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Abstract 
In the context of smart cities, ensuring transportation safety is a complex task that involves 
understanding the impact of new technologies, measuring the effectiveness of safety 
measures, and identifying high-risk locations. However, recent advances in 
communication and big data analytics have made it possible to address these challenges 
in a more efficient manner. Traditional transportation management centers (TMCs) are 
limited in their ability to analyze large amounts of data for safety evaluation. To overcome 
this limitation, this project aims to develop an intelligent transportation management 
center (ITMC) that utilizes automated video analysis to assess safety. By leveraging 
Intelligent Transportation Systems (ITS) technologies and big data analytics, the 
proposed ITMC can proactively evaluate safety at signalized intersections. Unlike 
conventional methods that rely on crash data, the ITMC uses safety surrogate measures 
(SSMs) to identify near-crash situations and calculate proactive risk. In this study, the 
results obtained from a machine vision model were used along with the Post 
Encroachment Time (PET) safety surrogate measure (SSM) to assess safety proactively 
at a selected signalized intersection. The study utilized the latest YOLO series model, 
YOLOX, for deep learning to detect and classify road users in video frames from four 
intersection traffic cameras. 
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Introduction 
Transportation management centers (TMCs) oversee critical functions such as incident 
management, traffic signal operations, and road surveillance (1). TMCs play a pivotal role in 
processing real-time data collected from the field, devising response plans, and implementing 
strategies to effectively manage the transportation network. However, while TMCs assume 
significant responsibilities in transportation management, safety studies and routine safety 
evaluations are often not within their purview. This limitation becomes even more evident when 
considering the findings of several studies (2, 3) that highlight the benefits and importance of 
integrating safety considerations into transportation system management and optimization.  

Despite the significant advancements in Intelligent Transportation Systems (ITS), sensor 
technology, and artificial intelligence (AI), TMCs still heavily rely on human operators to perform 
tasks such as incident detection. This reliance on human resources can undermine the efficiency 
and accuracy of safety-related operations. The integration of sensors and devices into 
transportation infrastructure, as well as the widespread use of connected vehicles and personal 
devices, has given rise to a connected environment. This interconnected ecosystem generates a 
tremendous volume of data from various sources, including cameras, smartphones, and connected 
vehicle units. The current state of TMCs does not include the necessary capabilities and tools to 
effectively address the complex and dynamic challenges that arise. This study aims to tackle the 
aforementioned challenges by developing an Intelligent Transportation Management Center 
(ITMC) that leverages advanced machine learning algorithms, big data science, and image 
processing techniques to proactively evaluate safety at signalized intersections.  

Because of their design and function, signalized intersections pose a higher risk for accidents than 
other areas of the road network. In the United States, over 50% of the combined sum of fatal and 
injury accidents take place either directly at intersections or in their immediate vicinity (4). The 
primary objective of this study is to utilize video footage captured by four traffic cameras at a 
signalized intersection to collect essential data for proactive safety monitoring, to enhance safety 
assessment, and to provide valuable insights into transportation planning and decision-making.  

To proactively evaluate safety, surrogate safety measures (SSMs) are often utilized to identify 
near-crash events. Post encroachment time (PET), a popular SSM, was used in this study to 
conduct proactive safety analysis. Later in this report, the selection of PET as the most suitable 
proactive measure is discussed. By utilizing deep learning models and analyzing video frames 
from four surveillance cameras, objects were detected and classified. The computer-vision model 
outcomes were then used to compute PET as an SSM. Spatiotemporal analysis of near-crashes was 
also conducted to investigate where and when these critical events are more likely to occur. 
Spatiotemporal analyses could assist in solving safety problems and could lead us to understand 
the mechanism of failure at the time of actual crashes. Furthermore, conflicts between different 
road users (e.g., vehicles, pedestrians, cyclists), violations of traffic rules, and infrastructure-
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related issues (e.g., signal timing) were investigated. A spatial analysis was conducted, resulting 
in a heatmap visualization that highlights areas where critical events occurred. The heatmap 
provides a visual representation of safety levels, indicating higher risk exposure and potential 
safety hotspots. Near-crash events were identified at different times of day (peak vs. off-peak 
hours, weekend vs. weekdays) and at different stages of the traffic light cycle. Analyzing near-
crash events during various phases of the traffic signal cycle provides valuable insights into safety 
risk dynamics at the signalized intersection. The aim is to identify critical stages where conflicts 
between road users are more likely to occur. Understanding these patterns is essential for 
implementing proactive safety countermeasures, optimizing signal timings, and enhancing overall 
intersection safety. 

Proactive Safety Evaluation 
Traditionally, safety assessment relies on historical crash and exposure data. However, this 
approach has several shortcomings, such as the requirement for a significant number of crashes to 
produce credible results due to the rarity of crashes (5, 6). Consequently, the traditional approach 
is considered reactive since a significant number of crashes need to occur before an action can be 
taken. Even a long period of time may not produce enough data, especially if a specific crash type 
is being studied (e.g., a crash between bicyclists making left turns from an intersection approach 
and the through traffic on the opposite approach). Moreover, historical crash datasets neglect a 
significant number of unreported crashes and conflicts that happen more often than crashes (5, 7). 
In addition, changes may occur over long periods of time, such as design improvements and 
demand variation, that could potentially impact the results of safety evaluations.  

The limitations of reactive safety evaluation also reduce the ability to examine the safety effects 
of recently implemented safety countermeasures. A proactive solution to address this issue is 
employing SSMs, which can be used to identify potentially dangerous situations (i.e., near-
crashes). In many studies (8–10) researchers have employed SSMs that analyze non-crash traffic 
conflicts and near-crashes that happen more frequently (11). SSMs are numerical measurements 
used to identify potentially hazardous events that occur in specific locations along a roadway. The 
concept of using SSMs was first introduced around the 1960s (12); however, new advancements 
in ITS sensor technologies, machine vision methods, and connected vehicle technologies brought 
further attention to this field. Most SSMs compute the frequency and severity of traffic conflicts 
and near-crashes and correlate them with the actual corresponding crashes (13). SSMs can aid in 
identification of locations with high crash risk, enable proactive safety assessment of the 
transportation system, and measure the effectiveness of certain countermeasures. 

Near-crash events are situations where drivers must execute rapid evasive maneuvers, such as 
emergency braking or steering, when faced with a potential crash risk. Drawing on the kinetic data 
of moving objects (e.g., vehicles), SSMs can be used to proactively identify safety hazards and 
recommend times and locations to implement safety countermeasures (14). Near-crashes and 
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actual crashes differ in that near-crashes are situations where a potential crash was narrowly 
avoided, whereas actual crashes involve a collision between two or more objects. Although near-
crashes do not cause the same degree of harm, they are still deemed a significant safety concern. 
The importance of capturing and recording near-crash events lies in their potential to reveal 
specific safety hazards that could ultimately cause an actual crash. By identifying these hazards 
early on, it becomes possible to intervene and prevent crashes from occurring. This underscores 
the significance of having surveillance systems that are capable of recording near-crash events to 
aid in the analysis of potential incidents and the development of strategies to mitigate risks.  

