


 

Disclaimer 
The contents of this report reflect the views of the authors, who are responsible for the 
facts and the accuracy of the information presented herein. This document is 
disseminated in the interest of information exchange. The report is funded, partially or 
entirely, by a grant from the U.S. Department of Transportation’s University 
Transportation Centers Program. However, the U.S. Government assumes no liability for 
the contents or use thereof. 

 

 



 

TECHNICAL REPORT DOCUMENTATION PAGE 

1. Report No.  
SDSU-01-01 

2. Government Accession No. 
 

3. Recipient’s Catalog No. 
 

4. Title and Subtitle 
Predicting Vehicle Trajectories at Intersections using 
Advanced Machine Learning Techniques 

5. Report Date 
May 2021 
6. Performing Organization Code: 
  

7. Author(s) 
Mohammad Sadegh Jazayeri (SDSU) 
Arash Jahangiri (SDSU)* 
Sahar Ghanipoor Machiani (SDSU) 
 

8. Performing Organization Report No. 
SDSU-01-01 

9. Performing Organization Name and Address: 
San Diego State University 
5500 Campanile Dr 
San Diego, CA 92182 
USA 
 

10. Work Unit No. 
11. Contract or Grant No. 
69A3551747115/SDSU-01-01 

12. Sponsoring Agency Name and Address  
Office of the Secretary of Transportation (OST) 
U.S. Department of Transportation (US DOT) 
 
 

13. Type of Report and Period 
Final Research Report 
14. Sponsoring Agency Code 
 

15. Supplementary Notes 
This project was funded by the Safety through Disruption (Safe-D) National University Transportation Center, a 
grant from the U.S. Department of Transportation – Office of the Assistant Secretary for Research and Technology, 
University Transportation Centers Program. 
16. Abstract 
The ability to accurately predict vehicle trajectories is essential in infrastructure-based safety systems that aim to 
identify critical events such as near-crash situations and traffic violations. In a connected environment, important 
information about these critical events can be communicated to road users or the infrastructure to avoid or mitigate 
potential crashes. Intersections require special attention in this context because they are hotspots for crashes and 
involve numerous and complex interactions between road users. In this project, we developed an advanced 
machine learning method for trajectory prediction using B-spline curve representations of vehicle trajectories and 
Inverse Reinforcement Learning (IRL). B-spline curves were used to represent vehicle trajectories, and a neural 
network model was trained to predict the coefficients of these curves. Small perturbations of these predicted 
coefficients were used to create candidate trajectories. These candidate trajectories were then ranked according to 
a reward function that was obtained by training an IRL model on the (spline smoothed) vehicle trajectories and the 
surroundings of the vehicles. In our experiments we found that the neural network model outperforms a Kalman 
filter baseline and the addition of the IRL ranking module further improves the performance of the overall model. 
 
17. Key Words 
Trajectory prediction, connected vehicles, 
machine learning 

18. Distribution Statement 
No restrictions. This document is available to the 
public through the Safe-D National UTC website, as 
well as the following repositories: VTechWorks, The 
National Transportation Library, The Transportation 
Library, Volpe National Transportation Systems 
Center, Federal Highway Administration Research 
Library, and the National Technical Reports Library. 

19. Security Classif. (of this report) 
Unclassified 

20. Security Classif. (of this 
page) Unclassified 

21. No. of Pages 
28 

22. Price 
$0 

Form DOT F 1700.7 (8-72)                       Reproduction of completed page authorized

https://orcid.org/0000-0002-7814-8852
https://orcid.org/0000-0002-8825-961X
https://orcid.org/0000-0002-7314-2689
https://www.vtti.vt.edu/utc/safe-d/
https://vtechworks.lib.vt.edu/
https://ntl.bts.gov/
https://ntl.bts.gov/
https://www.library.northwestern.edu/libraries-collections/transportation/
https://www.library.northwestern.edu/libraries-collections/transportation/
https://www.volpe.dot.gov/library
https://www.volpe.dot.gov/library
https://highways.dot.gov/resources/research-library/federal-highway-administration-research-library
https://highways.dot.gov/resources/research-library/federal-highway-administration-research-library
https://ntrl.ntis.gov/NTRL/


ii 
 

Abstract 
The ability to accurately predict vehicle trajectories is essential in infrastructure-based safety systems that aim to 
identify critical events such as near-crash situations and traffic violations. In a connected environment, important 
information about these critical events can be communicated to road users or the infrastructure to avoid or mitigate 
potential crashes. Intersections require special attention in this context because they are hotspots for crashes and 
involve numerous and complex interactions between road users. In this project, we developed an advanced machine 
learning method for trajectory prediction using B-spline curve representations of vehicle trajectories and Inverse 
Reinforcement Learning (IRL). B-spline curves were used to represent vehicle trajectories, and a neural network 
model was trained to predict the coefficients of these curves. Small perturbations of these predicted coefficients were 
used to create candidate trajectories. These candidate trajectories were then ranked according to a reward function that 
was obtained by training an IRL model on the (spline smoothed) vehicle trajectories and the surroundings of the 
vehicles. In our experiments we found that the neural network model outperforms a Kalman filter baseline and the 
addition of the IRL ranking module further improves the performance of the overall model. 
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Introduction 
Trajectory prediction involves forecasting the path a vehicle is going to take given its past trajectory and 
surroundings. Trajectory prediction has applications in surrogate safety analysis [1], road safety evaluation, 
and infrastructure-based safety systems [2]. Reliable trajectory prediction is of critical importance for 
advanced driver assistance systems [3][4][5] and autonomous vehicles (AVs) [6][3][7]. Additionally, 
accurate trajectory prediction would enable more realistic intersection simulations that better conform to 
the reality of human driving, allowing for better safety assessments [8].  

Vehicle trajectory prediction is of particular interest at intersections where a great number of conflicts 
between road users could increase the likelihood of accidents [11]. According to the National Highway 
Traffic Safety Administration, between 2014 and 2018 about 40% of all crashes and 24% of fatal crashes 
occurred at intersections. With the advent of smart cities and smart vehicles, infrastructure-to-vehicle and 
vehicle-to-vehicle communications will be possible. In conjunction with a trajectory prediction system, 
these advances in vehicle and infrastructure technology will enable us to enhance the safety of intersections 
by predicting collisions [12][13] and risky driving behavior [14] (e.g., red light running) and deploying 
countermeasures to help avoid or mitigate crashes, such as early crash warnings [15][16][17][18][19] or 
real-time signal timing adjustments [20].  

Being able to project vehicles’ trajectories into the future is also important in automated driving 
applications; as long as AVs share roads with human-driven vehicles, they need to know how human drivers 
act in different situations and they must also behave in ways that conform to human drivers’ expectation of 
other vehicles. That is, they must respond like other human drivers. It is therefore important that AVs have 
a model of vehicle motion in different situations, including at intersections.  

When cast as a control problem (i.e., a problem of finding the correct control behavior), solving trajectory 
prediction is equivalent to training a model to drive like human drivers. This enables applications where 
human-like driving is desired. It is partly related to the problem of vehicle tracking (i.e., the problem of 
identifying and following the motion of vehicles in a video feed). While vehicle tracking deals with 
identifying the current motion of vehicles, trajectory prediction deals with predicting their future 
movements. The data required for trajectory prediction is the output of solving the vehicle tracking problem. 
In this work, we focus solely on the prediction problem, as there are several commercial tracking solutions 
available from companies such as Brisk Synergies [9] and Miovision [10]. 

