep-learning-based object detectors. We 
specifically chose 11 object detectors from MMDetection library. These models were pretrained 
on a MSCOCO dataset. MSCOCO is a benchmark dataset that contains a total of 80 object classes, 
including car, pedestrians, bicycle, and motorcycle. Our initial testing and validation using  
MSCOCO-trained models show very poor results. The best result was achieved from a Faster-
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RCNN and Cascade-RCNN framework with a mean average precision of 4.1% and 4.5%. This 
result clearly indicates that standard models trained on high quality data cannot generalize over 
the low-quality traffic camera data. Hence, it was necessary to finetune these algorithms to be used 
for our traffic domain. This finetuning is referred as transfer learning. We used the annotated data 
from traffic videos (as described in the last section) and retrained the models, finding that Faster 
RCNN provided the best result. The mean average precision (mAP) for cars increased to 25.6% 
from 4.1% and the mean average recall (mAR) increased to 31.4% from 5.8%. Figure 4 shows a 
comparative result highlighting the gain in performance due to the domain adaptation.  

 

Figure 5 shows some of the quantitative results. After manual observations of the failure cases, we 
observed the following: (1) The detector often missed dark colored vehicles, (2) the detector 
performed really well at nighttime, which may be due to vehicle headlights, and (3) the detector 
often confused the shadow of the vehicle as part of the car. Additional results with noise tests are 
presented in Appendix B: Object Detection Results.  

 
Figure 4. The result for the finetuned model trained with annotated image data from traffic cameras.  
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Figure 5. Qualitative output of the object detector in day and night. The vehicles are detected with very high 

confidence.  

Object Detection Using Temporal Information 
The finetuning of object detectors significantly improved the results. However, in many cases, an 
object was detected in one frame, but was missing in the next frame. For those scenarios, we 
proposed a temporal aware object detector. In this work, we used temporal information efficiently 
to increase both detection and tracking performance. In other words, we added a “detection by 
tracking” framework along with the existing “tracking by detection” method. We used optical flow 
to study the temporal changes in the static image frame and used this information to predict the 
position of an object. Optical flow measures the displacement of every pixel between two 
consecutive frames [15,16]. As shown in Figure 6, most of the sparse detections show evidence of 
the presence of a certain car, but missing points pose a problem. In Figure 6, the car is detected in 
frame 1 and frame 4, but the object is not detected for frame 2 and frame 3. Therefore, we used 
the known two detections (A1 and A2) and the temporal information to connect the intermediate 
points and improve the detection. A1 and A2 are called the “anchors” of the specific object. This 
proposed method increased the detection accuracy and removed some of the false negatives.  
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Figure 6. Improving object tracking using optical flow-based methods. 

The object detection pipeline consists of the Region Proposal Network (RPN), Region of Interest 
Pooling (RoI), and the object classifier (RCNN). As seen in Figure 7, after the CNN extracts 
features, a number of proposals are obtained in frame t. These are processed to become final object 
detections after classifying them into classes and obtaining a detection confidence through RCNN. 
The t + 1 frame again computes object proposals, to which the detections of the previous frame 
are added after using one of the processing methods in the proposed framework.  

Two methods for processing the previous detections were tested. The first method uses optical 
flow to propagate detections from previous frames to a new frame. In more detail, a detection of 
the previous frame is propagated to the new frame as an object proposal. The same detection 
confidence is transferred as confidence for the proposed object score. The method of FlowNet 
(Brox) was applied to the problem. An example graph is shown in Figure 7 to illustrate how the 
approach is applied. Using optical flow, we receive a vector that predicts the displacement of the 
previous box (red) to the new frame (light blue). The second tested method simply places the 
proposed object at the same position as in the first frame. To increase the likelihood of detection, 
more than one proposal is added around the center of the optical-flow-based or same-position 
proposal. More specifically, 20 proposals were added to increase detection likelihood and these 
were perturbed around a center location. Experimental results using the proposed methodology are 
shown in Table 1, which shows an improvement of 0.4% in mAR and 3.2% in mAP (Intersection 
over Union [IoU] = 0.5) while mAP (IoU = 0.5–0.95) remained almost the same. 

Table 1. Quantitative results on improving detection using past frame information 

Vehicles mAP (.5-.95) mAP (.5) mAR (.5-.95) 
Traditional 25.6 58.3 31.4 

Same position 25.4 61.3 31.7 
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Opt. flow based 25.5 61.5 31.8 

 

Figure 7. Proposed framework for improving detection using past frames. (a) Simplified illustration of object 
proposal that fails to be identified as object and one that succeeds. Dashed red rectangle shows previous 

frame’s detection and cyan the propagated one with optical flow. 

Multi Object Tracking (MOT) 
Multi object tracking (MOT) helps to track multiple objects over a series of frames. A majority of 
previous work in MOT is based on the paradigm of tracking-by-detection [23, 24], which is 
comprised of three basic stages. In the first stage of detection, objects are identified at every frame 
using bounding boxes. In the next stage, feature extraction methods are applied to the detected 
objects to extract appearance, motion, and other interaction features of the objects, which are then 
used to compute similarity or affinity scores among object pairs. In the final stage of association, 
an assignment problem is solved to match objects at previous frames with objects at the current 
frame. In this project, we experimented with two different algorithms. We tested Deep-Sort, a 
benchmark algorithm in the community. We also introduced a new graph neural-network-based 
algorithm: GCNNMatch.  