To detect near-crashes at specific locations, data collection is a crucial step. Various methods, such 
as video cameras (15), smartphones (16), and roadside light detection and ranging (LiDAR) (17), 
can be employed. One emerging method is computer vision with deep learning algorithms, which 
analyzes video footage of traffic flows to identify potential safety hazards at intersections. To 
better understand how near-crashes are identified, different SSMs methods are essential to 
consider. These methods are categorized into time-based, energy-based, and deceleration-based 
SSMs (18). The following section provides a brief discussion of these methods.  

Time-Based SSM 
The time-based SSM category is based on the concept that the proximity in time to a potential 
collision is a key measure of crash risk (18). Time-to-collision (TTC) estimates the remaining time 
before two road users would collide if they maintain their current paths, but its constant speed 
assumptions limit its real-world applicability (19–21). Time-to-accident predicts the time until a 
crash occurs, considering the speed and distance of involved vehicles during evasive actions (22). 
Time-exposed TTC and time-integrated TTC assess risk based on hazardous driving duration, with 
time-exposed TTC useful for microscopic simulations but requiring continuous calculation (23). 
PET measures the time from the first vehicle leaving a conflict area until the second vehicle enters 
the conflict area, providing realistic risk assessments without relying on constant speed 
assumptions (18). Gap time builds on PET’s concept and measures the time difference between 
two vehicles entering the conflict location, though it is applicable only to angle/crossing 
interactions and no other situations (24). 

Deceleration-based SSM 
Deceleration rate to avoid the crash (DRAC) is a deceleration-based SSM that quantifies the 
severity of an encounter by assessing a car’s deceleration capability to prevent a collision. It 
computes the minimum braking rate needed to avoid colliding with another vehicle, assuming one 
vehicle takes evasive action while the other maintains its speed and direction (18). The Crash 
Potential Index is another SSM that considers a vehicle’s maximum deceleration rate (MADR) to 
indicate the probability of DRAC exceeding the MADR at any moment (25). Distance-based 
SSMs, often grouped with deceleration-based SSMs, rely on MADR assumptions and include 
indicators like rear-end collision risk index and Potential Index for Collision with Urgent 
Deceleration (PICUD) (26–28). However, PICUD has limitations, such as being only applicable 
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in lane change scenarios and lacking established threshold values. Other distance-based SSMs 
have also been proposed, such as Proportion of Stopping Distance, Difference of Space Distance 
and Stopping Distance, and Unsafe Density, that utilize emergency deceleration rates (29–31). 

Energy-based SSM 
Energy-based SSMs were developed to assess the severity of interactions, going beyond the crash 
proximity evaluation offered by time and deceleration-based SSMs. Delta V is a prominent energy-
based measure, quantifying the change in velocity resulting from a collision between road users, 
factoring in mass, speed, and collision angle (32). Bagdadi introduced a conflict severity measure 
that incorporates delta V, time-to-accident, and a maximum average deceleration assumption, 
evaluating the effectiveness of evasive maneuvers (33). Laureshyn et al. proposed the extended 
delta V indicator, combining delta V with time and a deceleration constant to estimate collision 
likelihood and severity (34). Additionally, energy-based SSMs like Crash Index (CAI) and 
Conflict Index (CFI) incorporate various kinetic energy variables not limited to delta V. CAI 
employs acceleration, speed, and minimum time to collision to estimate kinetic energy in car-
following interactions (35). CFI considers speeds, masses, angles of road users, and PET to 
evaluate the probability and severity of a collision (36). These energy-based SSMs offer valuable 
insights into the severity of conflicts, enhancing transportation safety assessments. 

Based on the literature review of different SSM methods and our project goal, we decided to use 
PET. PET has been widely used and is an accepted measure among researchers. It also has some 
advantages over other measures. One key advantage is its ability to reflect driver behavior without 
making assumptions about speed, direction, or collision course. This makes it a valuable measure 
for accurately assessing safety at intersections by considering real-time interactions of road users. 
PET also takes into account the lateral distance between vehicles, which is a significant factor in 
lane-changing scenarios. Furthermore, PET is straightforward to implement and its values have a 
clear interpretation, which makes it suitable for real-world applications.  

ITMC System Architecture Development 
After discussing potential locations with the City of Chula Vista, a signalized intersection 
(Broadway and H Street) was identified for the development and installation of the ITMC. This 
intersection sees a variety of transportation modes and has had a relatively high number of past 
roadway crashes. The research team arranged for the installation on mast arms and configured four 
Hikvision DS-2DY3220IW-DE(4) v.B Series 2 MP Compact Outdoor Network IR PTZ Cameras1 
placed on each of the four traffic light masts at the intersection, with each camera facing toward 
one of the four approaches (Figure 1[a]). 

 
 
1 https://us.hikvision.com/en/products/cameras/network-ptz-camera/value-series/ir/upright-pan-tilt/2-mp-compact-
outdoor-network-0 
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Figure 1. Photos. (a) Hikvision DS-2DY3220IW-DE4 Outdoor PTZ Camera. (b) A mounted traffic camera on 

an arm mast of the traffic light located at the intersection of H St and Broadway in Chula Vista. 

The research team configured each camera to capture continuous 720p (progressive HD) video, at 
10 frames/second, of traffic approaching each light. Figure 2 shows an aerial view of all four ITMC 
camera installations. The yellow callout boxes indicate the HTTP interface port number used to 
access the web interface on each camera for orientation (PTZ) configuration, followed by the Real 
Time Streaming Protocol (RTSP) port number used to capture and save video. Videos were 
captured and saved every hour on the hour in separate Audio Video Interleave (.avi) container files 
with Motion JPEG (MJPEG) used for video compression. The data collection period spanned 
nearly one month, from mid-November 2022 to mid-December 2022. The research specifically 
focused on near-crash events involving vehicles, trucks, bicycles, motorcycles, and pedestrians. 

 
Figure 2. Photo. Aerial view of ITMC camera installations. Yellow callout boxes indicate HTTP interface port 

number/RTSP port number. 

The team installed a Cradlepoint IBR1700 Series Ruggedized Router with an LTE interface to 
facilitate retrieval of saved video files over a cellular network connection. Each camera was 
configured to save video files on a separate NVIDIA® Jetson AGX Xavier™ edge device with a 
USB attached 5 TB hard drive. Videos were copied over a Verizon LTE network to our university 
GPU server notos.sdsu.edu for object detection and post-processing. The IBR1700 router, four 
Jetson AGXs, and four 5 TB hard drives reside in a sidewalk cabinet in front of the Verizon store 

8002/8006

8003/8007

8001/8005

8004/8008



   
 

6 
 

shown in Figure 2. Additional technical details regarding the server, as well as how large amounts 
of data are processed can be found in Appendix A.   

 

Figure 3. Diagram. Schematic of the intersection of H Street and Broadway in the City of Chula Vista, 
showing information technology infrastructure installed to support the ITMC project.  

Safety Monitoring System Development  
A monitoring system was developed to detect and track moving objects (e.g., vehicles) in order to 
identify near-crash events. This section discusses computer vision models for object detection and 
classification as well as risk calculations using near-crash event frequency.  