A wide range of approaches have been used in tackling the trajectory prediction problem, from models that 
assume the vehicle will maintain its velocity or acceleration and (rate of change of) heading for the duration 
for which trajectory prediction is going to be performed [21], to those that try to capture more of the 
complexities of vehicle motion by modeling different maneuvers but still disregard the influence of other 
vehicles [22], to models that take the interactions between traffic actors into account when predicting the 
future motion of vehicles [23]. The tools used in developing these approaches are also quite varied and 
include Kalman filters [17], hidden Markov models [24], Gaussian processes [22], Bayesian networks [16], 
Gaussian mixture models [11], and neural networks [6]. These studies all formulate the problem of 
trajectory prediction as a prediction task, which is to say they directly predict the entire future trajectory of 
the vehicle, but it can also be formulated indirectly as a control task in which control actions (e.g., changes 
in heading and velocity) are determined at each timestep and the trajectory can then be predicted by tracing 
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the motion of the vehicle based on these actions. In this case, we will be dealing with a learning from 
demonstration (LfD) problem [25], in which we are interested in learning, from human driving data, what 
actions should be taken to properly control a vehicle. Given that a solution to the control problem can be 
easily transformed into a solution to the prediction problem, in our review of the literature we will consider 
not just the problem of trajectory prediction but also the associated control problem. 

In this work, we develop a new solution based on a hybrid approach combining elements from the prediction 
formulation and the control formulation. We adopted a two-step approach to solving the problem. In the 
first step, based on the prediction formulation, we generated an initial prediction and generated candidates 
for the final prediction based on this initial prediction. In the second step, based on the control formulation, 
we ranked these candidates and chose one as the final prediction. 

The first step consisted of representing vehicle trajectories as B-spline curves and training a neural network 
model to predict the coefficients of these B-spline curves. Similar approaches to trajectory representation 
have been used before, such as representing trajectories using Chebyshev polynomials [11], but to the best 
of our knowledge this is the first work to use B-spline curves for this purpose. These predicted B-spline 
curve coefficients represented the initial prediction, and candidate trajectories were generated from this 
initial prediction by random perturbations to the coefficients of the B-spline curves. 

In the second step, an Inverse Reinforcement Learning (IRL) [26] model was used to rank the candidate 
trajectories that were generated in the first step. IRL is a technique for solving control problems by learning 
from demonstration and has previously been used to solve the trajectory prediction problem for highways 
[27][28], but to the best of our knowledge this is the first work to investigate its application to the problem 
at intersections. Trajectory prediction at intersections involves challenges not encountered in highways such 
as the presence of various conflict types, multiple types of road users (vehicles, pedestrians, and bicycles), 
and more complicated traffic control devices. This is also the first work to use MaxEnt IRL to select from 
a set of candidate trajectories. The work in [29] also used an IRL-like approach to rank candidate 
trajectories, but used an ad hoc formulation. Here we used IRL to develop methods that can address some 
of these complexities. The IRL model was trained using the B-spline–smoothed trajectories and the context 
of the vehicle at the intersection (i.e., the other vehicles present at the intersection). The second step allows 
us to predict trajectories that are more human-like and also to take interactions between the vehicles at the 
intersection into account. For the training and evaluation of our method, we used the Lankershim Boulevard 
dataset from the Next Generation Simulation (NGSIM) dataset collection. Using our method, we were able 
to achieve an approximately 20% improvement on prediction accuracy (as measured by the root mean 
square error [RMSE] of the predicted vs. actual trajectory) over a baseline method based on a Kalman Filter. 

Related Work 
Trajectory prediction methods can be classified into three broad categories [3]: physics based 
[17][30][31][32][33][12][15][21], maneuver based [5][7][11][23][18][19], and interaction aware 
[34][35][36][37]. Physics-based models, as the name suggests, deal with the physics of vehicle motion and 
assume that vehicles’ trajectories are determined solely by physical forces, disregarding driver decisions 
that affect steering and acceleration. Consequently, these models fail to accurately predict vehicle motion 
beyond a short horizon. Maneuver-based models take driver actions into account but only in a vacuum; 
they consider these decisions to be determined solely by the position and the preceding trajectory of the 
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vehicle of interest, ignoring the influence other road users have on these actions, which leads to less reliable 
projections of future motion. Interaction-aware models predict trajectory by taking the presence of other 
road users into account. Here we have limited our focus to maneuver-based and interaction-aware models  
with a section dedicated to models using IRL. What follows is a summary of the literature on these models; 
comprehensive reviews of the subject can be found in [3] and [38]. We start with a general overview of 
previous work and then move on to provide further detail first on works that have applied IRL to the 
problem of trajectory prediction and then to works that involve the application of trajectory prediction to 
intersection safety. 

Maneuver-based models: In [5], the authors used a radial basis function (RBF) network and a particle filter 
framework to predict future trajectories. An RBF network was trained to distinguish between “turn-left” 
and “straight-on” trajectories in the training dataset, and the outputs of this network were used as a priori 
probabilities for the trajectory hypotheses in the particle filter framework. A method based on an extension 
to hidden Markov models (HMMs) called growing hidden Markov models was proposed in [7] aiming to 
incrementally learn the structure and parameters for a trajectory prediction model. In [11], the authors 
proposed a probabilistic trajectory prediction method based on Gaussian mixture models and their Bayesian 
counterpart, variational Gaussian mixture models. Gaussian processes and a particle filter framework were 
used in [22] to perform maneuver recognition and multimodal trajectory prediction. An approach 
integrating a physics-based model and a maneuver-based model was proposed in [39]. The physics-based 
and maneuver-based models were respectively based on the constant turn rate and acceleration model with 
unscented Kalman filters to account for uncertainty and dynamic Bayesian networks. In [14], the authors 
proposed a method for trajectory prediction at intersections that treated leading and following vehicles 
differently. For leading vehicles, trajectory prediction was performed by a k-nearest neighbors (k-NN) using 
historical trajectory data, while the intelligent driver model (IDM) was used for following vehicles. In both 
cases, the initial predicted trajectories were refined using an adaptive Kalman filter. 

Interaction-aware models: In [34], the trajectory prediction framework proposed in [5] was used to predict 
the joint trajectory of two vehicles at intersections. This was done by penalizing those trajectories that lead 
to avoidable collisions (i.e., trajectories for which the time to collision is larger than the drivers’ reaction 
times). Coupled HMMs [24] were used in [23] with the assumption of asymmetric interactions; i.e., other 
vehicles influence the vehicle of interest but not vice versa, to predict driver behavior. In [35], the IDM was 
used to infer the intent of drivers at intersections in the presence of a preceding vehicle. A probabilistic 
graphical model and recursive Bayesian filtering were used in [40] and [36] to perform interaction-aware 
driving behavior prediction. In [37], a dynamic Bayesian network (DBN) was used in conjunction with a 
factored state space that allows for a model with less computational complexity. DBNs were also used in 
[41] to jointly model what drivers intend to do and what they are expected to do in a traffic context. In [6], 
traffic contexts were rasterized into two-dimensional images and a deep convolutional neural network was 
then used to perform trajectory prediction. In [42], a generative adversarial network was used to model 
driver behavior in highways. A solution to a restricted version of the trajectory prediction problem, that of 
predicting the changes in velocity along a predetermined path, at unsignalized intersections was proposed 
in [43]. This work modeled the problem as a partially observable Markov decision process in which the 
intended paths of the other vehicles constitute the hidden variables. Partially observable Markov decision 
processes were also used in [44] for AV decision-making in scenarios, including roundabouts and T-
junctions. In [45] deep neural networks and long short term memory (LSTM) networks were used to predict 
vehicle trajectories at intersections. A technique called social pooling was used with LSTM and deep 
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convolutional neural networks (CNNs) in [46] to address the interactions between vehicles in trajectory 
prediction in a highway setting. In [47], a specially designed “Influence network” is used in conjunction 
with a DBN to perform vehicle trajectory prediction at intersections. Another solution to the trajectory 
prediction problem based on DBNs was proposed in [16]. Our method differs from these works in its use 
of MaxEnt IRL for accounting for interactions in a two-step process. In particular, the second step can be 
added on top of any prediction method that might not be interaction-aware to make it so. 