Object Tracking: Deep-SORT 
Each tracker needs to associate objects by using some similarity metrics across frames. These 
metrics are a factor of geometric characteristics such as size, position, and appearance 
characteristics. The online tracker Deep-SORT [19] is a fast and accurate tracking method that 
utilizes these two metrics. Deep-SORT uses a Kalman filter to predict object positions using a 
constant velocity motion and linear observation model. For the geometric similarity metric 
computation, the Mahalanobis distance is computed between the Kalman predicted states and the 
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new detections in each frame. For the appearance metric, a reidentification model is used, which 
is trained based on the Cosine Metric learning method [20]. The CNN architecture uses a wide 
residual network that is composed of two convolutional layers, followed by six residual blocks. A 
feature map of 128 dimensions is computed and used to derive the cosine distance. Finally, the 
two metrics are combined using a weighted sum. 

The method described above was applied to our VDOT data via the following steps. First, a 
reidentification model was trained using the Cosine Metric learning method. Two separate 
reidentification models were trained, one targeting human reidentification and the other one 
vehicle reidentification. The two datasets used were Market1501 [21] and VeRi [22] for humans 
and vehicles, respectively. Then Deep-SORT was applied to the dataset.  

MOT uses tracklets to connect between past and future instances. A "tracklet" refers to a short 
track segment that corresponds to a continuous trajectory of an object over a brief period of time. 
To determine tracking-related parameters, such as minimum detection confidence, initial object 
instances before tracklet generation, maximum IoU for matching, maximum frames to keep each 
tracklet active, and maximum cosine distance for matching, multiple tests were carried out on one 
of the videos. Following that, we chose the best sets of parameters and ran them on our test data 
and reported tracking performance using standard parameters including Multi-Object Tracking 
Accuracy (MOTA), Identity F1 score (IDF1), Mostly Tracked objects (MT, the ratio of ground-
truth trajectories that are correctly predicted by at least 80%), Mostly Lost objects (ML, the ratio 
of ground-truth objects that are correctly predicted at most 20%), Partially Tracked (PT, the ratio 
of ground-truth objects that are correctly predicted between 80% and 20%), ID Switches (ID Sw.), 
and Fragmentations (Fragm.). More details of the metrics and the parameter selection can be found 
in Appendix C: Object Tracking Results. Table 2 and Table 3 show the results. The pretrained 
category reflects cases for object detection using Faster RCNN without any domain adaptation. 
Finetuned and Finetuned +Opt. Flow refer to a Deep-SORT algorithm that uses output from the 
previous section: Computer Vision Based Object Detection. 

Table 2. Tracking-related Evaluation Metrics Derived From Tracking Output (Bold Numbers = Best Results) 

 MOTA IDF1 MT PT ML ID Switch. Fragm. 
Pretrained 8.2% 8.4% 5 73 126 533 666 
Finetuned 34% 43% 77 84 43 319 443 

Finetuned + 
Opt. Flow 34.6% 43.8% 79 85 40 326 465 

 
Table 3. Detection-related Evaluation Metrics Derived From Tracking Output (Bold Numbers = Best Results) 

 IDP IDR Recall Precision Unique 
Obj. MOTP 

Pretrained 34.1% 4.8% 11.6% 82.9% 204 24.8% 
Fine-tuned 73.6% 30.4% 37.9% 91.8% 204 26.7% 

Fine-tuned + 
Opt. Flow 68.8% 32.1% 40.9% 87.7% 204 27.8% 
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Figure 8. Example of object tracking from DeepSort. 

Graph Neural Network Based MOT  
In this section, we propose a novel method for online MOT using GCNN-based feature extraction 
and end-to-end feature matching for object association. The GCNN-based approach incorporates 
both appearance and geometry of objects at past frames as well as the current frame into the task 
of feature learning. This new paradigm enables the network to leverage the “context” information 
of the geometry of objects and allows us to model the interactions among the features of multiple 
objects. Another central innovation of our proposed framework is the use of the Sinkhorn 
algorithm for end-to-end learning of the associations among objects during model training. The 
network is trained to predict object associations by considering constraints specific to the MOT 
task. Experimental results demonstrate the efficacy of the proposed approach in achieving top 
performance on the MOT ’15, ’16, ’17 and ’20 Challenges2 (datasets designed for the task of 
multiple object tracking) among state-of-the-art online approaches. 

One of the major paradigms in MOT is the tracking-by-detection paradigm, where an object 
detector is first used to extract object locations at each frame separately, followed by a tracker, 
which associates detected objects across frames. The goal of the tracker is to solve the bipartite 

 
 

2 https://motchallenge.net/faq/ 
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graph matching problem, where every object instance in a past frame is associated to at most one 
object instance in the current frame, using pair-wise object affinities. There are two variants of the 
matching problem considered in MOT: online matching, where objects are associated only using 
past frames, and offline matching, where information from both past and future frames are used to 
track a given object. In this work, we only focus on the MOT problem involving online matching. 