Computer Vision Models 
Deep learning research has been accelerated by the availability of affordable computer 
infrastructure, advancements in parallel algorithms, and developments in big data science (37). 
Object detection models are a type of computer vision algorithm used to identify and locate objects 
within an image or video. These models use deep learning techniques and are trained on large 
datasets of labeled images to learn patterns and features that can distinguish different objects. Once 
trained, object detection models can be used in real-world scenarios, making them useful in a wide 
range of applications such as surveillance, autonomous driving, and object recognition in photos 
and videos. Popular object detection models include YOLO (You Only Look Once) (38), Faster 
R-CNN (Region-based Convolutional Neural Network) (39), and SSD (Single Shot MultiBox 
Detector) (40). In this study, the OpenCV library in Python was utilized for computer vision to 
perform tasks such as object detection. There are two primary categories of object detection 
models: two-stage models and one-stage models (41). One-stage models integrate the tasks of 
classification and bounding box detection into one step, resulting in faster performance. Two-stage 
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detectors first propose the regions of objects using deep features before determining the bounding 
box and classifying the object. While two-stage detectors are more accurate, they require higher 
computational resources (37). We opted to use one-stage detectors considering the potential real-
time future safety applications. In this study, YOLOX, a recent addition to the YOLO series, was 
employed because of its capacity to strike a balance between speed and accuracy in real-time object 
detection tasks. YOLOX has surpassed its competitor, YOLOv3, by achieving an average 
precision of 47.3% on COCO, a dataset comprising 328,000 images utilized for training machine 
learning models in object detection. (37). The COCO dataset consists of real-world images with 
diverse backgrounds and overlapping objects, making it a good benchmark for evaluating object 
detection models. Ge et al. (2021) provides a detailed explanation of YOLOX (42). 

Database Management 
We utilized phpMyAdmin to create a MySQL database. phpMyAdmin is a free and open-source 
administration tool for managing MySQL databases. Each object in our dataset was assigned a 
unique ID, and data such as object ID, time, block ID, and object name (mode) were recorded in 
real-time to a MySQL table. This data was collected by tracking the center point of each object’s 
bounding box as it crossed the boundary line of each block. Additionally, the same data was stored 
in a CSV file for monitoring and debugging purposes. An example of the data stored in both CSV 
and MySQL formats for a few objects is provided in Appendix B.  

Risk Calculation 
The computer vision models discussed earlier were utilized to count the number of road users 
(vehicles, bicycles, pedestrians) crossing the intersections to estimate exposure. The ITMC makes 
use of these exposure estimations, as well as the frequency of near-crash events, to estimate a risk 
measure. A general formula to quantify risk was employed as presented in Equation 1. 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸

 Equation 1 

The ITMC continuously generates video data from four cameras, producing a huge amount of data 
to be processed. For spatial safety evaluation, the intersection was divided into multiple blocks as 
shown in 4(a). Each block was used to calculate the PET value for every interaction among objects 
that occurs within that block. These blocks were created by extending the traffic lines of the four 
intersection approaches towards the center of the intersection; thus each block is approximately a 
square with a side length equal to the traffic lane width. To calculate the PET value for two objects 
interacting with each other, the difference between the exit time of the first object and the arrival 
time of the second object was computed, an example of which is demonstrated in Figure 4(b). This 
calculation was carried out for all 90 blocks, and the results were stored in the MySQL database.  

Different thresholds for PET have been used in the past to classify near-crash severity. In 
Zangenehpour et al., an in-depth examination of interactions between cyclists and turning vehicles 
facilitated the identification of diverse PET thresholds. Specifically, PET values less than 1.5 s 
were categorized as highly hazardous interactions, while those ranging from 1.5 to 3 s were 
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deemed risky. PET values spanning from 3 to 5 s indicated mild interactions, while PET values 
exceeding 5 s suggested a lack of interaction between cyclists and turning vehicles (43). Kumar et 
al. studied pedestrian conflicts with right-turning vehicles at signalized intersections. They used k-
means clustering to identify a PET range of 0.48 s to 5.40 s, classified into four severity levels for 
near-crash incidents, ranging from most serious to least serious conflicts (44). Marisamynathan 
and Vedagiri reported that PET values of ≤ 2 s suggested a high probability of interaction between 
pedestrians and vehicles within the crosswalk. Conversely, PET values greater than 5.5 s indicated 
no chance of interaction (45). Peesapati et al. examined crashes involving left-turning vehicles and 
opposing through vehicles at four-leg signalized intersections. Their research identified 
correlations between crashes and various PET thresholds. The highest correlation was observed 
for PET values of equal to or less than 1 s, followed by those equal to or less than 2 s and 3 s (46). 
In the present study, five PET thresholds (≤ 5 s; ≤ 4 s; ≤ 3 s; ≤ 2 s; and ≤ 1 s) for identifying critical 
interactions were used. PET values greater than 5 s were assumed to correspond to events with no 
interactions. The severity of a near-crash event varies depending on the PET value, and thus event 
severity can be categorized as “Very dangerous,” “Dangerous,” “Mild,” or “No interaction.” 

 
Figure 4. Diagrams. (a) Blocks drawn from the top view, (b) an example of PET calculation in a block. 

A total of 90 blocks were drawn, each of which was assigned a unique ID. The lines defining the 
boundaries of the blocks were drawn using the OpenCV line command. Figure 4(a) shows the top 
view of the blocks which were drawn in the intersection. 

Results 
Time and space are important factors in critical events. Near-crash events were identified at 
different times of day (peak vs. off-peak hours, weekend vs. weekdays), at various stages of traffic 
light, and for different interaction types (car vs. car, car vs. truck, car vs. pedestrian, car vs. 
bicycle). Heatmaps were also created to show the parts of the intersection where near-crashes are 
more likely to occur. Lastly, a web-based visualization tool was developed using Grafana. This 
tool provides a dashboard that can be used to visualize certain outcomes of the spatio-temporal 
analysis. Due to the report’s page constraints, enlarged versions of the graphs in this section are 
available in Appendix C for detailed reference. 
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Temporal Analysis of Near-crash Events 
Average Near-crash Frequency 
The frequency of near-crash events was averaged for different days of the week and times of the 
day, as well as weekdays versus weekends using about a month’s worth of data. Figure 5(a) and 
5(b) depict the analyses undertaken for weekdays and weekends to examine the interactions 
between cars vs. cars with a PET of less than or equal to 5 s, 4 s, 3 s, and 2 s. A comparison of 
these two graphs shows two different patterns for weekdays and weekends. According to Figure 
5(a), on weekdays the first peak occurs between 7:00 a.m. and 8:00 a.m., aligning with the start of 
working hours, and it reaches its highest frequency at 4:00 p.m., which can be attributed to most 
workers returning from work around that time. Conversely, on weekends, as depicted in Figure 
5(b), the frequency starts to increase steadily, with relatively high frequencies observed from 11 
a.m. to 4 p.m. The average frequency begins to decrease from 4 p.m. on weekdays, whereas this 
decline starts earlier, around 2 p.m. on weekends. 