Trajectory Prediction Using IRL 
Several studies have used IRL to model driving, mostly in the context of highways. In [27], IRL was used 
to learn driving in highways from human demonstrations in a simulated environment. The use of IRL was 
motivated by the desire to achieve more humanlike behavior and a better ability to handle new scenarios. 
Deep Q-networks were used to address the exploding state space issue encountered in using IRL in a setting 
with a large state space. In addition to using a simulated environment instead of real-world data, this study 
had several other limitations. These included using constant speed and having at most two cars in front of 
the vehicle. The authors in [28] had similar motivations in using IRL for the task of learning individual 
driving styles on highways. The driving behavior of a number of drivers was recorded as they drove a car 
fitted with a variety of sensors on a highway. Maximum entropy IRL was then used to train a model to 
make driving decisions in styles similar to each of the individual drivers. This work used a reward function 
that was a linear function of a number of manually defined features such as acceleration, deviation from 
lane center, and distance to other vehicles. These last two works considered the control problem that was 
mentioned earlier in the introduction section. In both studies, the use of IRL allowed for faithful replication 
of human driving behavior and an ability to generalize to new situations. In [48], a hierarchical learning 
framework was proposed in which IRL was used to predict interactive driving behavior on two levels with 
a case study of ramp merging. The different levels of decision-making in their framework consisted of 
discrete, high-level decisions (e.g., whether to merge after or before a given car in their case study) and 
low-level continuous actions (e.g., the acceleration and heading changes at each time step.) Similar to the 
previous study, the reward function in this work was formulated as a linear function of several manually 
defined features. A notable limitation of this work is that the high-level discrete decisions and their 
corresponding low-level continuous features need to be manually defined based on the particular scenario 
(e.g., ramp merging) at hand. In [29], a generative framework based on conditional variational autoencoders 
using recurrent neural networks was used to generate possible future trajectories. An IRL approach was 
used to rank and refine the trajectories generated by the generative framework. It is noteworthy that this 
work did not use any of the commonly employed IRL formulation, but rather integrated a reward function 
into a larger framework where the reward function parameters were optimized in tandem with the rest of 
the architecture and the optimization method was dependent upon the sample generating component of the 
framework. IRL was used in [49] to choose from a set of trajectories generated using a rule-based method 
in a highway environment. IRL was chosen as the approach for this study because it allowed for a hybrid 
method that did not require mappings from circumstances to vehicle control to be manually engineered and 
at the same time produced interpretable results. In [50], a trajectory prediction method based on an encoder-
decoder approach using RNNs was proposed that used IRL as a regularizer for the training of the encoder-
decoder network. The use of IRL as a regularizer was intended to help the model better utilize the scene 
context information. IRL was used to directly predict trajectories in a highway environment in [51]. A 
summary of the studies above is presented in the Appendix A. 
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Trajectory Prediction for Intersection Safety 
In this subsection, we explore in more detail those studies that have considered the trajectory 
prediction problem from the viewpoint of the infrastructure and whose proposed solutions cover 
the problem at intersections.  

Trajectory prediction has a number of applications for intersection safety. One such application is 
the detection of risky driving behaviors, such as dangerous turns [18], red light running 
[18][14][20], abrupt stops, aggressive passes, speeding passes, and aggressive following [14]. 
Trajectory prediction is also instrumental to the early prediction of turning movements, which is 
helpful in avoiding accidents [45]. Collision prediction, avoidance/mitigation [21][15][17][16], 
and risk assessment [19][12][13] also make use of trajectory prediction. Each of the studies 
reviewed used their solutions to the problem of trajectory prediction to tackle one or more of these 
applications. For each study, we note the application(s) that it used trajectory prediction to address 
and also summarize this information under the “Tested Applications” column in Appendix B, 
which presents an overview of these studies. Our work is the first to investigate the application of 
IRL to the problem of intersection safety. It differs from the works discussed here in its two-step 
design and the use of B-spline curves to represent trajectories. It has some similarity to [47] and 
[45] in using neural networks. This table contains, for each study, the features used for trajectory 
prediction (Predictors), the sensors used for collecting these features’ data (Data Collection 
Sensors), the number of intersections where data was gathered for training (if applicable), the 
frequency at which the predictors were sampled (sampling frequency), the duration for which data 
had to be collected before starting to make predictions (monitoring period), how far into the future 
the predicted trajectories stretch (prediction horizon), what evaluation metric was used for 
measuring the performance of either the trajectory prediction method or the safety system as a 
whole (evaluation metric), what possible applications were mentioned (applications),  interactions 
between which types of road users were considered (interaction type), and what movements 
leading to possible hazards were considered. 

Most studies have focused on predicting and mitigating crashes. In [12], the authors proposed a 
method for collision risk estimation between vehicles based on real-time trajectory prediction. The 
method used for trajectory prediction in this work was a linear Kalman filter. GPS data was used 
for determining the position of vehicles, and risk estimation was performed using the time to 
collision (TTC) predicted from the predicted trajectories. Another work to use TTC from predicted 
trajectories for collision risk estimation was [15], which also used a Kalman filter for trajectory 
prediction and differential GPS as the position sensor. A system for threat assessment and decision-
making was proposed in [17] that used an unscented Kalman filter for trajectory prediction. A 
probabilistic threat assessment method was also developed for threat assessment along with a 
decision-making protocol for whether or not an intervention is necessary. In [16], an accident 
prewarning system was developed with a trajectory prediction method based on a DBN and a risk 
assessment method based on the identification of risky driving behavior. They also presented a 
method for deciding the collision avoidance strategy, which is based on TTC and time-to-
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avoidance matrices. An intersection safety system was developed in [13] that used video data to 
predict the trajectory of vehicles at intersections and detect dangerous situations involving both 
vehicles and pedestrians using TTC and post encroachment time (PET). For trajectory prediction, 
it was assumed that vehicles drive according to “average drive lines,” which were predefined 
average trajectories for vehicles. In [19], a trajectory prediction method based on extended Kalman 
filters was developed and used to identify conflict areas between vehicles and other road users and 
calculate time to enter and time to leave for these road users and conflict areas. An object-oriented 
Bayesian network was then used to estimate collision probability. In [18], a maneuver prediction 
model was presented for use in an infrastructure-based intersection safety system. The proposed 
system used location, speed, and acceleration data transmitted by vehicles and also roadside 
sensors for maneuver prediction. The objective of the system was to provide warnings for red light 
violations and right and left turning hazards. 

Other studies have focused on applications such as the identification of certain behaviors. In [14], 
the authors developed a trajectory prediction method for identifying risky behavior caused by the 
lengthy warning sequence at the end of the green phase at high-speed intersections. A notable 
feature of their method is that it divides the problem into two cases: the case where the vehicle has 
enough distance from its leading vehicle that it acts independently, and the case where the vehicle’s 
movements are influenced by the behavior of the leading vehicle (i.e., time headway to the leading 
vehicle is less than 6 s). A trajectory prediction method was developed in [45] for predicting 
turning movements at intersections. Video data from three intersections was used to extract vehicle 
trajectories and to train neural network models for predicting vehicle trajectories. In the process of 
predicting the turning movement of the vehicles, after a vehicle’s trajectory has been predicted, it 
was compared against “typical paths” in order to obtain the final turning prediction (left, right, or 
through). In [47], trajectory data transcribed from a video camera was used to train neural network 
models for trajectory prediction of both vehicles and pedestrians, which can be used for predicting 
high-level behavior. A method to predict red light running was proposed in [20] that used trajectory 
prediction to detect red light running ahead of time and dynamically extend the all-red phase of 
the intersection signals to mitigate accidents. A method for collision risk prediction and warning 
was proposed in [21] which estimated the minimal future distance between possibly conflicting 
vehicles using a physics-based trajectory prediction method. 