GCNNMatch 

Figure 9 provides an overview of our proposed approach. The method consists of a feature 
extraction component and an association component. The feature extraction component takes as 
input the bounding boxes of tracklets and detections, available through an object detector. In MOT, 
the goal is to associate and track objects across multiple frames in a video sequence, maintaining 
the identity of each object as it moves through the scene. The cropped image for each bounding 
box is fed into a CNN architecture which extracts ℎ𝑎𝑎𝑎𝑎𝑎𝑎 , represented as flat high-dimensional 
vectors. The inputs to the GCNN then consist of both node and edge features. The appearance 
features ℎ𝑎𝑎𝑎𝑎𝑎𝑎  constitute the node features ℎ𝑣𝑣  at any node $v$. Then, by concatenating the 
appearance features ℎ𝑎𝑎𝑎𝑎𝑎𝑎 and geometric features ℎ𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 at the pair of nodes and sending them to a 
fully connected neural network (FC-NN) 𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 , the edge features 𝑧𝑧𝑒𝑒 ∈ 𝑅𝑅 are computed for a pair 
of tracklet and detection nodes. 

The GCNN architecture transforms non-linearly the node and edge features of each hidden layer 
𝑘𝑘 − 1  using graph structure to update node 𝐻𝐻𝑘𝑘  and edge 𝑍𝑍𝑘𝑘  features at layer 𝑘𝑘 . Further, an 
adjacency matrix is created including self-edges, 𝑍𝑍𝑘𝑘�  =  𝑍𝑍𝑘𝑘  +  𝐼𝐼, where 𝐼𝐼 is an identity matrix. The 
degree of the adjacency matrix 𝑍𝑍𝑘𝑘� is denoted by 𝜏𝜏𝑘𝑘. The node features are then updated at layer 𝑘𝑘 
using GNN training. The overall system uses a combination of FC-NN and GNN. The node 
features produced at the final layer are the interaction features, 𝐻𝐻𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 .  

Interaction features 𝐻𝐻𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  are combined with geometric features ℎ𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔  to produce an affinity 
metric between a tracklet 𝑇𝑇𝑚𝑚  and a detection 𝐷𝐷𝑛𝑛. Initially, an appearance affinity is computed 
using cosine similarity between the 𝐻𝐻𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  features at 𝑇𝑇𝑚𝑚 and 𝐷𝐷𝑛𝑛. Then, we compute the IoU of 
the bounding boxes using the geometric features ℎ𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 of each bounding box, which are the pixel 
coordinates. Both the cosine similarity score and IoU score are fed into another FC-NN, 𝑓𝑓𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 , 
that produces the affinity score, 𝑠𝑠𝑚𝑚,𝑛𝑛 in 𝑆𝑆.  

Conventionally, in order to satisfy MOT constraints, loss function combinations such as binary 
cross entropy loss are used for each element with the addition of a softmax loss to satisfy 
constraints. In contrast to that, the Sinkhorn algorithm is leveraged in this work to automatically 
satisfy MOT constraints during training. It iteratively normalizes the rows and columns of 𝑆𝑆 and 
directly approximates the constraints. During testing, the Hungarian method is applied over 𝑆𝑆∗ to 
perform hard assignments of 0 or 1. 
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More details of the process can be found in the Conference on Intelligent Transportation Systems 
Conference on Intelligent Transportation Systems paper and the ArXiV manuscript by the authors 
in [17,18].  

 
Figure 9. Overview of our proposed approach.  

In Figure 9, Two input sets are given, consisting of bounding box images of the last instances of 
tracklets and the new detections (nodes). A CNN extracts appearance features ℎ𝑎𝑎𝑎𝑎𝑎𝑎, which are 
used as node features ℎ𝑣𝑣. They are then concatenated with geometric features ℎ𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 and fed to a 
function 𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  to compute edge features 𝑧𝑧𝑒𝑒. Using cosine similarity and IoU, 𝑓𝑓𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  computes 
the similarity scores 𝑆𝑆 among pairs of tracklets and detections. The Sinkhorn algorithm normalizes 
𝑆𝑆 to satisfy MOT constraints and produces the association matrix 𝑆𝑆∗. The Hungarian algorithm is 
produced during testing to convert values of 𝑆𝑆∗ to binary. 

Tracking Results 
For this dataset, we provided two baseline object tracking approaches. Both Deep-SORT and the 
proposed GCNNMatch were finetuned using traffic-related data and were applied on the test set. 
The Deep-SORT re-identification model was trained using the Vehicle Re-identification Dataset, 
since it requires pairs of images. Table 4 shows quantitative results for different cases. First, the 
object detector pretrained on COCO was applied and then used with Deep-SORT, achieving very 
low scores of 8.2% MOTA and 8.4% IDF1. Next, the finetuned object detector yielded a MOTA 
of 34% and IDF1 of 43%, a significant increase using the same tracker, depicting the importance 
of accurate input detections. Then, the detections were enhanced using the proposed optical flow 
propagated detections. Results showed an increase of 0.6% MOTA and 0.8% IDF1. These results 
also increased recall by 3% at the cost of 4.1% in precision. Recall was increased to 40.9% from 
37.9% by adding the flow information. The results are promising since the involvement of optical-
flow-based extra object proposals results in increased overall MOTA and IDF1, the two important 
metrics in tracking performance. GCNNMatch was applied for an increase of 0.1 MOTA and 4.2 
IDF1 over Deep-SORT, again using the optical flow method for detections. Moreover, this 
significantly minimized the number of ID switches. Qualitative results of the proposed approach 
are also shown in Figure 10. More results are available in Appendix C: Object Tracking Results.  
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Table 4. Quantitative Results of Selected Baseline Approaches for Object Tracking on VA Beach Traffic 
Dataset.  

