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Abstract 
While traditional pedestrian and bicyclist monitoring methods require active efforts from data collectors, 
advancements in technology have made it possible to use the proliferation of mobile phones to capture real-
world walking and bicycling patterns. Nearly ubiquitous mobile phone use (and more recently smartphone 
use) has made users both passive and active contributors to the emerging data collection methods. As 
passive contributors, mobile phone users routinely send their spatio-temporal information to cellular 
networks, satellites, and application servers. Secondary vendors purchase and process these data for sale. As 
active contributors, those who are willing to record and quantify their physical activities readily accept being 
monitored by activity tracking apps. This new method of data collection, data crowdsourcing, has been linked 
to the explosion of data availability in the non-motorized travel research domain, where traditionally 
pedestrians and bicyclists have been under-sampled and poorly understood.  

These emerging methods promise new opportunities, but much work remains to fully realize the potential of 
accessible data and practices. This study reviewed currently available crowdsourced data and current use of 
these data. The review focuses on pedestrians and bicyclists, and includes both passive and active 
contributions.  

The results reveal that bicycling data crowdsourced by active contributors have many possible research and 
practical applications, but pedestrian data rarely receive attention. Both pedestrian and bicycle data 
crowdsourced in a passive way are not currently available due to a high level of uncertainty and low 
locational precision. Even if the passively crowdsourced data are fully available, obtaining contextual 
information such as socioeconomic characteristics and trip purpose at the individual journey level is 
challenging. More efforts are needed to improve data accuracy and develop robust data fusion techniques. 
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Executive Summary 
While traditional pedestrian and bicyclist monitoring methods have relied on intensive efforts from data 
collectors, emerging monitoring methods that use location-aware mobile devices (hereafter termed simply 
mobile devices) require relatively fewer resources but make it possible to collect a huge amount of travel 
data. With nearly ubiquitous mobile device use, this new method of data collection, data crowdsourcing, has 
been linked to the explosion of data availability in the non-motorized travel (walking and bicycling) research 
domain, where traditionally pedestrians and bicyclists have been under-sampled and poorly understood.  

These emerging methods promise new opportunities to capture real-world walking and bicycling patterns, 
but much work remains to fully realize the potential of accessible data and practices. 

This study reviewed currently available data collected by various emerging methods that take advantage of 
mobile devices (e.g., mobile phones, smartphones, tablets, and wearable wristbands) and their current use.  

The review starts with an overview of pedestrian and bicycle data sources, including both traditional and 
emerging data sources. Based on the level of input (interaction) of the traveler, pedestrian and bicycle data 
are classified as: 

• Passive data: No/little input (interaction) from pedestrians and bicyclists is needed. 
• Active data: Active input (interaction) from pedestrians and bicyclists is needed. 

Emerging Passive Data 
Emerging passive data collection methods do not necessarily require active input from pedestrians and 
bicyclists. The spatio-temporal information of travelers is routinely stored based on wireless technologies: 
mobile phone positioning, global positioning systems (GPS), and location-based services. Data analytic 
companies purchase the initially collected data and sell them again after data processing.  

Emerging passive data are not currently available for non-motorized travel monitoring. The products 
provided by commercial vendors usually focus on vehicle trips rather than non-motorized trips due to limited 
positional precision, the short trip distances of walking and bicycling, and subsequent uncertainties of mode 
detection. One company, StreetLight, recently provided a preliminary dataset of pedestrians around transit 
stations on a trial basis. StreetLight is currently developing pedestrian and bicycle travel metrics, which are 
still in the research and test stage.  

Considering that passive data account for a significant proportion of the total population, passive data have 
greater potential for non-motorized travel monitoring, compared to traditional monitoring methods. 
However, even if passive data are fully available, getting contextual information such as socioeconomic 
characteristics and trip purpose at the individual journey level is challenging unless the limitations are 
surmounted, such as privacy concerns, data precision, and technical skills, to successfully infer transportation 
modes. 

Emerging Active Data  
Emerging active data sources include regional bicycle tracking apps, fitness/activity tracking apps, bike-share 
programs, and user-feedback map inventories. This type of monitoring necessitates active contributions in 
the data collection process from travelers. 

So far, non-motorized travel-monitoring tools are more concentrated on active data, especially for bicycling. 
Since the launch of CycleTracks in 2009, many public agencies have developed GPS-based bicycle tracking 
programs (e.g., Cycle Atlanta, Mon RésoVélo, and CycleLane) to better understand bicycle traffic patterns in 
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their regions. In addition to basically gathered opt-in users’ GPS traces (time and route), demographic 
characteristics, trip purpose, comfort level, and other information are voluntarily collected. 

As for commercial apps, among an increasing number of fitness/activity tracking apps, Strava sells its users’ 
bicycling GPS traces. Compared to the earlier regional bicycle trackers, Strava makes its data commercially 
available in a more extensive area as long as the region of interest contains Strava users. However, due to 
privacy issues, trip distance, trip speed, trip purpose, age, and gender are provided at the aggregate scale.  

Bike-share programs are another source of bicyclist monitoring that can support policy making. Operation 
records can be used to identify the travel patterns of public-bicycle borrowers but provide limited trip 
information depending on the number of docking stations, the success of the program, and the presence of a 
GPS tracking function.  

In the context of public engagement in the planning process, user-feedback-based map inventory apps can 
convey stakeholders’ opinions to transportation planners and practitioners. Soliciting local knowledge from 
smartphone-carrying pedestrians and bicyclists can provide direct information about the location of interest 
(e.g., potholes) or new infrastructure needs (e.g., sidewalks). 

With the success of these apps for active data, increased data availability in time, space, and volume has 
enabled many bicycle travel behavior studies including route-choice modeling, bicycling traffic volume 
analysis, collision exposure estimation, and evaluation of new facility provision at the entire network level. 
These kinds of studies have typically been limited due to lack of data.  

While the apps sponsored by agencies (e.g., CycleTracks, Cycle Atlanta, and Mon RésoVélo) have extensive 
data coverage, such as individual-level trip records and sociodemographic features (from volunteers), they 
are limited to the geographical boundaries where the app is operated (e.g., San Francisco, Atlanta, and 
Montreal). Such limitation might be overcome by commercial apps (e.g., Strava) because these apps are used 
more broadly (e.g., globally). However, commercial app data also suffer from data limitations in providing 
additional travel information at the disaggregate level. Given that each emerging data collection method has 
its own strengths and drawbacks, jointly applying various sources of data would generate synergistic effects. 
Combining traditional data and emerging data can be a strategy for non-motorized travel planners who might 
face sample bias or limited sample size issues. Data collectors and providers must also consider privacy issues 
as long as personal information is required for the purpose of research.  