Data Description 
For this study, we used the Lankershim Boulevard dataset from the Next Generation Simulation 
(NGSIM) dataset collection. This dataset was selected because it is one of the largest datasets of 
vehicle trajectories at intersections in the United States. This dataset contains vehicle trajectories 
transcribed from video data providing complete coverage of three signalized intersections and 
covering approximately 500 meters in length. The dataset comprises a total of 30 minutes of data 
starting from 8:15 a.m. These 30 minutes of data cover a wide range of traffic conditions at the 
intersections, including the intersection being nearly empty and the intersections being heavily 
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populated by vehicles. The data is in a tabular format, with each row corresponding to the state of 
a specific vehicle at a specific time. The data is sampled at 10 Hz and has the vehicle’s position, 
lane number, velocity, acceleration, and the intersection at which it is currently located among its 
columns. In addition to trajectory data, this dataset also contains street marking data. 

Data Cleaning and Organization 
The trajectory data in the NGSIM dataset is provided as a single tabular file (in csv format) which 
provides data on the location (in latitude and longitude based both on the California State Plane III 
coordinates and also locally relative to the center of the boulevard in feet), type 
(auto/truck/motorcycle), speed (in feet per second), and the size (length and width in feet) of each 
vehicle at each point in time. A new column was added to the data to indicate whether each row 
corresponds to a vehicle being in the area of influence of an intersection and, if so, which one. This 
new column was used to remove the data pertaining to the times when vehicles were outside an 
intersection’s area of influence. A vehicle was considered to be within an intersection’s area of 
influence if it was no more than 60 meters away from the closest edge of the intersection. The 60-
meter threshold was chosen to correspond with the length of the longest monitoring period that we 
wanted to consider. Moreover, the rows belonging to each vehicle were grouped and sorted with 
respect to time in order to obtain the vehicle trajectories. We also calculated the heading (in 
radians) for each vehicle at each point in time and added it as a column. Finally, the trajectories 
were rotated and translated such that their point of entry into the intersection was at the origin of 
the plane and straight movement through the intersection corresponded to movement along the y-
axis. Table 1 provides an overview of the statistics of the dataset: 

Table 1. Dataset Statistics 

Intersection Total 
Rows 

Total 
Trajectories 

Right 
Turns 

Left 
Turns Through # of 

Autos 
# of 

Trucks 
# of 

Motorcycles 

2 574,398 2,210 157 616 1,437 2,144 62 4 

3 193,028 1,973 24 82 1,867 1,915 54 4 

4 218,049 1,980 214 619 1,147 1,917 59 4 

Methodology 
Our method is made up of the two steps as shown in Figure 1. In the first step, B-spline curves 
were fit to vehicle trajectories in order to represent each vehicle trajectory using the coefficients 
of the B-splines. A neural network was then trained to predict these coefficients. Candidate 
trajectories were then generated using random perturbations of these coefficients. In the second 
step, the B-spline smoothed trajectories of the vehicles were embedded into images containing the 
geometry of the intersection and the other vehicles present at the intersection. These images were 
then used to train an IRL model, which evaluated the candidate trajectories and chose the best 
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among them. In the following two subsections we provide an overview of B-spline curves and 
IRL. 

 

Figure 1. Flowchart. Overview of the method. 

B-Splines 
For a given knot sequence, 𝑡𝑡0 ≤ 𝑡𝑡1 ≤ ⋯ ≤ 𝑡𝑡𝑛𝑛+𝑑𝑑+1 , the B-spline basis functions are defined 
recursively as follows: 

𝑁𝑁𝑖𝑖,0(𝑡𝑡) = �1, 𝑡𝑡𝑖𝑖 ≤ 𝑡𝑡 ≤ 𝑡𝑡𝑖𝑖+1
0, 𝑜𝑜𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  

𝑁𝑁𝑖𝑖,𝑗𝑗(𝑡𝑡) =
𝑡𝑡 − 𝑡𝑡𝑖𝑖
𝑡𝑡𝑖𝑖+𝑗𝑗 − 𝑡𝑡𝑖𝑖

𝑁𝑁𝑖𝑖,𝑗𝑗−1(𝑡𝑡) +
𝑡𝑡𝑖𝑖+𝑗𝑗+1 − 𝑡𝑡
𝑡𝑡𝑖𝑖+𝑗𝑗+1 − 𝑡𝑡𝑖𝑖+1

𝑁𝑁𝑖𝑖+1,𝑗𝑗−1(𝑡𝑡) 

where 1 ≤ 𝑗𝑗 ≤ 𝑑𝑑 and 0 ≤ 𝑒𝑒 ≤ 𝑛𝑛 + 𝑑𝑑 − 𝑗𝑗. A one-dimensional B-spline curve is then defined in 
the following way: 

𝑥𝑥(𝑡𝑡) = �𝑐𝑐𝑖𝑖𝑁𝑁𝑖𝑖,𝑑𝑑(𝑡𝑡)
𝑛𝑛

𝑖𝑖=0

 

For a given knot sequence and value of 𝑑𝑑, the 𝑐𝑐𝑖𝑖s uniquely determine 𝑓𝑓(𝑡𝑡) and are referred to as 
the spline coefficients. In the training phase, these coefficients are estimated by finding the values 
of 𝑐𝑐𝑖𝑖 that minimize the following objective function: 
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��𝑥𝑥(𝑡𝑡) −�𝑐𝑐𝑖𝑖𝑁𝑁𝑖𝑖,𝑑𝑑(𝑡𝑡)
𝑛𝑛

𝑖𝑖=0

�
𝑡𝑡

 

In the test phase, these coefficients are predicted by a neural network, and the corresponding B-
spline curve is the predicted trajectory. Note that we used univariate splines, which means that in 
order to represent each trajectory we need two spline curves, 𝑥𝑥(𝑡𝑡) and 𝑦𝑦(𝑡𝑡), corresponding to the 
𝑥𝑥 and 𝑦𝑦 coordinates of the trajectory, respectively. 

Inverse Reinforcement Learning 
The Reinforcement Learning Problem 
The Reinforcement Learning (RL) problem involves learning what actions to take in an interactive 
environment to maximize an objective function (called reward.) The main elements of 
reinforcement learning are the decision-making entity called the agent, the environment with 
which the agent interacts, and a reward signal, which is a numerical value provided by the 
environment to the agent at each timestep. The goal of the agent is to maximize the sum of the 
reward it receives over time. 