 MOTA IDF1 MT ML Precision Recall ID Switch. 
DeepSort + 
Finetuned + 
Opt. Flow 

34.6 43.8 79 40 87.7 40.9 326 

GCNNMatch 
+ FineTuned + 

OptFlow 
34.7 48.4 71 31 83.6 43.8 245 

 

Figure 10. Results of the MOT algorithms from GCNNMatch. (a, b) VA beach traffic data tracking vehicles, 
(c, d) MOTChallenge data set tracking pedestrians. 

Kinematic Characteristics of Traffic Actors 
In this chapter, we discuss calculation of the kinematic behavior of actors in the traffic scene from 
the output of object detection and tracking, as described in the previous sections. Both the detection 
and tracking provide us output in the pixel space. However, the pixel space does not provide actual 
information about the kinematics of the actors, and we need to transform this output to the road 
coordinate system. Hence, we applied a Pixel to GPS coordinate transformation first. This helps 
track each object in road coordinates and computes their relative position and velocities, which in 
turn helps identify conflicting situations.  
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Pixel to GPS 
The GPS coordinates of the traffic camera were given; thus, the corresponding Google Map image 
was used to illustrate the relative position of each object during the video collection period. 
Reference points were then chosen manually to match pixel positions to corresponding points on 
the map. Two-dimensional interpolation takes a series of point pairs with their associated output 
and generates an estimated output value for a new pair of points. For this project, the inputs were 
pairs of pixel coordinates with the known latitude or longitude associated with each pixel pair. 
This then created two interpolation objects, LAT and LON, corresponding to latitude and 
longitude. 

The 2D interpolation was performed twice for each pixel coordinate: once for the known latitude 
and once for the known longitude. We selected key points both from the camera image and the 
Google Map image. These key points were mainly visible landmarks, corner points (edges) that 
were visible in both the images. The natural neighbor method of interpolation was used because it 
was shown to be the most accurate of the methods available, most likely due to the geometry of 
the road. 

The data (pixel locations and object ID) given from MOT was combined with the Google Image 
to display a video with the tracked object next to its corresponding map with the objects 
simultaneously superimposed. Each object’s color was determined by the origin location of the 
object. An example of the video output is given in Figure 11. 

Figure 11 shows the intersection used for the analysis in this report at 21st Street and Pacific 
Avenue in Virginia Beach, Virginia. The traffic camera is pointed southbound along Pacific 
Avenue, which is the mainly vertical street shown on the map. The colors correspond to the starting 
position of each object: yellow represents northbound traffic on Pacific Avenue, red represents 
southbound traffic on Pacific Avenue, and the blue dots represent all other objects that did not start 
on Pacific Avenue. Calibration is needed for each intersection and each camera view.  

Estimation of Vehicle Kinematics 
From the GPS coordinates calculated above, along with the traffic feed framerate, the speed of 
each object was easily calculated using the distance each object moved between frames. The 
acceleration was also calculated using differentiation. However, using this real-time framerate, the 
second order differentiation showed to be unstable. To combat this instability, we used a moving 
average filter for the speed every 5 frames as shown in Figure 12. 

To validate the kinematic calculations, 16 test runs were performed through the intersection of 
interest. The real-time speed and GPS coordinates of the test vehicle were recorded with a smart 
phone app while performing multiple turns and speed changes in the intersection. The procedures 
explained above were then performed to calculate the GPS coordinates and kinematics of the test 
vehicle from the recorded traffic camera footage. Unfortunately, the low spatial resolution of each 
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GPS ping prevented an accurate baseline to compare the vehicle’s location at each timestep on the 
road. If the test vehicle stayed at a relatively constant speed, the calculated speed had a variance 
of ±1.435 mph. Otherwise, we encountered higher error due to GPS resolution.  

 
Figure 11. Example output of the Pixel to GPS algorithm. (a) Left side shows traffic camera feed with each 

detected object. (b) Right side shows map corresponding to the GPS location of each object.3 

In addition to the average speed of any vehicle, Figure 12 also shows the lateral and longitudinal 
velocities of each object. These were calculated by projecting the vehicle’s velocity onto the road 
in question. In this example, the longitudinal velocity is the directional speed along Pacific 
Avenue, while the lateral velocity is the directional speed perpendicular to Pacific Avenue. The 
lateral velocity then indicates any lane drifting, lane-change, or turning behavior. 