While active data are beneficial for bicycle monitoring, limited sources are currently available for pedestrian 
research. Special attention needs to be paid to take advantage of crowdsourced emerging data for pedestrian 
monitoring.  
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Introduction 
With growing attention on the benefits of non-motorized travel (i.e., walking and bicycling), the need for 
accurate, timely pedestrian and bicyclist travel data has increased over the past decades. Non-motorized 
travel modes have unique characteristics; their trips are more sensitive to the environment, more variant, 
and shorter than motorized trips. Walking and bicycling data have traditionally relied on counting at limited 
locations and on travel surveys for multimodal transportation (Ryus et al., 2014). Because most of the 
traditional monitoring methods require collectors’ active input, which can be quite costly and timely, non-
motorized travel data have often been limited by small sample size, time and budget constraints, and 
infrequent updates.  

Over the last 10 years, advancements in technologies and proliferation of smartphones, along with increased 
demand for detailed information on non-motorized modes, have brought interest in new monitoring 
methods. While traditional data collection methods are still widely used, researchers and practitioners are 
investigating emerging methods that use the contributions of crowds through mobile devices with wireless 
technologies. 

This study provides a review of emerging data sources in the context of non-motorized travel and with a 
specific focus on crowdsourced data using mobile devices. The review starts with an overview of pedestrian 
and bicycle data sources. Next, emerging data are examined extensively in terms of their data sources, types, 
and current and potential usage. Finally, the limitations of emerging data are discussed.  

Overview of Pedestrian and Bicycle Data Sources 
When pedestrian and bicycle monitoring programs started, monitoring tools were typically limited to travel 
surveys and manual counts. Technological advancements have created a variety of data collection methods 
that require less effort and fewer resources, while producing a larger volume of data than traditional 
surveying and counting, as in the cases of emerging crowdsourced data available through mobile devices and 
apps.  

To provide a more structured, effective, and easy-to-follow evaluation of data characteristics, pedestrian and 
bicycle travel data are classified as passive data or active data in this review, according to the degree of 
action needed for traveler input and effort: 

• Passive data: No/little input and effort from pedestrians and bicyclists are needed. 
• Active data: Active input and effort from pedestrians and bicyclists are needed. 

Figure 1 gives an overview of how data sources are classified in this study, followed by discussion of these 
data sources. 
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Figure 1. Classification of Pedestrian and Bicycle Data Sources. 
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Traditional Data Sources  
This section provides a brief explanation on traditional efforts to facilitate the discussion on emerging data 
(as the main focus of this review) in moving forward. 

Site counts are the most traditional data monitoring methodologies and are used to directly measure bicycle 
and pedestrian data. Since counting does not require active solicitation of travelers (i.e., from pedestrians 
and bicyclists in the current context), it is a representative passive data monitoring methodology. The 
primary techniques include manual and automated counting. Manual counting is performed by human data 
collectors in the field or using video recordings. This is the method that is still primarily used to collect 
pedestrian and bicycle traffic volumes (Ryus et al., 2014). Since accuracy depends on collectors, pre-training 
and instruction are necessary (Schneider et al., 2009). Manual counting is the preferred method of data 
collection when specific information on travelers’ behaviors and attributes, such as helmet wearing and 
gender, is needed. This option is preferred, especially when there are constraints in securing financial 
resources, technical capacity, or regulatory permissions for deploying automated detectors. Techniques for 
counting have expanded to automatic methods using diverse sensors, such as pneumatic tubes, inductive 
loop detectors, passive/active infrared, and radio beams. When traffic volume over a lengthy period of time 
is needed, automated detectors can substitute for human data collectors. Pedestrian signal actuation buttons 
can be used as a reasonable proxy for determining rough pedestrian demand (Day et al., 2011).  

Directly measured counts are generally used to estimate traffic volume at specific transportation facilities or 
at more aggregated area-wide geographies. Since counts are typically available at a limited number of points 
or segments (micro-scale), it is practically impossible to monitor every intersection and road segment in a 
region (macro-scale).  

Traditional active data collection is mostly based on surveys, in which subjects are asked to describe their 
activities and travels in detail via a travel diary, GPS device, interview, or web-based questionnaires. Several 
types of surveys have been conducted to collect travel information in the United States, such as national 
travel surveys, GPS-based surveys, and intercept surveys. 

Among the national surveys, the two commonly known travel surveys conducted in the United States are the 
U.S. Census American Community Survey (ACS) and the National Household Travel Survey (NHTS). The ACS 
provides commute modes with demographic data, which are updated every year. However, trip purposes are 
confined to only the journey to work, and survey respondents are asked to indicate one commute mode that 
is predominantly used (Griffin et al., 2014). Compared to the ACS, the NHTS encompasses all travel purposes 
but is updated infrequently. One issue with the NHTS from a non-motorized monitoring perspective is that 
survey participants tend to underreport walking and bicycling. In an effort to increase data confidence, 
participants are asked to carry GPS loggers. However, even with the combination of GPS and traditional 
survey, the NHTS still asks people to complete trip diaries, which can trigger survey fatigue and less faithful 
answers (Lee et al., 2016). Although both surveys provide contextual information, such as trip purpose, 
resident status, and income level, which are important parameters in estimating travel behaviors, a great 
deal of preparatory work and post-data processing are required for the nationwide data. This might result in 
high costs and small sample sizes at the local level that might be particularly problematic for non-motorized 
travel monitoring.  

Some other types of surveys, such as GPS-based surveys or intercept surveys, can provide more specific data 
when focused on non-motorized travel, but these surveys still suffer from not being able to sample 
adequately to capture the non-motorized activity over the entire network and area-wide geographies. While 
survey methods provide more comprehensive information on pedestrians and bicyclists than counts, small 
sample sizes and financial constraints are challenging.  

For more information on traditional data collection in the context of non-motorized travel, readers are 
referred to Turner et al. (2017). 
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Emerging Data Sources 
During the last decade, advancements in technology and nearly ubiquitous use of mobile phones (and more 
recently smartphones) has yielded to the development of a new era of data collection. Researchers and 
practitioners can now use mobile-device-based crowdsourcing to identify travel patterns from mobile device 
users. For example, mobile phone users’ locational information data routinely sent to mobile phone networks 
are commercially available, and the mobility patterns of smartphone app users are voluntarily or 
unknowingly shared with app developers.  

Emerging data collection methodologies promise new opportunities because they can provide massive 
amounts of non-motorized travel information about a broad and diverse sample of the population with fewer 
time and resource constraints. However, much work remains to fully realize the potential of accessible data 
and practices. While some data are already commercialized, others are not yet readily available or have 
limitations to being used for capturing pedestrian and bicyclist travel patterns.  