Formally, an RL problem is defined by a Markov decision process (MDP.) An MDP is a tuple 
(𝑆𝑆,𝐴𝐴,𝑝𝑝, 𝛾𝛾, 𝑒𝑒) in which 𝑆𝑆 is the set of all the states the environment can be in, 𝐴𝐴 is the set of actions 
the agent can take, 𝑝𝑝(𝑒𝑒′|𝑒𝑒,𝑎𝑎) is the probability of the environment transitioning from state 𝑒𝑒 to 
state 𝑒𝑒′ if the agent takes action 𝑎𝑎, 𝛾𝛾 is the discount factor, and 𝑒𝑒(𝑒𝑒, 𝑎𝑎, 𝑒𝑒′) is the expected reward 
given to the agent when the environment transitions from state 𝑒𝑒 to state 𝑒𝑒′ after the agent has 
taken action 𝑎𝑎. A policy 𝜋𝜋(𝑎𝑎|𝑒𝑒) defines the probability of the agent taking action 𝑎𝑎 when in state 
𝑒𝑒. The expected return for a state 𝑒𝑒 under a given policy 𝜋𝜋 is the expected sum of the discounted 
reward values received by an agent starting from 𝑒𝑒 and making a decision based on 𝜋𝜋 and is 
denoted by 𝑣𝑣𝜋𝜋(𝑒𝑒) . Thus, we have 𝑣𝑣𝜋𝜋(𝑒𝑒) = ∑ 𝜋𝜋(𝑎𝑎|𝑒𝑒)𝑎𝑎 ∑ 𝑝𝑝(𝑒𝑒′|𝑒𝑒,𝑎𝑎)[𝑒𝑒(𝑒𝑒, 𝑎𝑎, 𝑒𝑒′) + 𝛾𝛾𝑣𝑣𝜋𝜋�𝑠𝑠′�𝑠𝑠′ ] . In 
reinforcement learning, the objective is to find the optimal policy 𝜋𝜋⋆ which maximizes 𝑣𝑣𝜋𝜋⋆(𝑒𝑒) for 
every state 𝑒𝑒. 

The Inverse Reinforcement Learning  Problem 
While the RL problem involves finding an optimal policy given a reward function, the IRL 
problem involves finding a reward function for which a given policy (represented by a set of 
samples from expert demonstrations) is optimal. Finding this reward function allows us to derive 
the policy and reproduce the behavior of the expert. The IRL problem as stated is ill posed because 
there are multiple reward functions for which a given policy is optimal; for instance, the set of 
reward functions that are constant everywhere is optimal for every policy. There have been several 
approaches to addressing this issue, one of which is the maximum entropy formulation [52]. In 
this formulation, it is assumed that the probability of a specific sequence of states and actions 
(denoted by 𝜏𝜏) being observed is equal to 𝑝𝑝(𝜏𝜏) =  1

𝑍𝑍
exp(𝑒𝑒𝜃𝜃(𝜏𝜏)) in which 𝑒𝑒𝜃𝜃(𝜏𝜏) =  ∑ 𝑒𝑒𝜃𝜃(𝑒𝑒,𝑎𝑎)𝑠𝑠,𝑎𝑎∈𝜏𝜏 , 

where 𝑒𝑒𝜃𝜃 is the reward function parametrized by 𝜃𝜃. This formulation posits that the expert acts 
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probabilistically and is most likely to traverse the optimal sequence of actions and states, with 
suboptimal sequences being exponentially less probable as their associated reward decreases. The 
central problem in this formulation is calculating or estimating the value of 𝑍𝑍 (often called the 
partition function). Several approaches have been proposed for solving this problem. In Guided 
Cost Learning [53] (GCL), the algorithm we use, this is achieved by importance sampling from 
the set of all possible sequences of states and actions. This importance sampling involves 
generating samples not present in the dataset. This is explored in more detail in the “Experiments” 
section of this report. The reason for choosing GCL here is that it enables tractably working with 
high-dimensional and continuous state spaces and actions while allowing for a nonlinear function 
approximator (here a neural network) to be used for approximating the reward function. 

In our method, we used GCL with a convolutional neural network as the approximator for the 
reward function to recover the reward function of the human drivers and then used the recovered 
reward function to rank the candidate trajectories generated in the first step of the method. To this 
end, we first had to convert each candidate trajectory to a sequence of states and actions. The state 
at time 𝑡𝑡 was specified by creating a two-dimensional image of the intersection containing the 
intersection geometry and the trajectories of all the vehicles at the intersection up to time 𝑡𝑡. The 
action at time 𝑡𝑡 was a two-dimensional value specifying the change in velocity of the vehicle in 
the 𝑥𝑥 and 𝑦𝑦 directions at time 𝑡𝑡. If we denote the recovered reward function with 𝑒𝑒(𝑒𝑒𝑡𝑡,𝑎𝑎𝑡𝑡) in which 
𝑒𝑒𝑡𝑡 denotes the state at time 𝑡𝑡 and 𝑎𝑎𝑡𝑡 = �∆𝑣𝑣𝑥𝑥,∆𝑣𝑣𝑦𝑦�𝑡𝑡 is the ordered pair representing the action at 
time 𝑡𝑡, the score, denoted by 𝑢𝑢, assigned to a trajectory τ = ⟨(s1, a1), … , (sn, an)⟩ is calculated 
using the following: 

𝑢𝑢 =  �𝑒𝑒(𝑒𝑒𝑡𝑡,𝑎𝑎𝑡𝑡)
𝑛𝑛

𝑡𝑡=1

 

The value of 𝑢𝑢 was calculated for every candidate trajectory and the candidate trajectory with the 
highest value was chosen as the final predicted trajectory. 

Evaluation Metrics 
A variety of different metrics have been used to evaluate the performance of trajectory prediction 
methods. One broad categorization of these metrics is by whether they directly measure the 
performance of the trajectory prediction algorithm or the application for which the method has 
been developed (e.g., collision avoidance). Given that we are not testing for any specific 
applications, we will only consider metrics of the former kind. 

The most commonly used metric in evaluating trajectory prediction algorithms is the RMSE 
[14][37][47], which is calculated using the following formula: 
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RMSE = 1
n�∑ (ai − bi)2n

i=1   

in which 𝑎𝑎𝑖𝑖 and 𝑏𝑏𝑖𝑖 are respectively the 𝑒𝑒th point along the original and the predicted trajectory. A 
related metric that has been used in at least one work for the purpose of evaluating a trajectory 
prediction algorithm is the mean absolute error (MAE) [39], defined as follows: 

MAE =  
1
n
�|ai − bi|
n

i=1

 

RMSE and MAE are the two most commonly used measures of performance for solutions to 
regression problems. It is therefore no surprise that they are also the performance measures of 
choice for the task of trajectory prediction. The reason why RMSE is used much more often and 
why we have opted to use it here is that RMSE penalizes large errors more than MAE, which is 
desirable in many regression problems (including ours). 

Another method of measuring the accuracy of a trajectory prediction system, given in [54] and 
used in [6], divides the trajectory prediction error into two components: the parallel component 
called “along track error” and the perpendicular component called “cross track error.” This is done 
by segmenting the ground truth and baseline trajectories and then computing the following: 

Along Track Error =  ��xi − xi′�sinθi + �yi − yi′�cosθi

n

i=1

 

Cross Track Error =  ��xi − xi′�cosθi − �yi − yi′�sinθi

n

i=1

 

in which 𝑥𝑥𝑖𝑖 ,  𝑦𝑦𝑖𝑖,  𝑥𝑥𝑖𝑖′,  𝑦𝑦𝑖𝑖′  are the coordinates for the ground truth and predicted points, 
respectively, and θ𝑖𝑖 is the predicted angle. 

Another less commonly used metric is the longest common subsequence (LCS) [5]. 𝐿𝐿𝐿𝐿𝑆𝑆(𝐴𝐴,𝐵𝐵) is 
the maximum number of points between trajectories 𝐴𝐴 and 𝐵𝐵 that are “close enough” and in the 
correct order. The LCS distance is then defined as 𝑑𝑑𝑒𝑒𝑒𝑒𝑡𝑡𝐿𝐿𝐿𝐿𝐿𝐿(𝐴𝐴,𝐵𝐵) = 1 −  𝐿𝐿𝐿𝐿𝐿𝐿(𝐴𝐴,𝐵𝐵)

min (𝑁𝑁𝐴𝐴,𝑁𝑁𝐵𝐵)
. This metric 

has the advantage of being resilient to outliers but is mostly useful in the context of comparing 
trajectories for similarity as opposed to measuring the accuracy of a prediction model. Another 
closely related metric is the Quaternion Based Rotationally Invariant LCS (QRLCS), which adds 
rotational invariance to the translational invariance of the LCS. 