Due to their lower frequencies, the most severe car-car interactions with a PET of less than or 
equal to 1 s are illustrated in a separate graph (see Figure 24) in Appendix D. Similar to Figures 
5(a) and 5(b), one can observe a similar trend in terms of the highest frequency and peak hours. 
When comparing events with a PET of 1 s or less to those with a PET of 5 s or less at their highest 
frequency, it can be noted that the most severe interactions constitute 5% of all interactions. Any 
event with PET of greater than 5 s is not considered as an actual interaction. 

Figures 5(c) and 5(d) present interactions between cars and trucks. On weekdays, the initial peak 
was observed at 7 a.m., and more or less, similar trends to car vs. car interactions were observed, 
albeit with significantly lower frequency. The downtrend after 4 p.m. is very sharp, suggesting that 
not many trucks are on the streets after this time. Also, the overall average frequency is 
significantly lower on weekends compared to weekdays. The interactions between cars and trucks 
with a PET of less than or equal to 1 s (i.e., the most severe car vs. truck interactions) are shown 
in Figure 25 in Appendix D. The figure shows that the frequency trend of conflicts remains 
relatively consistent with that of Figures 7(c and d). Similar to car vs. car interactions, the most 
severe car vs. truck interactions only account for 5% of all interactions. 

Figures 5(e) and 5(f) depict the interactions between cars and pedestrians. The frequency steadily 
increases for both weekdays and weekends, and the peak frequency is observed at 4 p.m. (highest 
frequency slightly higher in weekdays), followed by a subsequent decrease. A morning peak 
frequency was not observed similar to the car vs. car and car vs. truck graphs. A similar pattern 
emerged for interactions with a PET of less than or equal to 1 s, albeit with a reduced frequency. 

The analysis of interactions between cars and bicycles, depicted in Figures 5(g) and 5(h), shows 
limited interaction frequencies throughout the day, with the highest frequency recorded at seven 
interactions. Due to the relatively low number of interactions, discerning a specific pattern is 
challenging. Also, no interactions with a PET of 1 s or less were observed during both weekdays 
and weekends. 
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Figure 5. Graphs. Average frequency of interactions by hour during weekdays and weekend; (a, b) car vs. 

car, (c, d) car vs. truck, (e, f) car vs. pedestrian, and (g, h) car vs. bicycle. 

An analysis of near-crashes by the day of the week for different interaction types was conducted 
(Figure 6). It should be noted that for visibility purposes the y-axis scaling is different for the 
graphs in the figures. These patterns suggest that specific weekdays may experience heightened 
traffic congestion and interactions among road users, contributing to an increased likelihood of 
near-crash events. The decrease in frequency starting from Thursday can be attributed to the 
approaching weekend. As shown in Figure 6, it is evident that the most frequent interactions occur 
between cars and cars, followed by interactions between cars and trucks. The subgraphs generally 
exhibit a consistent trend of fluctuating frequencies over the days of the week, except for car vs. 
truck interactions, which steadily decrease after Thursday and continue to decline until Sunday.  

Near-crash Risk 
An analysis was conducted to compare the risks of near-crash events during weekdays versus 
weekends at different times of the day, as well as days of the week for different interaction types. 
Using a generic risk formula in equation 1, risk was calculated by dividing the number of unsafe 
situations (i.e., frequency of near-crash events with a selected PET threshold) by the exposure 
events (defined as the frequency of all viable interactions; i.e., frequency of near-crashes with a 
PET threshold equal to or less than 5 s). 
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Figure 6. Graphs. Average frequency of interactions per day (a) car vs. car, (b) car vs. truck, (c) car vs. 
pedestrian, and (d) car vs. bicycle. 

 Figure 7(a) presents the risks associated with interactions between cars and cars on weekdays. 
Despite Figure 5(a) indicating the highest frequency of interactions during weekdays occurring at 
4 p.m., the risk levels are almost constant, except for the midnight to 6 a.m. timeframe. Looking 
at more severe interactions (interactions with PET < 2 s), the highest risk occurs at 7 a.m., and then 
it gradually goes down towards the end of the day. The risk patterns for both weekdays and 
weekends, Figures 7(a) and 7(b), follow a similar trend. This suggests that the risk profiles 
associated with car vs. car interactions remain consistent regardless of whether it is a weekday or 
a weekend. Risk values associated with more severe interactions (i.e., with PET < 2 s) are slightly 
higher during weekends from midnight to 4 a.m. compared to weekdays, suggesting riskier 
behaviors on weekends at that time. 

Risks associated with car vs. truck interactions during weekdays (Figure 7[c]) and weekends 
(Figure 7[d]) show similar patterns. On both weekdays and weekends, there are fluctuations and 
some missing data from midnight until early morning. Subsequently, risk values remain relatively 
constant, followed by some fluctuations towards midnight. At specific hours like 12 a.m. on 
weekdays or 2 a.m. on weekends, the risk for interactions with a PET of less than or equal to 4 s 
equals 1. There are also some zero values for risk from 2 a.m. to 4 a.m. on weekends. These 
outliers, as well as the missing data, are there due to either limited number of observations or the 
absence of trucks at certain times of the day. 
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Figure 7. Graphs. Risk of near-crashes per hour during weekdays and weekend; (a, b) car vs. car, (c, d) car 
vs. truck, (e, f) car vs. pedestrian, and (g, h) car vs. bicycle. 

Risk variations for car-pedestrian and car-bicycle interactions are illustrated in Figures 7(e and f) 
and Figure 7(g and h), respectively. However, insufficient car-pedestrian interactions from 
evenings till mornings, as well as insufficient car-bike interactions throughout the day, contribute 
to some fluctuations, especially for car-bike interactions, and thus no clear patterns are observed. 
From around 10 a.m. to 4 p.m. when car-pedestrian interaction frequency is at the highest level, 
risk values show a steady and almost constant trend followed by a slight decline. Similar to car-
car interactions, although the car-pedestrian frequency shows an upward trend reaching its highest 
at around 4 p.m. (Figure 5[e] and 5[f]), the risk values are almost constant, and there is no clear 
peak. As shown in Figure 7, looking at more severe car-pedestrian interactions (with PET < 1 s), 
risk values are generally higher (~0.2) compared to car-car or car-truck interactions (~0.05). 

Another risk analysis was conducted across different days of the week for various types of 
interactions, as shown in Figure 8. Risk values for all interaction types are steady and constant, 
except for car-bike interactions due to insufficient car-bike observations. Flat risk graphs show 
that no particular day experiences a higher risk for different interaction types, although Fridays 
and weekends typically have fewer interaction frequencies, as shown in Figure 6. Comparing 
Figure 8(a), Figure 8(b), and Figure 8(c), risk values for car-car interactions (with PET < 4 s or < 
3 s or < 2 s) are slightly higher than those of car-truck and car-pedestrian interactions, suggesting 
that most people typically maintain a higher time headway when interacting with trucks and 
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pedestrians. However, similar to what Figures 7(e) and 7(f) show, and looking at more severe car-
pedestrian interactions (with PET < 1 s), now with a greater number of observations (day in Figure 
8 vs. hour in Figure 7), risk values are consistently higher (~0.2) compared to car-car or car-truck 
interactions (~0.05). This indicates that the risk of occurrence in car-pedestrian interactions, when 
the PET is less than 1 s, is higher compared to other types of interactions. 