This study reviewed currently available data collected by various emerging methods and their current use. 
Not intending to be completely comprehensive, the review provides resources for the transportation 
community interested in emerging methodologies in non-motorized travel monitoring. Knowledge obtained 
from the literature is expected to be beneficial not only to improve pedestrian and bicycle safety, but also to 
plan a better travel environment for non-motorized travelers. The review considers both passive data and 
active data in detail.  

Passive Data  
Emerging passive data require no or minimal levels of direct interaction with the mobile phone users being 
monitored. With emerging passive data collection methods, millions or billions of location data points are 
routinely generated every day. Once raw datasets are obtained, they have to be aggregated, anonymized, 
filtered, and matched to road networks by intensive data processing. Secondary vendors usually purchase the 
raw datasets from initial data collectors (e.g., mobile phone carriers and app developers) and sell them again 
after data mining. Since data attributes differ by collection technology (mobile phone positioning, GPS, and 
location-based service), product output (e.g., trip types, data precision, and sample sizes) varies by 
technology adopted during data collection. 

Passive data covered in this study focus on three types of emerging data collection technologies:  

• Mobile phone positioning (MPP). Mobile providers routinely collect mobile phones’ spatio-temporal 
information for operational purposes without user intervention. 

• GPS. GPS-enabled devices record actual travel routes and times connecting to satellites every few 
seconds. 

• Location-based service (LBS). A growing number of smartphone apps use LBS to determine users’ 
location when they check in, even if the app is not initiated (as long as the app has access to location 
information, even when it works in the background). 

Active Data  
Compared to emerging passive data, emerging active data require travelers’ input and efforts, such as 
willingness to participate in data collection to some extent during their physical activity. Active monitoring 
helps facilitate the collection of data associated with pedestrians and bicyclists in a more targeted manner (in 
terms of mode detection) compared to passive data. For example, fitness tracking apps collect mobility data 
only for the opt-in users who install and initiate the app to record and check their walking, bicycling, or 
running.  
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In this study, emerging active data are categorized into four types of non-motorized traveler tracking:  

• Regional bicycling tracking. Public agencies develop regional bicycling tracking apps to collect 
bicycling travel patterns. 

• Fitness/activity tracking. Private companies develop fitness/activity tracking apps, which provide 
tracking services to those who are willing to quantify and record their physical activities (e.g., 
bicycling, running, and walking) and other daily activities. 

• Bike-share programs. Bike-share programs can be a way to monitor the bicycle community that 
borrows a public bicycle for a relatively short-term use. App-based operation enables users to 
actively and easily search nearby stations, available bikes, and docks.1 

• User-feedback-based map inventory. User-feedback-based map inventory apps (web-based apps) 
gather public input such as safety issues (e.g., crash locations) and facility demands. 

Passive Data: Sources, Types, and Usage 
This section describes which emerging passive data sources are currently available, who provides the passive 
dataset, what types of data are provided, how the data are used in the non-motorized transportation 
planning field, and the data’s potential capabilities.  

Sources 
Emerging passive data sources differ depending on which technology is used for initial data collection. MPP, 
GPS, and LBS have different levels of locational precision and coverage area, and thus different data output 
by provider.  

Table 1 describes various technologies employed in passive monitoring, how these technologies work to 
collect raw data, and the attributes of these datasets.  

                                                             
1 It may seem unusual to categorize bike-share programs as active data because bicyclists’ input to track their travel 
is not necessarily required, unlike CycleTracks or Strava (e.g., initiate the app to start tracking). However, in the 
context of the current study, it is considered active input when service users search nearby stations, go to docking 
stations, and hire and return a bicycle. 



 

Page 14 of 37 
 

Table 1. Emerging Passive Data by Monitoring Technique. 

Data 
Description MPP GPS LBS 

Monitoring 
point 

When mobile phones 
connect to cellular 
operator’s networks  

When mobile phones 
receive signals from 
satellites 

When the LBS app is 
initiated (in the foreground) 
and the device begins 
moving (in the background) 
by Wi-Fi and assistive-GPS 
(A-GPS)2 (varies based on 
technology) 

Locational 
precision 

200 to 1,000 m 5 m From 5 m (A-GPS) to 50 m 
(Wi-Fi)  

Detection 
coverage 

Up to the traffic analysis 
zone (TAZ), census block, or 
road on which the device is 
located 

Up to a small road or parking 
lot 

Up to most parking lots, 
TAZs, and blocks 

Example 
vendors 

AirSage (www.airsage.com) INRIX (inrix.com), TomTom 
(www.tomtom.com), and 
HERE (here.com) 

StreetLight 
(www.streetlightdata. 
com) and Cuebiq 
(www.cuebiq.com) 

Possible 
data 

Aggregate origin-destination 
(OD), trip purpose (imputed), 
home/work location 
(imputed), and speed 

Aggregate OD, trip purpose 
(imputed), home/work 
location (imputed), and 
speed 

Aggregate OD, trip purpose 
(imputed), home/work 
location (imputed), and 
speed 

MPP  
Signaling between mobile phones and cell towers, called mobile phone positioning, is a key technology for 
cellular carriers to achieve billions of location data points by time from their cell-phone service consumers. 
While users are on the phone (voice calls, text messages, and data sessions), cellular networks locate callers 
and the persons they are calling. In the process of locating them, cellular carriers collect cellular users’ 
geolocations by time (Chen et al., 2016). As mobile phone users move, cell towers collecting geospatial 
information are switched. Through this tower changing, travel patterns are traced (Huntsinger and Donnelly, 
2014). However, since tracked geolocation is of cell towers, MPP data do not necessarily represent the exact 
X and Y coordinates of places visited or passed (Chen et al., 2016). Positional accuracy is determined by 
cellular network coverage (called cell size). The commonly recognized spatial precision of MPP data ranges 
from 200 m to 1,000 m (typically better in urban areas than in rural areas due to higher cell tower density) 
(Bowman, n.d.). This precision may affect detecting short trips. For example, for 1,000 m precision, it is 
difficult to accurately capture trips shorter than 1,000 m. Therefore, walking trips, which cover relatively 
short distances, are more likely to be missed in the process of data cleaning.  

AirSage, a company founded in 2000 in Atlanta, is a pioneer in purchasing and supplying MPP data in the 
United States. According to the company, it “generates billions of anonymous location data points, 
transforming terabytes of signaling data every day” (AirSage, 2017a). Geospatial datasets provided by AirSage 
can present 10 to 30 percent of the total population based on cellular carriers (Bowman, n.d.). The data 
product includes traffic speed and volume on roadways and trip OD at aggregated levels such as census tracts 
or TAZs (Huntsinger and Donnelly, 2014). Due to privacy issues and location precision, MPP data should be 

                                                             
2A-GPS helps start up the connection (e.g., it helps GPS work in a building). 
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aggregated. AirSage’s data are suitable for vehicle travel volume analysis at the macro-scale (Smith, 2015). 
These data are not yet available for capturing a pedestrian’s and bicyclist’s trip patterns.  