Experiments and Results 
In our experiments, we used the Lankershim Boulevard data from the NGSIM dataset. We 
extracted vehicle trajectories from this data and fit B-spline curves to the extracted trajectories. Of 
the resulting data, 10% was set aside as test data (distributed uniformly over the three different 
movement types.) We then trained a neural network to predict the coefficients of the B-spline 



12 
 

curves corresponding to the trajectories using 10-fold cross-validation on the rest of the data. The 
neural network had the following input features: the x and y distance from the center of the 
approach the vehicle entered the intersection from to the centers of the three road segments the 
vehicle can exit the intersection, the distance of the vehicle from the center of the approach, 
velocity before entering the intersection, vehicle acceleration before entering the intersection, 
vehicle heading before entering the intersection, average vehicle velocity over the monitoring 
period (2 seconds in the final model), average vehicle acceleration over the monitoring period, and 
the turning movements allowed for the lane the vehicle was on. We then generated candidate 
trajectories by randomly perturbing the predicted coefficients. An IRL model was trained in the 
following manner: the B-spline smoothed trajectories of the vehicles were embedded into images 
containing the geometry of the intersection, as well as the trajectories of the other vehicles present 
at the intersection (at test time, the trajectories predicted in the first step were used.) For the reward 
function approximator, we used a pretrained convolutional neural network, namely MobileNetV2, 
with the final softmax layer removed. As noted in the “Methods” section, training an IRL model 
using the GCL algorithm involved sample generation. This was done by changing the trajectory 
of the ego vehicle with respect to the sampled actions while maintaining the original trajectory of 
other vehicles. The trained IRL model gave us a recovered reward function, which was 
subsequently used to score the candidate trajectories generated in the first step of the algorithm. 
The candidate trajectory scoring the highest was the final prediction of the model. 

The results of our experiments are summarized in Table 2. We see that the first step of our method 
without ranking by the IRL module already outperforms the baseline model. The addition of the 
IRL module further improves the performance of the model. Together with the IRL module, we 
achieve a 1-m (~20%) improvement in RMSE, which can be the difference between recognizing 
a potential crash and missing it. 

Table 2. Summary of Results 

Method Avg. RMSE (m) 

Baseline (Kalman Filter) 5.1 

Neural Network 4.6 

Neural Network + IRL Ranking 4.1 

In order to get a qualitative assessment of the performance of the model, we can consider the 
trajectories in Figure 2. Here, we have the ground truth trajectory of a left turn in blue (lowest 
curve) with the prediction of the first step in red (uppermost curve), and finally the trajectory 
assigned the highest score by the IRL method in green (middle curve). We can observe that not 
only is the trajectory selected by the IRL module closer in location to the ground truth trajectory, 
but also it is more similar to it in shape and direction. 
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Figure 2. Illustration. Trajectory of a left turn and predictions of proposed method. 

In order to better understand the performance of the model, as well as how the IRL module 
improves predictions, we consider the errors of the models broken down by movement type (i.e., 
whether the vehicle in question was going through the intersection, turning right, or turning left). 
The error values for different movement types are reported in Table 3. 

Table 3. RMSE by Movement Type and Model 

Movement 
Type 

Avg. RMSE (m) Without 
IRL Scoring 

Avg. RMSE (m) With 
IRL Scoring 

Through 2.9 2.6 

Right 14.7 12.8 

Left 13.1 11.3 

We can see from the results in Table 3 that the effect of the IRL scoring module is more pronounced 
in predicting turning movements. This can be explained by the fact that predicting the trajectory 
of turning movements is more difficult, and the IRL scoring module is therefore more likely to 
find a better trajectory among the generated candidates and return it as the top scoring trajectory.   

We can also look at the error of the models as a function of the prediction horizon. These figures 
are reported in Table 4. 
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Table 4. RMSE by Prediction Horizon 

Prediction 
Horizon (s) 

Avg. RMSE 
Without IRL 

Scoring 

Avg. RMSE With 
IRL Scoring 

1  0.7 0.6 

2  2.1 1.9 

3  4.6 4.1 

We again notice that as the task gets more difficult, the impact of the IRL scoring module increases. 
Here we see that the further the prediction horizon is, the more the IRL scoring module is able to 
improve predictions. This can be explained in the same way as the previous observation with 
through and turning movements: as the trajectories get more difficult to predict, the IRL scoring 
module is more likely to select a trajectory that is considerably more accurate from the set of 
candidate trajectories.  

Conclusions and Recommendations 
We have presented a two-step method for vehicle trajectory prediction at intersections. The first 
step of our method involved representing vehicle trajectories using B-spline curves and training a 
neural network to predict the coefficients of these B-spline curves. The second step of our method 
consisted of generating candidate trajectories based on the prediction of the neural network and 
using a reward function recovered by training an IRL model to the data to score these candidate 
trajectories and produce the final prediction. We have shown that a hybrid approach mixing 
elements from conventional supervised methods with elements from imitation learning can yield 
viable results for trajectory prediction. Our results indicate that IRL is an effective tool for 
addressing the shortcomings of conventional supervised methods with regard to the problem of 
trajectory prediction. We have furthermore demonstrated the suitability of B-spline curves for 
representing vehicle trajectories in such a way as to enable prediction. An avenue for future work 
lies in making context information available to the first step of the method. By making the model 
aware of interactions between vehicles from the first step, it should be possible to provide better 
input to the IRL scoring module and further improve the accuracy of the overall model. Another 
possible area for improvement would be modifications that allow the model to provide flexibility 
in terms of the starting point of the predictions before or after the vehicle reaches the intersection.  
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Additional Products 
The Education and Workforce Development and Technology Transfer products created as part of 
this project are located on the project page of the Safe-D website. The final project dataset is 
located in the Safe-D Collection on the VTTI Dataverse. 

Education and Workforce Development Products 
The following Education and Workforce Development items resulted from project activities: 

1. One master’s student has been involved in all project activities. The student developed a 
state-of-the-art understanding of trajectory prediction models, utilized advanced machine 
learning methods to build trajectory prediction models, and improved a baseline model. 
The project contributed to the student’s master’s thesis. The student is also currently 
working on a journal paper. It is expected that the student will defend his MS thesis in the 
summer of 2021. 

2. The project contributed to a new graduate course on intelligent transportation systems at 
San Diego State University (CIVE 696 Intelligent Transportation Systems). Materials are 
currently being developed from this project for this course. 

3. Jazayeri, S., & Jahangiri, A. (2020). Exploring inverse reinforcement learning 
architectures for vehicle trajectory prediction. 2020 Student Research Symposium, San 
Diego State University. 

4. The project team had a plan originally to present the project at the SDSU Explore Day 
event. It is likely that the event will be canceled due to COVID-19. If a virtual platform is 
provided for this event, the team will use that to present this project. 

Technology Transfer Products 
The following technology transfer products resulted from project activities: 

• A journal paper was submitted to the IEEE Transactions on Intelligent Transportation 
Systems. 

• Jazayeri, S., & Jahangiri, A. (2020). Trajectory prediction at intersections using inverse 
reinforcement learning. 11th International Conference on Applied Human Factors and 
Ergonomics (AHFE 2020), held virtually due to COVID-19, July 16–20. 

• The project team is planning to present the work at the Caltrans Innovation Fair. 