Conflict Prediction 
The original scope of this project was to detect and track objects from a traffic camera feed, and 
then calculate the basic kinematics of each object to be used for future analysis. A strong 
application of this project could be to predict conflicts that may occur at these intersections by 
using the calculated kinematics and known crash surrogate measures. Thus, we performed an 
initial analysis into the possibility of predicting conflicts at this example intersection. 

In our example, we identified three potential conflicts throughout the duration of the available 
video feed. These potential conflicts represent what could be deemed a near-crash event. Figure 
13a shows an example of the vehicle trajectories of one of these potential conflicts. The blue line 
represents a vehicle that was turning right out of the parking lot to travel south on Pacific Avenue. 
The red line represents a vehicle that was already traveling south on Pacific Avenue. In the video, 
the red vehicle had begun to change lanes into the right lane (into which the blue vehicle turned), 
which we identified as a potential conflict. 

The vehicle behavior can also be seen in Figure 13b, which shows the relative velocities of each 
vehicle. Object ID 168 is the blue vehicle that turned right out of the parking lot to travel 

 
 

3 Google Maps. 21st St. and Pacific Ave., Virginia Beach, VA  
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southbound on Pacific Avenue. Object ID 181 is the red vehicle that was already traveling 
southbound on Pacific Avenue.  

 

Figure 12. The lateral and longitudinal velocity of one object identified in the traffic video feed (longitudinal 
velocity is along Pacific Avenue, while lateral velocity is perpendicular to Pacific Avenue).  

In Figure 12, The blue represents the first derivative of the distance as compared to the video 
framerate. The red line represents the moving average of the velocity 

In this initial analysis, a near crash event was identified if two vehicles were within 4 meters of 
each other, and there was a sudden change in the lateral or longitudinal velocity of either vehicle. 
This “spike” in velocity was determined if the velocity exceeded 50% of its previous average value 
during the time in which the vehicles were within 4 meters of each other. Therefore, if a potential 
conflict was identified, a video clip including that timestamp was created so that we could evaluate 
if it was indeed a crash or near-crash event. This allowed for some initial validation in the crash 
surrogate measures we were using. 
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Figure 13. (a) The trajectories of two vehicles that had a “near crash” event.  

In Figure 13, the blue line represents one vehicle turning right out of the parking lot to travel south 
on Pacific Avenue. The red line represents one vehicle traveling southbound on Pacific Avenue. 
(b) is the lateral and longitudinal velocities of the vehicles in the near-crash event example. Vehicle 
168 is the blue vehicle in the previous figure (turning right from the parking lot to travel south on 
Pacific Avenue).  

This initial analysis presented is subjective (as to how a near-crash is determined from the video 
feed as well as the crash surrogate measures used) and requires much more analysis and expert 
data reduction. Additionally, the near-crash examples were specific to this intersection; the turn 
out of the parking lot onto Pacific Avenue seemed to be a critical area of conflict. The most 
common conflict configuration (and location) may be different for each intersection, and the 
conflict calculations may differ per intersection. Thus, in order to more accurately predict potential 
conflict, each intersection should be analysed separately. Each interpolation object used to 
calculate the GPS coordinates is already specific to each intersection, and thus should not require 
too much additional analysis. 

Conclusions and Recommendations 
Traffic cameras across the country capture valuable information about traffic. By tracking the 
behavior of each agent, we can benefit in addressing key traffic management tasks. From real time 
traffic surveillance and congestion detection to traffic violation monitoring and crash surrogate 
measurements, traffic cameras can be used in diverse applications to help traffic engineers. 
However, their true potential is still unexplored. While many researchers have used high quality 
cameras and sensors, large scale deployment will require a considerable amount of funding. 
Existent traffic cameras, on the other hand, are already installed and provide visual information.  

In this project, we have shown that with the advent of deep neural networks, automatic processing 
of large-scale traffic camera data is possible. We have specifically designed a new object detector 
that is fine tuned for applications to traffic cameras. We have also proposed a new tracking 
algorithm, GCNNMatch, which is a highly ranked multi object tracker in a MOT benchmark. We 
specifically showed how pedestrian tracking can be done in challenging situations. We further 
extended the capabilities of GCNNMatch to track vehicles and other objects through traffic scenes. 
Finally, we demonstrated a process from the detection and tracking on how to calculate the 
kinematics of the objects in the scene. Through demonstration, we have shown how the overall 
process can help us identify potential conflicts and near crash scenarios.  

Recommendations and Future Directions 
In this section, we present a series of recommendation, including limitations to the current state-
of-the-art to provide a future direction for traffic camera based automatic surveillance.   
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• Current infrastructure camera data is transmitted with low resolution, low frame rate, and 
high compression. It turns out that the resolution of the images may be adequate to adapt 
for most object detection algorithms. The major reason for the failure to adapt computer 
vision algorithms is a high amount of noise in the image. This noise can be attributed to 
multiple sources. First of all, the cameras are often not suitable for nighttime capture. The 
nighttime data includes large amount of spatial noise. The second source, and often the 
major source, of noise is the high compression of the videos. Due to live streaming and low 
network bandwidth, these camera videos are highly compressed before being transmitted. 
The compression generates irreversible artifacts in the video. As most deep-learning-based 
computer vision methods use frame by frame processing, the artifacts in each frame are 
large enough to fail the detectors. As a future direction, camera compression can be 
changed to facilitate better performance. Most MOT algorithms need a high frame rate to 
guarantee continuity. In this project, we used data at 15 frames per second for most cases. 
With a roadway posted speed of 25 mph to 40 mph, this frame rate is adequate. However, 
we have seen degradation of the frame rate for some periods. This may hamper 
performance.  