GPS 
GPS collects GPS-enabled devices’ geolocation and velocity information, measuring the distance between 
mobile phones and satellites every few seconds. Spatial precision is about 5 m, which is better than MPP and 
LBS (Bowman, n.d.). This high positional accuracy makes it possible to detect where the device is at the small 
road or parking lot scale. However, GPS is primarily used for outdoor positioning because satellite signals do 
not work well inside buildings. Navigation-based GPS datasets are collected by navigation or mapping service 
companies. Several companies such as INRIX, TOMTOM, and HERE sell their GPS probe data gathered from 
their real-time traffic and route-choice services. 

GPS data alone can be used to identify the most popular routes, worst traffic spots, average speed, annual 
average daily traffic, and OD for vehicles. However, like MPP data, GPS data provided by data vendors lack 
important demographic attributes in detail because raw GPS points should be anonymized and aggregated to 
deliver traffic parameters. One company, StreetLight Data, Inc., integrates GPS data from INRIX with LBS data 
from Cuebiq to infer contextual details at the aggregate level. 

LBS 
Smartphone apps that provide LBS essentially depend on users’ physical location (e.g., Yelp, TripAdvisor, and 
Waze). When apps are operated, users’ location information is collected through Wi-Fi proximity, A-GPS, and 
other wireless technologies. Even when LBS apps are not in use, some of the apps collect data once opt-in 
users begin to move. Compared to MPP data, LBS data have higher locational precision (5–50 m) (Bowman, 
n.d.). While GPS data are better in explaining where people move, LBS data better describe where people 
stay and why people go there (e.g., shopping, home, and work). The high spatial precision of LBS makes it 
possible to infer sociodemographic characteristics to some extent such as income, home and work location, 
and trip purpose. Moreover, the spatial patterns and detailed speed information of users’ movements help to 
infer transportation mode recognition, which is extremely difficult to identify with cellular data. 

Cuebiq is one of the companies that provide aggregated LBS datasets. This company’s database comes from 
partnerships with almost 200 smartphone LBS app developers, and the large sample size is beneficial to 
secure representativeness (Schewel, 2016). For example, Cuebiq’s samples account for over 10 percent of 
the adults in the United States, and this percentage is growing over time. Considering that small cellular 
providers’ market share is about 10 percent, this large sample size is promising to capture real-world geo-
behavioral patterns. 

To take advantage of LBS data, StreetLight partnered with Cuebiq in 2016. The data partnership made it 
possible for StreetLight to expand its LBS sample size to over 30 million devices (Schewel, 2016). StreetLight 
data are unique compared to other data vendors’ data because they combine geo-spatial information and 
textual datasets (census data) so that customers (who purchase their data) can consider socioeconomic 
factors. StreetLight provides an easy-to-use-online platform, StreetLight Insight, where clients can directly 
analyze and visualize (e.g., using a heat map) from their own web browser in a few minutes. StreetLight data 
are provided in a shapefile for geographic information systems. However, StreetLight or other venders do not 
yet provide readily available pedestrian- and bicyclist-customized datasets.  

Applications 
While emerging passive data have been increasingly used in vehicle travel research, there has been a dearth 
of applications for pedestrians and bicycles. AirSage’s MPP data were used to estimate aggregated traffic 
parameters such as travel time and speed, traffic volume, and traffic flow; and to model OD pairs, daily 
activity patterns, and regional travel demand (Liu et al., 2008; Calabrese et al., 2013; Huntsinger and 
Donnelly, 2014; Çolak et al., 2015). Similarly, researchers applied INRIX observations to estimate real-time 
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speed on a vehicle travel network and to analyze travel time (Kim and Coifman, 2014; Cui et al., 2016; Barajas 
et al., 2017). TomTom data were applied to produce time-of-day link travel speed and travel time statistics on 
selected highway routes and segments, and traffic flow (Kerner et al., 2013; Nie et al., 2013). So far, almost 
every study using emerging passive data (and that have been reviewed during this review) is limited to 
vehicle trips. 

However, StreetLight’s data were recently used in a study to understand pedestrian travel patterns within 
last-mile trips near transit stations (McCahill, n.d.). This study analyzed two months of pedestrian trips (from 
June and July 2016) near two light-rail stations in Sacramento, CA. StreetLight provided the data after they 
were anonymized, processed, and aggregated. The study findings indicate that better accessibility was more 
likely to promote walking to transit stations, and people from neighborhoods that have poor connections to 
stations (e.g., a highway between the neighborhoods and stations) walked to transit stations to a greater 
degree than expected. Considering that it is challenging to gather ground-truth data of last-mile trips through 
conventional methods, the study shows that the emerging data have potential for diverse types of pedestrian 
and bicycle trips including a connecting mode for multimodal trips. StreetLight is currently developing 
pedestrian and bicycle travel metrics, which are still at the trial stage (McCahill, n.d.; StreetLight, 2017). 

Potential Capabilities  
Despite limited applications in the pedestrian and bicyclist monitoring domain, passive crowdsourced data 
have the potential to overcome the shortcomings of conventional monitoring methods. Walking and bicycling 
travel patterns have traditionally been more poorly understood than vehicle travel patterns, which is in part 
due to lack of adequate data acquisition. Data analytic companies, such as StreetLight and Cuebiq, began to 
work in partnership with other vendors to integrate different data sources and overcome the shortcomings 
of passive data (e.g., AirSage has agreements with GPS carriers) (AirSage, 2017b). Once emerging passive data 
are fully accessible and available, these data will allow researchers and practitioners to:  

• Use high-quality, readily available data at reduced cost, less intervention, and less burden than 
traditional data. 

• Monitor changes in behaviors and traffic volumes from the neighborhood to the nationwide scale. 
• Conduct continuous and long-term follow-up monitoring. 
• Identify spatial and temporal regularities/variations for time of day, for day of the week, or over time. 
• Evaluate the effects of the new provision of infrastructure on promoting walking and bicycling 

(through before and after comparison of the facility). 
• Predict future movements or detect abnormal patterns based on travel routines. 
• Enrich knowledge about pedestrian and bicycle travel behaviors. 

Active Data: Sources, Types, and Usage 
This section describes which emerging active data sources are currently available, who provides the active 
dataset, what types of data are provided, how the data are used in the non-motorized transportation 
planning field, and the data’s potential capabilities.  