Data Products  
• Link to Dataset – The data has been uploaded to the Safe-D Dataverse - 

DOI:10.15787/VTT1/AKKZ6V.  

https://safed.vtti.vt.edu/projects/prediction-of-vehicle-trajectories-at-intersections-using-inverse-reinforcement-learning/
https://dataverse.vtti.vt.edu/dataverse/safed
https://dataverse.vtti.vt.edu/dataset.xhtml?persistentId=doi:10.15787/VTT1/AKKZ6V
https://dataverse.vtti.vt.edu/dataset.xhtml?persistentId=doi:10.15787/VTT1/AKKZ6V
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• Project Description – The goal of this project was to investigate the effectiveness of inverse 
reinforcement learning for predicting vehicle trajectories at intersections.  

• Data Scope – Thirty minutes of vehicle trajectory data at three intersections from the 
Lankershim Boulevard Dataset (from the NGSIM dataset collection) was processed to 
obtain 6,100 vehicle trajectories in csv format, with each row corresponding to one vehicle 
trajectory. 

• Data Specification – A detailed description of each variable in the dataset can be found in 
Appendix C. 

• Citation Metadata: 

o Title of datasets: “SafeD-SDSU-01-01-Data.csv” 
o Author list with researcher ORCIDs 

 Mohammad Sadegh Jazayeri, 0000-0002-7814-8852 
 Arash Jahangiri, 0000-0002-8825-961X 
 Sahar Ghanipoor Machiani, 0000-0002-7314-2689 

o Contact information (email) for corresponding author: AJahangiri@sdsu.edu 
Keywords: vehicle trajectory prediction, inverse reinforcement learning, neural networks, B-spline 
curves 

 

 

  

mailto:AJahangiri@sdsu.edu
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Appendix/Appendices 
Appendix A: An Overview of the Literature on 
Trajectory Prediction 

Study Approach Intersection/Road 
Segment AV/Infrastructure Methods Predictors Accuracy 

[17] Physics 
Based Intersections AV UKF Previous 

trajectory  

[31] Physics 
Based Road Segment AV EKF Previous 

trajectory  

[15] Physics 
Based Intersection Infrastructure KF Previous 

trajectory  

[18] Physics 
Based Intersection Infrastructure KF Previous 

trajectory  

[21] Physics 
Based Intersection Infrastructure KF Previous 

trajectory  

[19] Maneuver 
Based Intersection Infrastructure EKF, OOBN Previous 

trajectory  

[5] Maneuver 
Based Intersection AV RBF Network, 

Particle Filter 
Previous 

Trajectory 
RMSE 5 
m @ 3 s 

[7] Maneuver 
Based Both Not Specified GHMM Previous 

Trajectory  

[22] Maneuver 
Based Intersection AV 

Gaussian 
Process, 

Particle Filter 

Previous 
Trajectory  

[11] Maneuver 
Based Intersection AV Gaussian 

Mixture Model 
Previous 

Trajectory  

[39] 

Maneuver 
and 

Physics 
Based 

Road Segment AV 

Dynamic 
Bayesian 

Network and 
UKF 

Previous 
Trajectory 

Average 
Error: 
0.69 

[14] Maneuver 
Based Intersection Infrastructure 

k-NN, 
Adaptive KF, 

IDM 

Previous 
trajectory 

RMSE: 
5.02 
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Study Approach Intersection/Road 
Segment AV/Infrastructure Methods Predictors Accuracy 

[34] Interaction 
Aware Intersection AV Particle Filter 

Previous 
Trajectory 

and 
Surroundings 

 

[23] Interaction 
Aware Both AV CHMM 

Previous 
Trajectory 

and 
Surroundings 

 

[35] Interaction 
Aware Intersection AV IDM 

Previous 
Trajectory 

and 
Surroundings 

Only 
maneuver 
prediction 

[40] Interaction 
Aware Mine AV DBN 

Previous 
Trajectory 

and 
Surroundings 

 

[37] Interaction 
Aware Road Segment AV DBN 

Previous 
Trajectory 

and 
Surroundings 

Average 
RMS: 
0.21 m 

[6] Interaction 
Aware Both AV CNN 

Previous 
trajectory and 
Surroundings 

 

[36] Interaction 
Aware Both AV 

Probabilistic 
Graphical 

Model 

Previous 
Trajectory 

and 
Surroundings 

 

[41] Interaction 
Aware Intersection AV 

Dynamic 
Bayesian 
Network 

Previous 
Trajectory 

and 
Surroundings 

 

[42] Interaction 
Aware Highway Infrastructure GAIL 

Previous 
Trajectory 

and 
Surroundings 

 

[43] Interaction 
Aware Intersection AV 

Partially 
Observable 

MDP 

Previous 
Trajectory 

and 
Surroundings 

 

[44] Interaction 
Aware 

Roundabout, T-
Junction, Urban 

Road 
AV 

Partially 
Observable 

MDP 
Previous 

Trajectory 
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Study Approach Intersection/Road 
Segment AV/Infrastructure Methods Predictors Accuracy 

and 
Surroundings 

[45] Interaction 
Aware Intersection Infrastructure Deep Neural 

Networks 

Previous 
Trajectory 

and 
Surroundings 

92% avg. 
accuracy 

[46] Interaction 
Aware Highway AV LSTM 

Previous 
Trajectory 

and 
Surroundings 

 

[47] Interaction 
Aware Intersection AV Neural Net and 

DBN 

Previous 
Trajectory 

and 
Surroundings 

RMSE: 3 
m 

[16] Interaction 
Aware Intersection Infrastructure DBN 

Previous 
Trajectory 

and 
Surroundings 

 

[27] Interaction 
Aware Highway AV IRL and Deep 

Q-Nets Surroundings  

[28] Interaction 
Aware Highway AV IRL Surroundings  

[48] Interaction 
Aware Road Segment AV Hierarchical 

IRL Surroundings  

[29] Interaction 
Aware Both AV 

Recurrent 
Neural 

Networks and 
IRL 

Previous 
Trajectory 

and 
Surroundings 

 

[49] Interaction 
Aware Highway AV IRL Surroundings  

[51] Interaction 
Aware Highway AV IRL 

Previous 
Trajectory 

and 
Surroundings 
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Appendix B: Summary of Studies on Trajectory Prediction for 
Intersection Safety 

Study Predictors 
(detail) 

Data 
Collection 

Sensors 

# of 
Intersections 
in Training 

Data 

Sampling 
Frequency 

Monitoring 
Period 

Prediction 
Horizon 

Evaluation 
Metric 

Evaluation 
Metric 
Value 

Applications Interaction 
Type 

Movement 
Type 

[14] 

Position, 
velocity, 

distance to 
preceding 

vehicle, speed 
difference 

from 
preceding 

vehicle 

Video 
camera 3 8 Hz 1 s 12 s 

RMSE of 
difference 
between 
predicted 
and actual 
trajectory 

5.02 m 

Detect red light running, 
abrupt stops, aggressive 
passes, speeding passes, 
and aggressive following 

Vehicle, 
vehicle-
vehicle 

All 

[45] 

Vehicle 
position over a 

number of 
preceding 

frames 

Video 
camera 2+1 15/5 Hz 1/3 of each 

trajectory 2 s 
Turning 

prediction 
accuracy 

92% Early prediction of 
turning movements 

Vehicle-
vehicle, 
vehicle-

pedestrian 

All 

[12] 

Vehicle 
position, 

velocity, and 
acceleration 

GPS Not 
applicable 10 Hz 

Up to the 
prediction 

point 
10 s 

No 
quantitative 
evaluation 

NA Collision detection and 
risk assessment 

Vehicle-
vehicle All 

[15] 
Vehicle 

position and 
velocity 

DGPS Not 
applicable 

Not 
specified 

Not 
specified 

Not 
specified 

No 
quantitative 
evaluation 

NA Collision detection and 
warning 

Vehicle-
Vehicle All 

[47] 