 

Figure 8. Graphs. Risk of near-crashes over the week for (a) car-car, (b) car-truck, (c) car-pedestrian, and (d) 
car-bike interactions.  

Analysis of Near-crash Events During Different Stages of Signal 
An analysis of near-crashes during different stages of the traffic signals was conducted for three 
days, specifically June 13, 14, and 15, 2023, using the camera facing H Street west. This analysis 
only accounts for interactions with a PET of less than 3 s, focusing on more severe interactions. 
Also, due to an insufficient number of observations for car-pedestrian, car-bike, and car-truck 
interactions, only car-car interactions are discussed. 

Table 1. Car vs. Car Interactions at Various Signal Stages as a Percentage of the Total 

Stage of Signal Percentage of the Total 
Red-Red 1.5% 

Red-Yellow 0.81% 
Red-Green 8.10% 

Yellow-Yellow 0.62% 
Yellow-Green 2.98% 
Green-Green 85.99% 

As expected, the majority of interactions involving cars vs. cars occurred when both objects were 
at the green stage (Table 1). This finding aligns with the higher frequency of interactions during 
this stage due to simultaneous movement of road users. Conversely, the lowest percentages for car 
vs. car interactions are observed when at least one of the objects is at the yellow stage. For instance, 
the red-red stage scenario means that both road objects were in the red signal stage, and the 
possibility of these interactions could be observed where both objects might have taken a right turn 
from the same street while the signal was red. Different examples of conflicts at various stages of 
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the traffic signal are depicted in Appendix D, Figure 26. To understand how the numbers were 
derived in Table 1, consider the green-green signal stage. Out of 4,333 total interactions that took 
place in less than 3 seconds, 3,726 of them happened when both objects were actively in the green 
stage. This significant proportion of interactions during the green stage is how we arrive at the 
85.99% figure. 

Table 2. Risk Values for Car vs. Car Interactions at Various Signal Stages 

Stage of Signal Percentage of the Total 
Red-Red 75% 

Red-Yellow 67% 
Red-Green 74% 

Yellow-Yellow 100% 
Yellow-Green 75% 
Green-Green 81% 

Another analysis was conducted to evaluate the risk of events during different stages of the signal. 
Risk values were obtained by dividing the frequency of events with a PET of less than 3 s by the 
frequency of events with PET of less than 5 s within each traffic signal stage combination (e.g., 
Red vs. Red). Table 2 demonstrates that the risk values for car vs. car interactions is the highest 
when both cars are in the yellow stage. This observation appears reasonable, as drivers aim to clear 
the intersection before facing the red light, resulting in more aggressive behavior during these 
stages compared to others. The second highest risk values are observed when both cars are in the 
green stage. To elucidate the calculations behind Table 2, the procedure involved dividing the 
count of interactions with a PET of 3 seconds or less by the total count of interactions with a PET 
of 5 seconds or less, all within the same signal stage. Taking the yellow-yellow stage as an 
example, the risk value is displayed as 100%. This signifies that every interaction occurring while 
both objects were in the yellow stage of the signal resulted in a PET of 3 seconds or less. 
Specifically, there were 27 such interactions. Coincidentally, the total count of interactions with a 
PET of 5 seconds or less was also 27. This leads to the calculated risk percentage of 100%.  

Edge Computation 
Video from each Hikvision camera was transmitted using RTSP at a pixel resolution of 1280 × 
720 (e.g., 720p or standard high definition) and a frame rate of 10 frames/second. With Motion 
JPEG compression (MJPG-10), an estimated data rate of 11.4 Mb/s was required to stream each 
video to SDSU for processing and archival. With four cameras streaming simultaneously, 45.7 
Mbps was required. Verizon 4G LTE wireless broadband supports typical upload speeds of 5 
Mbps, with a theoretical maximum peak upload data-rate of 50 Mbps. Packet loss occurring over 
a 4G LTE network results in frame loss, which amounted to 4%, leading to the loss of nearly 1,440 
frames out of 36,000 frames in a 1-hour video. With four cameras streaming at only 10 
frames/second, which is not real-time (e.g., 30 frames/second), the required data rate of 45.7 Mbps 
was near the maximum peak upload data rate of 50 Mbps. From the limited supported data rate, 
we see that streaming intersection video to a central source over a single cellular 4G LTE link is 
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not scalable beyond more than one intersection per LTE transceiver/modem. A scalable scheme is 
to stream each camera video to a local device capable of performing vehicle object detection and 
tracking, so video processing can be performed locally rather than centrally. In the traffic signal 
control cabinet, we installed four Nvidia Jetson AGX Xavier edge computing devices, one 
assigned to each camera. These Jetsons were connected to a switched 100 Mbps Local Area 
Ethernet Network that also connects to the four Hikvision cameras. With 100 Mbps > 45.7 Mbps, 
the probability of frame loss is substantially reduced. Each camera streams video to an assigned 
Jetson, where object detection and tracking is performed. In this edge-based scheme, only the 
results of object detection and tracking are transmitted back to SDSU over the 4G LTE network. 
Results consist of a database record with a timestamp indicating the event where a detected vehicle 
crosses a grid line boundary along with five, four-byte integers and a mode string that specifies a 
vehicle classification label (e.g., car, truck, van). Typical record lengths are 30 bytes; at a typical 
upload rate of 5 Mbps, a typical vehicle event record can be transmitted from a Jetson to SDSU 
over 4G LTE in 48 μs, making an edge-based object detection and tracking scheme scalable to 
accommodate data capture from multiple intersections over a single 4G LTE link. 

Web-based Tool Development 
A web-based tool was developed that can be used by practitioners to visualize data and perform 
safety evaluations. The tool offers various analyses, such as traffic volume for different road users, 
daily traffic patterns, movement types, near-crash events, PET by interaction type, risk 
calculations, and the temporal and spatial distribution of critical conflicts. The tool was developed 
with Grafana, which is an open-source data visualization and analytics platform. It is a suitable 
platform for visualizing complex data sets and metrics, providing a user-friendly web interface 
with drag-and-drop features to create customized dashboards that can be shared across teams and 
organizations. Grafana supports a wide range of data sources, including databases, cloud services, 
and third-party applications. A MySQL database was developed to store the data and was linked 
to Grafana for creating interactive dashboards and charts. The combination of MySQL and Grafana 
provided an effective solution for collecting, storing, and visualizing data. Grafana, version 8.5.22, 
was used in conjunction with the ImageIt plugin, version 1.0.7. The dashboard retrieved data from 
the MySQL tables created using phpMyAdmin. 

The dashboard consists of two main sections: Volume and PET Interactions. Each section includes 
various analyses, referred to as panels, all of which are outlined in detail in Table 3 found in 
Appendix E. Figure 10 provides an overview of the dashboard presented in a video wall located in 
the Smart Transportation Analytics Research (STAR) lab at SDSU. 