Sources  
Emerging active data come from active participation of individuals in tracking their bicycling and physical 
activities through smartphone apps. A bike-sharing system is another tool for bicyclist monitoring. In other 
cases, user-feedback-based crowdsourcing apps become venues where communities actively inform safety 
issues and needs for specific facilities. Table 2 shows examples of active data sources and providers. As 
discussed previously, in this study, active crowdsourced data collection tools are categorized into four types: 
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• Regional bicycling tracking. 
• Fitness/activity tracking. 
• Bike-share programs. 
• User-feedback-based map inventory. 

Collected data types vary depending on who developed the monitoring program and for what reason. Details 
on the differences in data type are also shown in Table 2. 

Table 2. Examples of Emerging Active Data Sources and Providers. 

Provider Classification Collected Data Website Note 
Regional Bicycling Tracking 
CycleTracks Regional 

bicycling tracking 
app in San 
Francisco, CA, 
and other cities 

GPS trace, age, gender, trip 
purpose, trip frequency, email 
address, ZIP code  
 

www.sfcta. 
org 

The first 
regional 
bicycling 
tracking app 
in the United 
States 

Cycle Atlanta Regional 
bicycling tracking 
app in Atlanta, FL 

GPS trace, age, gender, trip 
purpose, trip frequency, email 
address, ZIP code, ethnicity, 
income, rider type, rider 
experience, note, picture 

cycleatlanta. 
org 

A branch of 
CycleTracks 

Mon 
RésoVélo 

Regional 
bicycling tracking 
app in Montreal, 
Canada 

GPS trace, age, gender, trip 
purpose, trip frequency, email 
address, ZIP code, picture, 
greenhouse gas emission, 
consumed calorie 

— A branch of 
CycleTracks 

CycleLane Regional 
bicycling tracking 
app in Eugene, 
OR 

GPS trace, age, gender, trip 
purpose, trip frequency 
 

www. 
thempo.org/ 
/611/cyclelane-
--bicycle-routes  

A branch of 
CycleTracks 

ORcycle Regional 
bicycling tracking 
app in Portland, 
OR 

GPS trace, trip purpose 
(mandatory), route comfort 
(mandatory), trip frequency 

(mandatory) 

www.pdx. 
edu/transporta
tion-lab/ 
orcycle 

A branch of 
CycleTracks 

Fitness/Activity Tracking  
Strava Fitness activity 

tracking app 
GPS trace, traffic volume, traffic 
flow  
 

www. 
strava.com  

Commercially 
available 
product format: 
*.shp, *.dbf 

Endomondo Fitness activity 
tracking 
website/app 

GPS trace, activity duration, 
distance, sport type, average 
speed 

www. 
endomondo. 
com 

Some data 
partially open 
to the public 

Fitbit Wristband fitness 
activity tracking 
device app (web 
based) 

GPS trace, step counting, others 
 

www.fitbit. 
com 

— 
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Provider Classification Collected Data Website Note 
Bike-Share Programs 
Capital 
Bikeshare 

Bike-share 
program in 
Washington, DC 

Trip OD and time, others 
 

capitalbike 
share.com 

— 

CitiBike Bike-share 
program in New 
York, NY 

Trip OD and time, others www.citibike 
nyc.com 

— 

BIXI 
Montreal 

Bike-share 
program in 
Montreal, 
Canada 

Trip OD and time, others montreal.bixi. 
com/en 

— 

User-Feedback-Based Map Inventory 
Bikemaps. 
org 

Crash reporting 
website/app 

Cycle incident, time and type, trip 
purpose, collision object 

bikemaps. 
org 

— 

MySidewalk Walking and 
missing sidewalk 
tracking app 

Walking path, missing sidewalk, 
sidewalk status 

www.myside 
walk.com 

— 

Note: GPS trace includes time stamp and GPS coordinates; ZIP code includes home, school, and work. 

Regional Bicycling Tracking  
All of the bicycling tracking apps were built by government agencies for public purposes. Most of the apps 
collect additional user information (optional) along with basically traced GPS data. This type of data is 
available at the disaggregate level and as OD pairs for each trip. 

CycleTracks. The first active data source was bicyclist-specific apps developed by local agencies. The first 
work on a regional smartphone app for bicyclist monitoring started in 2009. The San Francisco County 
Transportation Authority (SFCTA) was able to estimate bicycle trip volume but could not assign the traffic to 
specific streets. For the purpose of building a route-choice model, SFCTA released CycleTracks, which collects 
trip time and space trajectories using the built-in GPS function of smartphones (Charlton et al., 2011). This 
app gathers additional (optional) personal information such as age, gender, ZIP code, and trip purpose to 
understand user bias. Privacy concerns about uploaded individual information are addressed by assigning a 
unique ID to each user (Hudson et al., 2012; Meyer, 2013). When users tap “start,” the app begins to track by 
connecting to GPS satellites. Once the trip is finished, user information, GPS trace (time stamp and GPS 
coordinates), and other information are sent to the SFCTA server. To test the feasibility of CycleTracks in 
another region, the Texas A&M Transportation Institute (TTI) applied it to an Austin area in 2011.  

Cycle Atlanta. The initial success of CycleTracks inspired similar apps in other cities, regions, and countries. In 
2012, the Georgia Institute of Technology and the City of Atlanta collaborated to launch Cycle Atlanta, which 
is a modified and rebranded CycleTracks. The Cycle Atlanta project team differentiated its app from the 
original one by adding new features (Watkins et al., 2016). One of the new features is that users can describe 
categorized bicycling issues (e.g., pavement, traffic signal, and bicycle facilities). Pictures of problematic spots 
can be submitted as well. In addition, users are asked to choose their ride history (among four: since 
childhood, several years, one year or less, and just started) and to classify their rider type (among four: strong 
and fearless, enthused and confident, comfortable but cautious, and interested but concerned). These 
parameters represent rider attitudes and comfort levels with bicycling infrastructure to measure risk 
aversion.  

Mon RésoVélo. In 2012, CycleTracks and Cycle Atlanta were benchmarked for Mon RésoVélo in Montreal, 
Canada (Jackson et al., 2014). In addition to collecting basic information, Mon RésoVélo calculates 



 

Page 19 of 37 
 

greenhouse gas emissions and calories. For the sake of citizen convenience, this app provides two language 
versions, English and French.  

CycleLane. In the same year, 2012, the Central Lane Metropolitan Planning Organization launched CycleLane 
in Eugene, OR. Upon download, this app prompts users to fill out a questionnaire about demographic 
information (age and gender) and the frequency of bicycling. After finishing trips, the app asks the user to 
input reasons for the trip. The trip records are then submitted to the server. 

ORcycle. Two years later, in 2014, the Oregon Department of Transportation and Portland State University 
developed ORcycle (Blanc and Figliozzi, 2016). Unlike the previously mentioned apps, ORcycle does not 
collect users’ personal information. Instead, three questions are asked concerning trip purpose, route 
comfort, and trip frequency. Riders can voluntarily select stress sources on their bicycle routes, choosing 
from auto traffic, trucks, parked vehicles, pedestrians, etc.  