• The field of view of most of the cameras are narrow. They are often between 75 degrees 
to 110 degrees. This covers a small subsection of the intersection. Unless we access all 
directions of the traffic, it is difficult to understand the overall traffic scenario at any 
intersection.  

• Deep neural network is a data driven method. In this project, we have shown that annotating 
a small dataset and using transfer learning, we can significantly increase the performance 
of the object detectors. We currently need benchmark datasets that can be used by 
researchers to facilitate innovation and enhance accuracy for traffic camera data 
processing. We need more annotated data to develop more advanced algorithms.  

• The near-crash examples shown in the report were specific to one intersection; the 
outbound turn at the parking lot onto Pacific Avenue seemed to be a critical area of conflict. 
The most common conflict configuration (and location) may be different for each 
intersection, and the conflict calculations may differ per intersection. Thus, in order to more 
accurately predict potential conflict, each intersection should be modelled separately. Also, 
the kinematics can help in studying the severity of the crashes, and thus aid in identifying 
crash severity.  

• Each intersection is different in terms of structure; however, some are more similiar to 
other others in terms of attributes, including N-way traffic, total number of lanes, 
pedestrian facilities, etc. A possible future step could be to identify a group of intersections 
that are distinctly different and to then classify each individual intersection to one of those 
categories. This way, modeling a small number intersections may cover all of the 
intersections and facilitate better modeling of conflicts.  
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• There is a scarcity of annotated data for crash and near crash data at intersections. Recent 
work by Bareiss [27] has partially addressed this, but more structured efforts are required. 
In order to learn the safety critical characteristics of different actors, more annotated data 
with associated metadata are required. With renewed interest in automated vehicles, a 
series of safety metrics have been developed, including RSS and Pegasus [28-30]. 
However, more dedicated efforts are required to apply these metrics and test their 
effectiveness in traffic scenario.  

Please note that a follow up project from this work was also completed at the time of this report. 
This project is 06-012: Real time risk prediction at signalized intersection using graph neural 
network. This project mainly focuses on modeling the safety from the kinematic interactions 
between different actors.  

Additional Products 

Education and Workforce Development Products 
Student Engagement 
Two graduate students were funded and worked on this project: Eileen Herbers, and Ioannis 
Papakis. Ioannis’s master’s thesis was inspired by this project, as he made fundamental 
contributions to the field of pedestrian tracking.  

• Papakis, I. (2021). A Graph Convolutional Neural Network Based Approach for Object 
Tracking Using Augmented Detections with Optical Flow (master’s thesis, Virginia Tech). 

Award 
Ioannis Papakis won the best master’s thesis award in the 2021 Torgersen annual student award.  
Publication 
This work has resulted in two publications, which, in combination, have received 65 citations from 
researchers across the world.  

• Papakis, I., Sarkar, A., & Karpatne, A. (2021, September). A graph convolutional neural 
network-based approach for traffic monitoring using augmented detections with optical 
flow. In 2021 IEEE International Intelligent Transportation Systems Conference 
(ITSC) (pp. 2980-2986). IEEE. 

• Papakis, I., Sarkar, A., & Karpatne, A. (2020). Gcnnmatch: Graph convolutional neural 
networks for multi-object tracking via sinkhorn normalization. arXiv preprint 
arXiv:2010.00067. 

Presentation and outreach 
The work was presented in multiple venues.  

• Dr. Sarkar attended IEEE ITSC in Indianapolis to present this work in the conference.  
• This work was selected as an entry for Virginia Tech’s entry for DOT 
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• This research was showcased as part of USDOT RD & T video forum in February 2022. 
Please find more details in the following links: 
https://www.youtube.com/watch?v=Vt1fqfh18zM, 
https://www.transportation.gov/utc/usdot-rdt-utc-video-forums .  

• In coming December, Dr. Sarkar will visit Indian Institute of Technology, Bombay to 
deliver an invited talk in the IndoML conference. He will discuss some of the outcome of 
this project to the students attending the conference.  

Educational material 
• The work from this project has helped in developing class material as part of the lecture 

that Dr. Sarkar provides to the class of Dr. Zachary Doerzaph’s graduate course at Virginia 
Tech.  

Technology Transfer Products 
This project has resulted in online codebase as part of the project. One of the code bases are the 
outcome of GCNNMatch. The code is available at https://github.com/IPapakis/GCNNMatch. This 
codebase is targeted for pedestrian tracking. This codebase has received 54 stars to date and 10 
forks in Github.  

Additionally, we have released the object detection code in the following Github repository: 
https://github.com/VTTI/object-detection.  

Data Products  
We have also released the annotation of all the images that were produced as part of the object 
detection pipeline. The data consists of images and pixel level annotations of images.  