Dashboard variables were defined to enable data filtering and query computations. These variables 
were utilized in specific panels, providing users with the ability to customize and tailor their data 
analysis. Table 3 and 4 in Appendix E outline the variables within the dashboard. 
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Spatial safety assessment results are visualized using two panels (Figure 11) powered by the 
ImageIt Grafana plug-in, facilitating a spatial visualization of interaction severity frequency (part 
a) and risk (part b) within a designated block area and intersection across defined time intervals. 

 

Figure 9. Screen capture. Dashboard overview. 

In the “Intersection PET Heatmap” panel, the more dangerous the interaction in terms of the PET 
threshold, the higher its weight; if there is no interaction, a count value of zero is assigned. Colors 
were assigned to each block for Figure 11(a) based on the combined frequency of 
verydangerousPET, dangerousPET, and mildPET interactions using the following thresholds: 
green for frequencies below 50, yellow for frequencies between 50 and 100, orange for frequencies 
between 100 and 200, and red for frequencies greater than 200.  

In the “Normalized Heatmap” panel, risk calculations for each block are determined using 
Equation 1, where interactions with a PET of less than 2 s are considered unsafe situations, while 
interactions with a PET of less than 5 s represent exposure situations. These thresholds are user 
configurable within the dashboard. In Figure 11(b), a similar threshold-based approach is adopted 
to visualize risk. Colors are assigned based on risk values, with green indicating risk values below 
5%, yellow 5% to 10%, orange 10% to 20%, and red exceeding 20%.    

 
Figure 10. Screen capture. Interaction PET heatmap panel: (a) frequency, (b) risk. 

The descriptions of other dashboard panels can be found in Appendix E for reference. 
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Conclusions  
This study developed an ITMC focusing on proactive intersection safety assessment. Near-crash 
event identification using PET as an SSM was utilized to identify potentially risky situations. At a 
signalized intersection in Chula Vista, video data were used to deploy deep learning models to 
detect and classify moving objects within the video frames. Model deployment was conducted 
both on a central server and on edge computation devices. For model development, YOLOX was 
used as the deep learning modeling framework. The outcomes of the computer vision models were 
used to compute PET values for various interaction types. 

The temporal analysis showed that car versus car interactions dominated, with the lowest 
interaction frequency involving cars and bicycles, reflecting the limited presence of bicycles at the 
intersection. Interaction frequency was lower on weekends compared to weekdays. Weekdays 
exhibited two peaks for car-car and car-truck interactions, coinciding with the start and end of the 
workday, at 8 a.m. and 4 p.m. On weekends, a single peak occurred for car-car and car-pedestrian 
interactions at 2 p.m. and 4 p.m., respectively. Looking at daily charts, average interaction 
frequency shows a reduction towards the end of the week, particularly on Thursday and Friday, 
with a slight uptick on Saturdays. Despite variations in event frequencies across different times of 
day and days of the week, risk values displayed a consistent trend throughout both weekdays and 
weekends, remaining relatively stable across different days and across the majority of the day. 

An edge-based computation approach was compared against a cloud-based computation approach, 
highlighting the scalability issue of centralized systems, as well as transmission data loss issues. 
A single cellular 4G LTE link at its peak data rate is only capable of handling one intersection with 
four cameras each streaming a standard high-definition footage at 10 frames per second. An edge-
based object detection and tracking scheme is scalable to accommodate data capture from multiple 
intersections over a single 4G LTE link. This way, video processing is performed locally, and only 
the results of object detection and tracking are transmitted back to a central location, which is 
significantly smaller in size compared to the amount of data that needs to be transferred in a cloud-
based system. 

In the analysis of interactions at different signal stages, the majority occurred when the signal was 
green for both objects involved, with the highest risk observed during the yellow stage for both 
objects. This finding aligns with the perception that drivers may be more inclined to rush through 
the intersection during the yellow phase, resulting in riskier interactions. 

Lastly, a web dashboard was developed using Grafana that can serve as a platform for assessing 
safety and visualizing the outcomes for an intersection.  
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Additional Products 
The outcomes of the Education and Workforce Development and Technology Transfer from this 
project can be found on the project page of the Safe-D website.  

Education and Workforce Development Products 
The following Education and Workforce Development items resulted from project activities: 

1. A total of seven students (one CCEE grad student, five ECE grad students, and one 
CCEE undergraduate student) took part in this project.  

a. One CCEE Master’s student, Sina Salehipour, was engaged in all the 
activities of the project. The student automated the computation of PET for 
the intersection in Chula Vista and created a dashboard for visualizing the 
results. The project has been incorporated into the student’s master’s thesis. 
Additionally, the student is presently working on a research paper, and it is 
anticipated that the student will defend their MS thesis in the Fall of 2023. 

b. ECE Master’s project student Naga Dheeraj Kurapati investigated methods 
for segmenting images from camera intersection videos to identify the road 
region from non-road regions and dynamically overlay a grid on the road 
region to compute PET.  

 
c. ECE Master’s thesis student Erfan Chowdhury Shourov investigated deep 

learning architectures for skateboarder-pedestrian SSMs. Shourov captured 
a large image dataset of pedestrians and skateboarders on the campus of 
SDSU and used this image dataset to train the Faster R-CNN model and the 
SSD model to detect and classify pedestrians and skateboarders. The 
positions of pedestrians and skateboarders were then used to measure PET 
and TTC SSMs. This effort led to the publication of one journal article, one 
conference paper, and two image datasets. 

d. ECE Master’s project student Ugur Emre Dogan investigated real-time 
object tracking models that were executed on the NVIDIA Jetson AGX 
Xavier using the DeepStream SDKs and NVIDIA JetPack, OpenCV, 
cuDNN, CUDA®, and the TensorRT C++/Python libraries. Dogan 
implemented and trained an object detection and classification model, with 
re-identification, to recognize vehicles, pedestrians, mopeds, bicycles, 
scooters, and motorcycles.  

e. ECE Master’s project student Arya Yazdani investigated the quantization 
of the trained Faster R-CNN and SSD models developed by Shourov for 
deployment on Coral EdgeTPU boards. Yazdani froze (i.e., saved weights 
and bias values) the models trained by Shourov, quantized the frozen 
models, converted the quantized models into TensorFlow TFLite models, 
and deployed the models on a Coral EdgeTPU board. 

f. Computer Science student Rishita Bapu Mote investigated optical character 
recognition algorithms and implemented methods to decipher the overlayed 
video timestamp added by Hikvision cameras. 

https://safed.vtti.vt.edu/projects/developing-an-intelligent-transportation-management-center-itmc-with-a-safety-evaluation-focus-for-smart-cities/
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g. CCEE undergrad student, Django Bergcollins, assisted in the SQL database 
system development and the web-based visualization tool development. 

 
2. The project outcomes were used in a course offered in the ECE department, 

Computer Engineering 596. The slides show how a topic discussed in this course, 
accelerated discrete convolution, is relevant to the ITMC. 

 
3. The project contributed to a graduate course on ITS offered in the CCEE 

department (CIVE 696 Intelligent Transportation Systems). 
 

4. Salehipour, S., A. Jahangiri, C. Paolini, and S. Ghanipoor Machiani. Monitoring 
Road Users’ Interactions at a Signalized Intersection with a Surrogate Safety 
Measure (PET): A Deep-learning-based (YOLOX) Computer Vision Approach. 
2022 Student Research Symposium, San Diego State University. 