Others. CyclePhilly in Philadelphia, PA, CycleDixie in Auburn, AL, and RiderLog in Sydney, Australia, are other 
examples of regional bicycling apps to stimulate bicycling and track bicycle trip patterns.  

Fitness/Activity Tracking 
Fitness/activity tracking apps collect opt-in users’ information on physical activities such as walking, running, 
and bicycling. One of the apps sells tracked records, and some of the apps that are based on social 
networking share users’ data with the public.  

Strava. One of the most commonly used physical activity tracking apps is Strava developed by Strava, Inc., in 
2009. This mobile and web-based tracker was originally intended to track athletes’ performance via GPS. 
However, now millions of runners, bicyclists, walkers, and hikers across the globe use the app. Current data 
volume is more than 300 billion GPS points, and every week 7 million sport activities are uploaded (Strava 
Metro, 2017a). Strava collects opt-in users’ activity date, time, and route. Unlike the earlier regional bicycle 
tracking apps including CycleTracks, Strava data are commercially available through Strava’s data service 
(Strava Metro). Strava Metro data have been increasingly used by more than 85 cities and organizations 
globally (Strava Metro, 2017a). Three licenses can be purchased based upon data aggregation unit: node 
(point), street (segment), and OD (polygon). The product format includes shapefiles and database files for 
geographic information systems (Smith, 2015). Data charges depend on the number of Strava members in 
the requested region: $0.8 per user for the first 10,000 and $0.7 thereafter; the minimum cost is $1,000, and 
data cover one year (Strava Metro, 2017b). While Strava collects all types of bicyclist data using a trip 
purpose tag, filtering is only possible by commute. Due to privacy issues, disaggregate trips and demographic 
information are not available at the discrete level. In other words, provided datasets do not contain trip 
distance, trip speed, age, and gender at the individual scale (Sun and Mobasheri, 2017).  

Endomondo. Endomondo, a fitness tracking app, is similar to Strava. Endomondo has millions of users 
around the world (Endomondo, 2017a). The goal of this app is to be a personal trainer in a pocket 
(Endomondo, 2017b). To make fitness more fun, Endomondo allows users to inspire other Endomondo 
communities by sharing workout results on social networking sites such as Facebook and Twitter 
(Endomondo, 2017c). Some of the shared results are open to everyone so that the public profile can be 
downloaded from the web server through web scraping (using an automated program to find and store the 
relevant data elements presented by the webpage) (Cortés et al., 2014; Romanillos et al., 2016; Qiao, n.d.). 
Other apps with public access to data (similar to Endomondo) include GPSies, Wikiloc, and outdoor 
navigation apps (Santos et al., 2016). 

Fitbit. Fitbit is an app/web-based wearable device. Fitbit produces wearable wristbands to measure personal 
health-oriented activity metrics such as stepping count, heart rate, and quality of sleep (Fitbit, 2017). Fitbit 
devices that have GPS tracking functionality can record GPS traces when wearers turn on the GPS tracking 
mode. The Fitbit app can be installed on GPS-enabled products and GPS-enabled mobile phones so that it can 



 

Page 20 of 37 
 

track route, pace, and exercise history. Data collected from the wristbands are available when volunteers are 
recruited to share the data for study purposes. 

Bike-Share Programs 
With the expansion of bike-share programs, usage records are another source for monitoring bicyclist trips. 
Most bike-share services are operated based on smartphone apps, which make it convenient for users to 
find, rent, and return bikes. Some bikes equipped with GPS can provide details of the route taken between 
every pair of stations. For bikes with no GPS sensor, check-in and check-out records at stations are used for 
trip OD data. However, when users return the bicycle to the same station where it was checked out, the 
record is not useful (Faghih-Imani et al., 2014). In addition, bike-share data may provide bicyclist 
demographic information such as age and gender.  

Capital Bikeshare. Capital Bikeshare (CaBi) is an example of such a bike-share system. It is located in 
Washington, DC, and was established in 2010, with 3,700 bikes and 440 stations in the area (Capital 
Bikeshare, 2017). CaBi is run by a membership system: signing up daily, monthly, or annually (Ma et al., 
2015). 

CitiBike. New York City launched CitiBike in 2013 with 330 stations and 5,000 bikes (Kaufman et al., 2015). 
High-density and walkable urban form has provided users with easy access to bike-share services, 
contributing to CitiBike’s success (Faghih-Imani and Eluru, 2016). Datasets collected by CitiBike include 
information on trips (trip OD and trip start/end time), riders (age, gender, and membership type), and station 
characteristics (capacity and coordinates) (Faghih-Imani and Eluru, 2016).  

BIXI. BIXI is Montreal, Canada’s bike-share program. As the first public bike-share system in Canada, BIXI 
started its service with 300 stations and 3,000 bikes in 2009 (Faghih-Imani et al., 2014). Currently, BIXI 
networks have 540 stations and 6,200 bikes (BIXI, 2017). Due to the harsh climate in Montreal, BIXI is 
operated for eight months of the year (April through November) (Morency et al., 2017).  

User-Feedback-Based Map Inventory  
User-feedback-based map inventory apps promote citizen engagement in the planning process by gathering 
citizen’s localized knowledge and experiences. Community members volunteer to report needed 
improvements for infrastructure, desired change proposals, and hot spots where collisions occur. This type of 
app plays the role of digital channel for direct interactions between citizens and government employees (Le 
Dantec et al., 2015). These apps help bring community members together voluntarily to address issues that 
influence their community, which has useful implications for transportation planning (LaMondia and Watkins, 
2017). 

BikeMaps.org. BikeMaps.org is a safety data collection tool using a website and mobile app where citizens 
can report crash locations and information such as crash time, sight lines, and injury severity. This tool is 
sometimes called geo-crowdsourcing because citizens make a bicycle incident map by adding the collision 
location information to the map (Nelson et al., 2015). While formally reported bicycle incidents are more 
likely to miss incidents involving less severe injury, Bikemaps.org can collect missing data (officially not 
reported) as well as official crash data.  

MySidewalk. Knowledge Based Systems, Inc., in cooperation with the City of College Station and TTI, 
developed a community-driven app for sidewalk inventory and condition assessment data, MySidewalk 
(Knowledge Based Systems, Inc., 2017). Sidewalks are one of the primary urban infrastructures for securing 
safe walking, but acquisition of up-to-date information on sidewalks in the entire network has been 
challenging to local authorities who are responsible for maintaining and planning sidewalks. Basically, 
MySidewalk lets the app users track their walking through the “start tracking” function. When faced with 
missing sidewalk, pedestrians can report the locations where sidewalks do not exist by starting “track missing 
sidewalk.” In addition to the demand for new sidewalks, the app can detect informal pedestrian paths 
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frequently used by the public. The app also collects the attributes of currently damaged sidewalks that need 
to be fixed by allowing app users to submit both descriptions and photos of damage. The uploaded geospatial 
data can be downloadable using geographical information system software. This digital civic engagement tool 
benefits planning organizations by helping them identify sidewalk issues and gaps in existing pedestrian 
networks.  