  

https://www.youtube.com/watch?v=Vt1fqfh18zM
https://www.transportation.gov/utc/usdot-rdt-utc-video-forums
https://github.com/IPapakis/GCNNMatch
https://github.com/VTTI/object-detection
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Appendix/Appendices 
 

Appendix A: Data Annotation 
For the dataset, an estimate of 9158 frames were obtained. 

The dataset was then split into: 
• Training set: 4939 frames, 95960 annotations 
• Test set: 4219 frames, 74517 annotations 
• Object categories: vehicle, person, bicycle, motorcycle   

 
It should be noted that the object categories of SUV, car, pickup truck, bus and truck were joined 
in a common category vehicle for further analysis. The next step is that of the annotation which 
can provide ground truth of objects in the dataset. That is necessary and is used both in training 
the models but also for evaluating them. An example of annotation is shown in Figure 14. Here 
the CVAT annotation tool is used which provides an interface for annotating objects in frames. 
Through that tool, objects can be annotated using bounding boxes and labels for each object. These 
labels represent the category of the object such as vehicle or person. 

 
Figure 14. Annotation example in CVAT. 

 
A complete list of the object instances, meaning how many times an object of a specific category 
was annotated, is shown in Table 5. the table illustrates the persistence of each object in the videos 
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while the second one the variety of objects of each category. This shows the diversity and size of 
the dataset used.  

Table 5. Object Instances 

Time Night Day Night Day Subset 
Total 

video ID 5627 4428 2126 3228 -- 
person 1018 1327 0 0 2345 
bicycle 0 267 0 0 267 
motorcycle 0 0 33 0 33 
vehicle 12931 6741 4638 69005 93315 

 car 10516 5235 4638 62674 83063 
 SUV 2323 753 0 5195 8271 
 pickup 
 truck 60 753 0 239 1052 

 truck 32 0 0 897 929 
 bus 0 0 0 0 0 
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Appendix B: Object Detection Results 
In order to analyze the performance of the selected object detectors, common evaluation metrics 
were used. These include the Average Precision (AP) and Average Recall (AR).  

Following the COCO Challenge evaluation method, first the AP with an Intersection Over Union 
(IoU) of 50% is given and then the AP and AR with IoU, averaged over ten thresholds from 50% 
to 95%. Also, the small size refers to pixel number of bounding box being less than 322, whereas 
medium is between 322 and 962. 

Figure 15 and Figure 16 illustrate the average Precision and Recall for different detection 
thresholds and detectors. For each detector shown with the same color, five confidence thresholds 
are chosen (namely 30%, 35%, 40%, 45%, 50%). The confidence values are not depicted in the 
graphs for clarity, however smaller confidence always resulted in higher recall, therefore it can be 
inferred. 

It is evident that for medium size objects, both precision and recall achieve numbers higher than 
the maximum AP=17% and AR=30% of the small objects. The performance for the medium size 
is ranging from AP = 28% to 47% and AR=30% to 49.8%.  

 
Figure 15. AP-AR Curve for small sized objects. 
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Figure 16. AP-AR Curve for medium size objects. 

Considering those detectors performance in the popular COCO Challenge dataset, there is notably 
a performance drop using the specified traffic videos. A comparison is shown in table 1. The 
performance of the pre-trained models on COCO train set with an IoU= 50% and confidence 
threshold 50% is shown as reported in the original papers. In contrast, the performance drop can 
be seen in the case of traffic videos for cars specifically. 

Table 6. Pretrained Models Comparison With Car Detection. (IoU = 50% and Confidence Threshold = 0.5) 

Detector 
COCO train (mAP 

%) 
Phase I (car AP 

%) 
Cascade RCNN [9] 62.1 43.3% 
MaskRCNN [10] 62.3 44.5% 
RetinaNet [11] 61.1 32.8% 

FasterRCNN [12] 61.2 42.7% 
 

The detectors performance is further investigated using filters in this dataset specifically, since it 
includes videos overlaid with noise and having low quality. Different filters were applied including 
Gaussian filter with standard deviation 1, 3 and 5, median filtering with neighborhood size 3 and 
5 and finally isotropic Gaussian smoothing kernels with standard deviation 1, 2 and 3. An increased 
performance in Average Precision is observed in table 2 specifically for the Gaussian filter with a 
standard deviation of 5. The other detectors followed the same trend. 

Table 7. Application of Filters to CascadeRCNN 

Filter type AP (50% IOU) 
Median filter with 3X3 kernel 34.3% 
Median filter with 5X5 kernel 18.6% 
Gaussian filter with Sigma = 1 43.3% 

Gaussian filter with Sigma = 0.5 48.5% 
Gaussian filter with Sigma = 0.3 46.8% 

Edge preserving filter 45.0% 
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After selecting the aforementioned filter and confidence threshold to be 30%, object detection, a 
comparative analysis is shown for Mask-RCNN and Cascade RCNN. Their performance after the 
improvements is shown in table 3. It can be observed that Mask RCNN achieves higher precision 
and recall for almost all cases and applying the filter improves it by 2-3% in AP and AR. 