Technology Transfer Products 
The following technology transfer products resulted from project activities: 

• The ITMC testbed was developed as described in detail in this report. The testbed can be 
used in the future by the city, researchers, and students to conduct research and test 
different technology. 

• The team met with the City of Chula Vista several times over the course of the project to 
build the testbed, as well as to obtain feedback on how the ITMC could help the city with 
safety assessments.  

• A web-based tool was developed to visualize some of the project outcomes. The tool can 
be used to perform temporal and special safety analyses and to identify when and where 
near-crash situations occur the most. 

• Shourov, E. C., M. Sarkar, A. Jahangiri, and C. Paolini, C. Deep Learning Architectures 
for Skateboarder–Pedestrian Surrogate Safety Measures. Future Transportation, Vol. 1, 
2021, No. 2, pp, 387-413. 

• E. C. Shourov and C. Paolini. Laying the Groundwork for Automated Computation of 
Surrogate Safety Measures (SSM) for Skateboarders and Pedestrians using Artificial 
Intelligence. 2020 Third International Conference on Artificial Intelligence for Industries 
(AI4I), Irvine, CA, USA, 2020, pp. 19-22, doi: 10.1109/AI4I49448.2020.00011. 

• E. C. Shourov and C. Paolini. Skateboarder and Pedestrian Conflict Zone Detection 
Dataset. November 14, 2020.  Available: osf.io/nyhf7, doi: 10.17605/OSF.IO/NYHF7.   

o http://dx.doi.org/10.17605/OSF.IO/NYHF7  
• C. Paolini, C. E. Shourov, A. Jahangiri, and S. G. Machiani. Skateboarder and Pedestrian 

Dataset. January 30, 2020. [Online]. Available: osf.io/cqd9z, doi: 
10.17605/OSF.IO/CQD9Z. 

o http://dx.doi.org/10.17605/OSF.IO/CQD9Z 

http://dx.doi.org/10.17605/OSF.IO/NYHF7
http://dx.doi.org/10.17605/OSF.IO/CQD9Z
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• Salehipour, S., A. Jahangiri, C. Paolini, and S. Ghanipoor Machiani. Monitoring Road 
Users’ Interactions at a Signalized Intersection with a Surrogate Safety Measure (PET): A 
Deep-learning-based (YOLOX) Computer Vision Approach. 2022 NSF AI in 
Transportation Workshop, Hilton University of Florida Conference Center in Gainesville, 
Florida. 
 

• The team is currently working on a journal paper. 

Data Products  
• Link to Datasets: https://doi.org/10.15787/VTT1/P9GYI6 * 

• Project Description – The goal of this project was to develop an intelligent transportation 
management center (ITMC) with a focus on proactive safety assessment.  

• Data Scope – One month of road user interaction data at a signalized intersection in the 
City of Chula Vista, captured by four cameras installed on signal mast arms within the 
intersection. This resulted in a dataset comprising 3.8 million rows. Each row has a 
potential interaction between road users, depending on the variables observed. 

• Data Specification – A detailed description of each variable in the dataset can be found in 
Appendix F. 

• Citation Metadata: 

o Title of datasets: “SafeD-ChulaVista-04-110-Data.csv” 
o Author list with researcher ORCIDs 

 Arash Jahangiri, 0000-0002-8825-961X 
 Chris Paolini, 0000-0001-6563-917X 
 Sina Salehipour, 0009-0006-5275-6784 
 Django Bergcollins, 0009-0006-2591-0184 

o Contact information (email) for corresponding author: AJahangiri@sdsu.edu 
Keywords: Intelligent Transportation Management Center (ITMC), Proactive safety evaluation, 
Surrogate safety measures (SSM), Smart Cities, YOLOX, Post encroachment time (PET)  

https://doi.org/10.15787/VTT1/P9GYI6
mailto:AJahangiri@sdsu.edu
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Appendices 
Appendix A 
The notos.sdsu.edu server is specifically designed to store and process large amounts of data. 
notos.sdsu.edu is a Supermicro SuperServer 4028GR-TR GPU cluster optimized for AI, deep 
learning, and/or HPC applications. notos.sdsu.edu features 8x NVIDIA® Tesla V100-PCIe 
GPUs and has the TensorFlow, TensorFlow Lite, Caffe, PyTorch, and Keras deep learning 
frameworks installed. In addition, notos.sdsu.edu is connected to the SDSU Beehive BeeGFS 
petascale network-accessible storage system capable of parallel I/O for use in high-performance 
computing numerical simulations and data acquisition processes. The BeeGFS storage cluster 
has a capacity of 2.4 PB and consists of two metadata servers (SuperMicro SuperStorage Server 
2028R-E1CR24H) and four object storage servers (QCT 4U 78 Bays High Density Storage 
Server 1S2PZZZ0007) and contains a total of 4 x 78 x 8 TB HDDs. The storage cluster supports 
MPI-IO, parallel NetCDF, and parallel HDF5 to improve run-time performance of I/O bound 
computations. 
To deal with the large data size, ITMC is currently developing disruptive technologies that 
perform machine learning in situ to detect road users in real-time. Known as inferencing at the 
edge, these technologies allow one to perform computationally intensive AI calculations locally 
at the intersection on a Jetson device without needing to transfer streaming video to a graphics 
processing unit (GPU) server (such as notos.sdsu.edu) at a centralized facility to perform 
calculations. These Jetsons will perform continuous, real-time image classification of vehicles 
and pedestrians that enter the camera field of view, using a mobile GPU to execute accelerated 
convolutional neural network (CNN) deep-learning models trained using the PyTorch framework 
with live image data streamed to each Jetson from each Hikvision camera. These CNN deep-
learning models are capable of real-time recognition of road users and can implement in situ 
near-crash identification capabilities that can be utilized in proactive risk calculation and 
potentially can be integrated into traffic controller systems for crash prevention and mitigation. 
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An example of stored data in phpMyAdmin is shown below: 
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Appendix C 
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   (b) 

 
Figure 11. Graph. Average frequency of car vs. car interactions by hour; (a) weekdays, (b) 

weekends. 
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Figure 12. Graph. Average frequency of car vs. truck interactions by hour; (a) weekdays, (b) 

weekends. 
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Figure 13. Graph. Average frequency of car vs. pedestrian interactions by hour; (a) weekdays (b) 

weekends. 
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   (b) 

Figure 14. Graph. Average frequency of car vs. bicycle interactions by hour; (a) weekdays, (b) 
weekends. 
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   (b) 

 
Figure 15. Graph. Average frequency of interactions per day; (a) car vs. car, and (b) car vs. truck. 
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   (b) 

 
Figure 16. Graph. Average frequency of interactions per day; (a) car vs. pedestrian, and (b) car vs. 

bicycle. 
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   (b) 

 
Figure 17. Graph. Risk of car vs. car near-crashes per hour during (a) weekdays, (b) weekends. 
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Figure 18. Graph. Risk of car vs. truck near-crashes per hour during (a) weekdays, (b) weekends. 
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Figure 19. Graph. Risk of car vs. pedestrian near-crashes per hour during (a) weekdays, (b) 

weekends. 
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Figure 20. Graph. Risk of car vs. bicycle near-crashes per hour during (a) weekdays, (b) weekends. 
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Figure 21. Graph. Risk of near-crashes over the week for (a) car-car, and (b) car-truck 

interactions. 
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Figure 22. Graph. Risk of near-crashes over the week for (a) car-pedestrian, and (b) car-bike 

interactions. 
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Appendix D 

              

              

 

Figure 25. Diagram. Near-crash events in different stage of the signal; (a) green-green, (b) green-yellow. (c) 
red-green, (d) red-red. 