Applications 
While smartphone apps for human activity tracking have promoted an increasing amount of research on 
bicycle travel behaviors, a few applications for pedestrians (including runners) were found in the literature. 
Due to the small number of studies on pedestrian monitoring, data applications provided in the literature 
review are more concentrated on bicycling than walking. Table 3 lists active data applications. 

Regional bicycling tracking apps provide more detailed data on the bicycle community than any other 
monitoring tool. CycleTracks and its branches mostly collect bicyclists’ individual demographics such as age, 
gender, income (which only Cycle Atlanta collects), and ZIP code from volunteers. In addition, detailed trip 
information, such as travel time, trip distance, speed, and identification of OD, is available for each trip. 

In terms of data density across the region of interest, Strava Metro offers a rich dataset. However, Strava 
Metro data do not provide personal profiles and trip details at the individual level. Strava data can only be 
purchased in anonymously aggregated forms due to privacy issues. For these data attributes, existing studies 
relying on Strava Metro data include analyses of aggregated traffic volumes and traffic flows (rather than, for 
example, disaggregate route-choice models). 

In an effort to respond to concerns about the quality of the data collected from app-based GPS tracking, 
several studies have compared bicycle traffic volumes measured by mobile apps with other data from 
traditional sources (such as manual counts) (Griffin and Jiao, 2015a; Haworth, 2016; Jestico et al., 2016; 
Watkins et al., 2016). 

Table 3. Emerging Active Data Applications in Existing Literature. 

Reference Coverage Mode Application Source Scale Method 
Regional Bicycling Tracking 
Charlton et 
al., 2011; 
Hood et al., 
2011 

San 
Francisco, CA 

Bike Route-choice 
modeling 

CycleTracks 2,777 trips from 
366 users for six 
months (Nov. 
2009–April 2010) 

Multi-
nomial 
logit 
model 

Hudson et al., 
2012 

Austin, TX Bike Demonstra-
ting 
feasibility for 
route-choice 
modeling 

CycleTracks 3,600 trips from 
about 300 users 
for six months 
(May–Oct. 2011)  

— 

Jackson et al., 
2014 

Montreal, 
Canada 

Bike Describing 
bicyclist 
profiles and 
trips 

Mon 
RésoVélo 

Over 2,300 trips 
from 512 users 
for 23 days (July 
2012) 

Descrip-
tive 
analysis 

Blanc and 
Figliozzi, 2016 

Portland, OR Bike Bicyclist 
comfort level 
modeling 

ORcycle 729 trips from 
170 users for 
seven months 
(Nov. 2014–May 
2015) 

Ordinal 
logistic 
model 
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Reference Coverage Mode Application Source Scale Method 
Leao and 
Pettit, 2016 

Sydney, 
Australia 

Bike Validating 
simulated 
shortest 
paths 

RiderLog 37 records from 
16 users for 
2010–2014 

Agent-
based 
model 

LaMondia and 
Watkins, 2017 

Auburn, AL, 
Atlanta, FL 

Bike Route-choice 
modeling 

Cycle 
Atlanta, 
CycleDixie, 
Strava 
Metro 

Cycle Atlanta; 
989 users (July 
2014); 
CycleDixie; 
Strava  

Ordinal 
logistic 
model, 
binary 
logistic 
model 

Zimmermann 
et al., 2017 

Eugene, OR Bike Route-choice 
modeling 

CycleLane 648 trips from 
103 users  

Recursive 
logit 
model 

Fitness/Activity Tracking  
Griffin and 
Jiao, 2015a 

Austin, TX Bike Data 
comparison 

Automated 
counts, 
CycleTracks,  
Strava 
Metro 

Counts at five 
sites; duration 
varies by data 
source (2011–
2013) 

— 

Griffin and 
Jiao, 2015b 

Travis 
County, TX 

Bike Bicycle 
volume 
analyzing 
(bicycle 
kilometers 
traveled 
[BKT])  

Strava 
Metro 

8,555 km 
traveled for a 
week in Aug. 
2013 

Ordinary 
least 
squares 
(OLS), 
geograph-
ically 
weighted 
regression 
(GWR) 

Strauss et al., 
2015 

Montreal, 
Canada 

Bike Estimating 
injury risk 

Manual/ 
automated 
counts, 
Mon 
RésoVélo 

Manual counts at 
over 600 
intersections 
(2008–2009); 
automated 
counts at 30 
sites; Mon 
RésoVélo: 137 
days (July–Nov. 
2013); 10,000 
trips from 1,000 
users  

Linear 
regression, 
negative 
binomial 

Haworth, 
2016 

London, 
United 
Kingdom 

Bike Data 
comparison  

Manual 
counts, 
Strava 
Metro 

Counts: 4,172 
observations at 
298 sites from 
6:00 a.m. to 
8:00 p.m.; 
Strava: April–
May 2013  

OLS 
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Reference Coverage Mode Application Source Scale Method 
Jestico et al., 
2016 

Victoria, 
Canada 

Bike Data 
comparison 

Manual 
counts, 
Strava 
Metro 

Counts: at 18 
count locations 
for 34 days; 
Strava: 74,679 
routes from 
3,650 users  

General-
ized linear 
model  

Selala and 
Musakwa, 
2016 

Johannes-
burg, South 
Arica 

Bike Visualizing 
bicycling 
flow 

Strava 
Metro 

84,297 trips for 
2014 

Spatial 
descriptive 
analysis 

Watkins et al., 
2016 

Atlanta, FL, 
Midtown 
area 

Bike Data 
comparison 

Manual 
counts, 
Cycle 
Atlanta, 
Strava 
Metro 

Counts at 78 
intersections 
(March 2013); 
Cycle Atlanta: 
Oct. 2012–Aug. 
2014; 
Strava: 3,236 
users, 51,408 
total trips (Aug. 
2013–July 2014);  

Descrip-
tive 
analysis 

Heesch et al., 
2016 

Brisbane, 
Australia, 
a segment of 
bikeway 

Bike Evaluating 
new facility 
performance 

Survey, 
Strava 
Metro 

Survey: one-day 
survey at two 
sites before and 
after June 2013; 
Strava: monthly 
bicycle counts 
for six months 
before and after 
June 2013 