Therefore, Mask-RCNN, using the preferred filter, is chosen for the specific dataset using pre-
trained models for optimization. 

Table 8. Detectors Performance After Applying the Gaussian Filter and Optimizing Confidence Threshold 
for 30%. 

Detector Filter AP (.5 IOU) AP (IOU .5-.95) AR (IOU .5-.95) 
      S M S M 
Cascade RCNN  None 48.80% 16.60% 43.80% 30.20% 46.60% 

Cascade RCNN gaussfilt 
Sigma5 50.30% 17.10% 45.10% 31.10% 48.40% 

Mask RCNN None 49.20% 16.90% 47.30% 27.40% 49.80% 

Mask RCNN gaussfilt 
Sigma5 50.90% 17.40% 49% 28% 52% 
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Appendix C: Object Tracking Results 

Parameter tuning for Deep-SORT 
MOT methods are evaluated based on multiple parameters. For the evaluation, the most common 
in the literature MOT metrics were used. These are the Multi-Object Tracking Accuracy (MOTA), 
Identity F1 score (IDF1), Mostly Tracked objects (MT, the ratio of ground-truth trajectories that 
are correctly predicted by at least 80%), Mostly Lost objects (ML, the ratio of ground-truth objects 
that are correctly predicted at most 20%), Partially Tracked (PT, the ratio of ground-truth objects 
that are correctly predicted between 80% and 20%), ID Switches (ID Sw.), and Fragmentations 
(Fragm.). MOTA is defined as: 1 − ∑ (𝐹𝐹𝐹𝐹+𝐹𝐹𝐹𝐹+𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼)𝑡𝑡

∑ (𝐺𝐺𝐺𝐺)𝑡𝑡
, where GT is the ground truth objects. Some 

metrics, which are also part of the MOT but reflect the influence of the detector mostly, are the 
Identity Precision (IDP), Identity Recall (IDR), the Recall, the Precision, and Multi-Object 

Tracking Precision (MOTP). MOTP is defined as: 1− ∑ 𝑑𝑑𝑡𝑡,𝑖𝑖𝑡𝑡,𝑖𝑖
∑ 𝑐𝑐𝑡𝑡𝑡𝑡

, where 𝑐𝑐𝑡𝑡 denotes the number of 

matches in frame t and 𝑑𝑑𝑡𝑡,𝑖𝑖is the bounding box overlap of target i with its assigned ground truth 
object. More details on these metrics can be found in MOTChallenge [15]. 

We ran multiple combinations of parameters as seen in Table 9. Test numbers 8, 10, and 11 gave 
an MOTA of 85.4%, which was the highest. The settings of test no. 10 were chosen for further 
analysis since it contains intermediate values between the other two. The parameters at test no. 10 
were chosen for further analysis. A comparison was then performed on all test set videos using 
different confidence thresholds in detection. A confidence threshold of 0.9 showed the best 
performance with a 34% overall MOTA score. Results are also presented for the confidence 
threshold of 0.9 and for all the different tracking evaluation metrics in Table 2 and Table 3. Clearly, 
the fine-tuned object detector used with optical flow boosting performs best for Deep-SORT. Table 
9 shows some qualitative results.  

Table 9. Comparative Results of Finetuning Deep SORT. 

Test no. min_det_conf n init Max IOU 
dist Max age max_cos._distance MOTA 

1 0.5 10 0.3 15 0.2 38.00% 
2 0.5 10 0.4 15 0.2 56.90% 
3 0.5 10 0.5 15 0.2 72.30% 
4 0.5 10 0.6 15 0.2 73.70% 
5 0.5 10 0.7 15 0.2 70.10% 
6 0.5 10 0.6 10 0.2 73.70% 
7 0.5 10 0.6 20 0.2 73.70% 
8 0.5 5 0.6 15 0.2 85.40% 
9 0.5 15 0.6 15 0.2 59.10% 
10 0.5 5 0.6 15 0.3 85.40% 
11 0.5 5 0.6 15 0.4 85.40% 
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GCNNMatch Results for pedestrian detection 
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GCNNMatch Results for VA-Beach Vehicles 
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Appendix C: Additional Results for Kinematics 
We did notice that the vehicle’s distance from the traffic camera also contributed to an instability 
in the speed calculation. By plotting the object’s speed versus the object’s pixel distance from the 
camera, a threshold distance is determined in which to remove kinematic calculations outside of 
this threshold; an example is seen in Figure 17. We can see that the speed of each vehicle 
(represented by each individual line) stays under about 50mph when the vehicle is close to the 
traffic camera (left side of the vertical). Once each vehicle gets too far from the traffic camera, the 
speed becomes erratic (right side of the vertical line). Thus, a threshold distance of 132 pixels from 
the camera was chosen for the example. Removing the calculations of any vehicles beyond this 
distance reduces the possibility of erratic or incorrect data being used in future analysis. This 
analysis highlights the limitations of the camera system and defines their reliability.  

 

Figure 17. An example of the calculated speeds vs. distance from the camera.  

In Figure 17, each separate line represents the speed of that individual object. The vertical line 
represents the threshold distance. This is the pixel distance in which any object speed calculation 
becomes unstable.  
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