Vehicle 
position, 

velocity, and 
previous 

trajectory + 
surroundings 

Video 
camera 1 33 Hz Not 

specified 0-3 s 

RMSE of 
difference 
between 
predicted 
and actual 
trajectory 

3 m 

This one is actually AV, 
but because it is at 

intersections and fits our 
theme it is included in 

this section 

Vehicle-
vehicle, 
vehicle-

Pedestrian 

All 
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Study Predictors 
(detail) 

Data 
Collection 

Sensors 

# of 
Intersections 
in Training 

Data 

Sampling 
Frequency 

Monitoring 
Period 

Prediction 
Horizon 

Evaluation 
Metric 

Evaluation 
Metric 
Value 

Applications Interaction 
Type 

Movement 
Type 

[17] 

Vehicle 
position, 
speed, 

acceleration, 
and yaw 

GPS + 
inertial 
sensors 

Not 
applicable 

Not 
specified 

Not 
specified 

Not 
specified 

No 
quantitative 
evaluation 

NA Frontal collision 
prevention/mitigation 

Vehicle-
vehicle 

Frontal 
collisions 
caused by 

any 
movement 

[16] 

Vehicle 
position, 
velocity, 

acceleration, 
distance 

traveled, turn 
signal, road 
condition 

Simulation 1 Not 
specified 

Not 
specified 

Not 
specified 

TPR, FPR, 
and FNR for 

collision 
prediction 

and collision 
avoidance 

success 

TP: 97%, 
FPR: 1.25%, 
FNR: 0.95% 

Collision 
avoidance 
success: 
96.65%-
98.99% 

depending 
on road 

condition 

Collision detection and 
prevention/mitigation by 

finding conflicts 
between drivers’ 

intentions and expected 
behavior; red light 
running/dangerous 

stopping, etc. 

Vehicle-
vehicle 

All 
movements 

[13] 
Vehicle 
position, 
velocity 

Video 
camera 2 25 Hz 

Prediction 
performed at 
every time 

step 

Not 
specified 

No 
quantitative 
evaluation 

NA Collision detection and 
prevention/mitigation 

Vehicle-
vehicle, 
vehicle-

pedestrian 

All 
movements 

[18] 

Vehicle 
position, 
velocity, 

acceleration 

Roadside 
sensors, 
onboard 

GPS 

1 Not 
specified 

Not 
specified 

Maximum 
of 10 s 

Levels of 
accident 

mitigation 
 

Detection and mitigation 
of red light running, 

dangerous right turns, 
dangerous left turns 

Vehicle-
vehicle, 
vehicle-
cyclist, 
vehicle-

pedestrian 

Turns and 
red light 
running 

[20] 

Vehicle 
position, 

velocity, and 
acceleration 

Video 
camera 1 Not 

specified 
Not 

specified 
Not 

specified 
Simulated 
SOC curve 

0.9 detection 
at 0.06 false 
alarm rate 

Red light running 
prediction and 

mitigation through all-
red extension 

N/A Red light 
running 

[19] 

Vehicle 
position, 
velocity, 

acceleration 

Intersection 
mounted 

cameras and 
laser sensors 
+ onboard 

sensors 

Not 
applicable 

Not 
specified 

Not 
specified 2 s 

No 
quantitative 
evaluation 

NA Collision risk prediction 

Vehicle-
vehicle, 
vehicle-

pedestrian, 
vehicle-
cyclist 

All 
movements 
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Study Predictors 
(detail) 

Data 
Collection 

Sensors 

# of 
Intersections 
in Training 

Data 

Sampling 
Frequency 

Monitoring 
Period 

Prediction 
Horizon 

Evaluation 
Metric 

Evaluation 
Metric 
Value 

Applications Interaction 
Type 

Movement 
Type 

[21] 

Vehicle 
position, 
velocity, 

acceleration 

Not 
specified 

Not 
applicable 10 Hz Not 

specified 3 s 

False 
positive + 

false 
negative 

Fp = 2.4%, 
fn = 3.6% 

Collision prediction, 
collision warning 

Vehicle-
vehicle 

All 
movements 
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Appendix C: Data Specification 
# Variable Description 

1 dist_1 the distance (in meters) from the center of the approach the vehicle is entering the 
intersection from to the center of the approach to the vehicle’s right 

2 x_dist_1 the distance (in meters) along the x-axis from the center of the approach the vehicle is 
entering the intersection from to the center of the approach to the vehicle’s right 

3 y_dist_1 the distance (in meters) along the y-axis from the center of the approach the vehicle is 
entering the intersection from to the center of the approach to the vehicle’s right 

4 dist_2 the distance (in meters) from the center of the approach the vehicle is entering the 
intersection from to the center of the approach opposite the vehicle 

5 x_dist_2 the distance (in meters) along the x-axis from the center of the approach the vehicle is 
entering the intersection from to the center of the approach opposite the vehicle 

6 y_dist_2 the distance (in meters) along the y-axis from the center of the approach the vehicle is 
entering the intersection from to the center of the approach opposite the vehicle 

7 dist_3 the distance (in meters) from the center of the approach the vehicle is entering the 
intersection from to the center of the approach to the vehicle’s left 

8 x_dist_3 the distance (in meters) along the x-axis from the center of the approach the vehicle is 
entering the intersection from to the center of the approach to the vehicle’s left 

9 y_dist_3 the distance (in meters) along the y-axis from the center of the approach the vehicle is 
entering the intersection from to the center of the approach to the vehicle’s left 

10 x the distance (in meters) along the x-axis between the vehicle and the center of the 
approach 

11 y the distance (in meters) along the y-axis between the vehicle and the center of the 
approach 

12 acc vehicle acceleration (in m/s2) before entering the intersection 

13 acc_x vehicle acceleration (in m/s2) along the x-axis before entering the intersection 

14 acc_y vehicle acceleration (in m/s2) along the y-axis before entering the intersection 

15 vel vehicle velocity (in m/s) before entering the intersection 

16 vel_x vehicle velocity (in m/s) along the x-axis before entering the intersection 

17 vel_y vehicle velocity (in m/s) along the y-axis before entering the intersection 

18 acc_avg average vehicle acceleration (in m/s2 over 2 s) before entering the intersection 

19 acc_x_avg average vehicle acceleration (in m/s2 over 2 s) along the x-axis before entering the 
intersection 
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# Variable Description 

20 acc_y_avg average vehicle acceleration (in m/s2 over 2 s) along the y-axis before entering the 
intersection 

21 vel_avg average vehicle velocity (in m/s over 2 s) before entering the intersection 

22 vel_x_avg average vehicle velocity (in m/s over 2 s) along the x-axis before entering the 
intersection 

23 vel_y_avg average vehicle velocity (in m/s over 2 s) along the y-axis before entering the 
intersection 

24 heading vehicle heading (in radians) before entering the intersection 

25 right_movement variable specifying whether right turns are permitted (=1) or not (=0) for the lane the 
vehicle is on 

26 through_movement variable specifying whether through movements are permitted (=1) or not (=0) for the 
lane the vehicle is on 

27 left_movement variable specifying whether left turns are permitted (=1) or not (=0) for the lane the 
vehicle is on 

28 x_coeff_{n} the 𝑛𝑛𝑡𝑡ℎ B-spline curve coefficient for the vehicle’s trajectory along the x-axis 

29 y_coeff_{n} the 𝑛𝑛𝑡𝑡ℎ B-spline curve coefficient for the vehicle’s trajectory along the y-axis 
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