 

  

                                                 
                                      (a)                                                                          (b) 

Figure 23. Average frequency of most severe car vs. car interactions by hour; (a) 
weekdays, (b) weekends. 

 
      
      
 

     
                                      (a)                                                                          (b) 
Figure 24. Graph. Average frequency of most severe car vs. truck interactions by hour; 

(a) weekdays, (b) weekends. 

 
                        (a)                                     (b)                                       (c)                                         (d) 
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Appendix E  
 

Table 3. Dashboard Panel 

Volumes PET Interactions 

Total Volume by Mode Average PET per Mode 

Volume per Block Interaction Severity Frequency Time Series 

Movement Frequency Time 
Series Interaction Severity Frequency 

All Modes Frequency Time 
Series Intersection PET Heatmap 

 Normalized Heatmap 

 Average PET per Block Status Over Time 

 Average PET per Mode Status Over Time 

 

Table 4. Dashboard Variables List 

Variable Description 

Block Allows users to select single, multiple, or all blocks found in 
the intersection 

Interval Allows users to choose time intervals for grouping visualized 
data 

Mode1 Allows users to select single, multiple, or all modes of 
transportation 

Mode2 Allows users to choose single, multiple, or all modes of 
transportation 

VeryDangerousPET Users can set their own threshold values for very dangerous 
interactions 
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Variable Description 

DangerousPET Users can set their own threshold values for dangerous 
interactions 

MildPET Users can set their own threshold values for mild interactions 

VeryDangerousPET_Weight* Users can input their own weights for very dangerous 
interactions 

DangerousPET_Weight* Users can input their own weights for dangerous interactions 

MildPET_Weight* Users can input their own weights for mild interactions 

noPET_Interaction Users can input their threshold values for the no interactions 

Street Users can select the intended street name 

Time Users can set the time range for processing the data 

* The variables are used to give importance to each type of PET interaction (very dangerous, dangerous, 
and mild PET) for calculating the combined interaction frequency in the heatmap. This variable is solely 
referenced by the panel named Intersection PET Heatmap. 
 

The “Movement Frequency Time Series” panel is linked to the Street, Time, and Interval 
variables within the dashboard. When a specific street name is selected, this panel provides a 
visualization of movement frequency for various types (through movement, left turn, right turn) 
within the chosen time frame and selected interval. For instance, Figure 27 illustrates the 
movement frequency on “H St West” over time, utilizing a 15-minute interval for reference.  

        

 

 
 

Figure 26. Screen capture. H Street West Movement Frequency Time Series Panel. 
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The “All Modes Frequency Time Series” panel is connected to the Time and Interval 
variables within the dashboard. As an example, Figure 28 presents the combined frequency of all 
transportation modes over a specified time period and the chosen interval. Figure 28(a) showcases 
the volume during the a.m. peak hour, while Figure 28(b) illustrates the volume during the p.m. 
peak hour, with both using a 15-minute interval.  

 

 

The “Average PET per Mode Status” panel relies on the Mode1, noPET_interaction, and 
Time variables within the dashboard. Once these variables are provided, the panel calculates and 
displays the average PET values for the selected mode1 in conjunction with all other modes (Car, 
Truck, Motorcycle, Bicycle, Bus, Pedestrian) where the PET values are less than the specified 
noPET_interaction threshold over the chosen time period. As illustrated in Figure 29, this panel is 
configured with Mode1 set to “Car” and a noPET_interaction threshold of 5 s, enabling the 
assessment of average PET values for car interactions with other modes meeting the defined 
criteria. 

      
 (a)                                                                                          (b) 
 

   Figure 27. Screen capture. All Modes Frequency Time Series Panel; (a) AM peak hour, (b) PM peak 
hour.  
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The “Interaction Severity Frequency” panel references the verydangerousPET, 
dangerousPET, and mildPET dashboard variables.  It determines the frequency of the varying PET 
interactions based on comparing the PETs per mode against the PET dashboard variables’ 
threshold values determined by the user for a specified time range. Then it displays these values 
in a vertical bar gauge format, shown in Figure 30. Figure 31, on the other hand, represents the 
“Interaction Severity Frequency Time Series” panel, which allows users to analyze the frequency 
of interaction severity over a specific time range using a user-defined interval value, with a 15-
minute interval shown in this chart. 
 

          

          

 

 

 

Figure 28. Screen capture. Average PET per Mode Status Panel. 

  
 

 

 
 

Figure 29. Screen capture. Interaction Severity Frequency Panel. 
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Figure 30. Screen capture. Interaction Severity Frequency Time Series Panel. 
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Appendix F 
Table 5 Data Specification 

Variable Description 

ID1 Identifier for the first object involved in the interaction. 

ID2 Identifier for the second object involved in the interaction. 

Mode1 Mode or type of the first object involved in the interaction. 

Mode2 Mode or type of the second object involved in the interaction. 

Line1_PET ID of the white (as shown in the demo) line crossed by the first 
object in the interaction. 

Line2_PET ID of the white (as shown in the demo) line crossed by the 
second object in the interaction. 

Time1 Time at which the first object crosses the line of the drawn block 
in the intersection. 

Time2 Time at which the second object crosses the line of the drawn 
block in the intersection. 

PET Time difference (in seconds) between Time2 and Time1. 

Interaction 
Severity type of the interaction based on predefined thresholds 

(e.g., “No Interaction,” “Mild Interaction,” “Dangerous 
Interaction,” “Very Dangerous Interaction”). 

Mode_ID1 Mode or type of the first object involved in the interaction. 

Line1_ID1 ID of the first blue (as shown in the demo) line crossed by the 
first object. 

Line2_ID1 ID of the second blue (as shown in the demo) line crossed by the 
first object. 

To_ID1 Street destination name of the first object. 

Movement_ID1 Type of movement for the first object (e.g., “Through 
movement,” “Right Turn,” “Left Turn”). 

Mode_ID2 Mode or type of the second object involved in the interaction. 
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Variable Description 

Line1_ID2 ID of the first blue (as shown in the demo) line crossed by the 
second object. 

From_ID1 Street origin name of the first object. 

Line2_ID2 ID of the second blue (as shown in the demo) line crossed by the 
second object. 

From_ID2 Street origin name of the second object. 

To_ID2 Street destination name of the second object. 

Movement_ID2 Type of movement for the second object (e.g., “Through 
movement,” “Right Turn,” “Left Turn”). 

Camera Camera ID that captured the objects (possible values: 8005, 
8006, 8007, 8008). 
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