Descrip-
tive 
analysis 

Hochmair et 
al., 2017 

Miami-Dade 
County, FL 

Bike Analyzing 
bicycle 
volume 
(BKT) 

Strava 
Metro 

Jan.–May 2015 
and Feb. 2015 
(weekend and 
weekday) 

Linear 
regression  

Sun and 
Mobasheri, 
2017 

Glasgow, 
United 
Kingdom 

Bike Estimating 
air pollution 
exposure 

Strava 
Metro 

287,833 traces 
from 13,684 
users 

Bivariate 
local 
Moran’s I 
statistic 

Qiao, n.d. Worldwide All sports 
activities 

Analyzing 
exercise 
duration 

Endomondo 
(public 
data) 

Workout data by 
web scraping 
5.6 million 
workouts from 
1.5 million users 

Linear 
regression 

Santos et al., 
2016 

Lisbon, 
Portugal, an 
urban park 

Runner 
and bike 

Detecting 
conflict 
exposure  

GPSies 
(public 
data) 

Running (N=73) 
and mountain 
biking  
(N=269) 
in March 2015 

Spatial 
descriptive 
analysis 
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Reference Coverage Mode Application Source Scale Method 
Proulx and 
Pozdnukhov, 
2017 

San 
Francisco, CA 

Bike Analyzing 
bicycle 
volume 
 

Manual/ 
automated 
count, 
bike-share 
data, travel 
survey, 
Strava 
Metro 

Varies by type GWR 

Zenko et al. 
2017 

— Ped-
estrian 
(walk and 
exercise) 

Finding 
effective 
ways to 
promote 
exercise 

Fitbit 164 participants’ 
walking by the 
middle of 2018 
(ongoing study) 

Analysis of 
variance, 
Type 1 test 

Bike-Share Programs 
Ma et al., 
2015 

Washington, 
DC 

Bike  Analyzing 
impacts on 
transit use 

Capital 
Bikeshare 

Trips for 2013 OLS  

Morency et 
al., 2017 

Montreal, 
Canada 

Bike Analyzing 
member-
based bike-
share trip 
generation 

BIXI  6 years of 
operation 
records (2009–
2014) from 
87,144 members 
and 444,340 
occasional users 

Negative 
binomial 

User-Feedback-Based Map Inventory 
Jestico et al., 
2017 

British 
Columbia, 
Canada, 
capital 
regional 
district 

Bike Analyzing 
factors 
affecting 
crash 

bikemaps. 
org 

Incidents 
at/around 
intersections 
from 2014 to 
2016 

Poisson, 
negative 
binomial  

Route-Choice Modeling 
Because daily tracking of physical activity via smartphone apps allows a large sample size and more detailed 
information on each trip, many researchers develop bicycle route-choice models in a network. The first 
implementation of app-based GPS tracking in a route-choice model took place in San Francisco, CA (Charlton 
et al., 2011; Hood et al., 2011). A total of 2,777 traces from 366 users were modeled to find how network and 
environment attributes affected bicyclists’ route choices. Bicyclists preferred to avoid turns; infrequent riders 
preferred bicycle lanes more than frequent riders; women and commuters disliked steep slopes. 

The feasibility of using CycleTracks data for route-choice modeling was also demonstrated in Texas (Hudson 
et al., 2012). In 2011, TTI launched CycleTracks and collected over 3,600 trip routes. Researchers matched the 
GPS traces with bicycle networks for almost 90 percent of the data, proving the usefulness of CycleTracks 
data in developing a route-choice model. 

Applications of bicyclists’ tracking data are also found in other regions with rebranded names from 
CycleTracks. CycleLane, the regional bicycling tracking app in Eugene, OR, observed 648 bicyclist trajectories, 
and the chosen routes were applied to estimate a route-choice model (Zimmermann et al., 2017). Findings 
revealed that bicyclists are sensitive to specific route conditions and bicycle facilities.  
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LaMondia and Watkins (2017) conducted a comprehensive study for bicycle route network improvement. 
Two study regions were chosen for different environmental settings: Auburn in Alabama as a suburb and 
Atlanta in Florida as an urban core. Several datasets were used. Researchers worked with local bicycle 
communities to collect bicycle trip data. For the Auburn study, Strava app users provided the research team 
with their trip records after downloading their data from the Strava website. Volunteers shared membership 
accounts with researchers so that the research team could access their participants’ account and directly 
download their trip history. In addition to Strava data offered by volunteers, the researchers purchased 
Strava data and collected bicycle trip records from a regional bicycle tracking app, CycleDixie (developed by 
Auburn University). These four datasets were merged to estimate route-choice modeling. For the Atlanta 
study, the Cycle Atlanta dataset was used. The study results reported that determinant factors affecting a 
certain type of link selection included sociodemographic characteristics, surrounding land use, and roadway 
features in Auburn. Among roadway characteristics, links that have high-peak-hour traffic volumes and wide 
shoulder widths were more likely to be selected. In particular, Cycle Atlanta requested the app users to self-
classify based on confidence level. A route-choice model including the self-reported confidence level 
indicated that more confident bicyclists were more likely to prefer shortest routes over safe routes that need 
detouring. 

Another regional bicycle app, Mon RésoVélo in Canada, reported bicyclist profiles and trip records for 23 days 
after the app launched (Jackson et al., 2014). This study did not model route estimation but rather focused on 
the adaptability of the new bicycling tracking system. However, the route data collected using the app 
showed potential for being applied to route-choice modeling because the data include travel time, distance, 
and route choice for each trip, which are essential for developing route-choice models. The app also 
quantified the health and environmental benefits of bicycling, including reduced greenhouse gas emissions 
and consumed calories. 

Comfort Level Modeling 
Beyond route-choice estimation, Blanc and Figliozzi (2016) used crowdsourced GPS data for the first time to 
model cyclists’ comfort level in Portland, OR. Researchers surveyed bicyclists via the ORcycle app about their 
concerns while riding. Unlike previous studies, this app did not request personal profiles. Instead, opt-in users 
were asked to provide the following information: trip purpose, riding frequency, and concerns about safety.  

Data Comparison 
Griffin and Jiao (2015b) compared bicycling volumes collected by crowdsourcing and actual counts in Austin. 
This comparison was based on three types of data sources: Strava Metro, CycleTracks, and automated 
counting at given points. The comparison results indicated that bicycle traffic monitoring via app-based 
crowdsourcing is promising. 

To evaluate the capability of Strava data to estimate bicycle flow in London, Haworth (2016) developed an 
OLS regression model using actual counts as a dependent variable. The adjusted r squared was above 0.6, 
meaning that Strava can represent real traffic flow. Similarly, another study in Canada indicated moderate 
association between GPS tracking volume and manual counts (r squared 0.4 to 0.58) (Jestico et al., 2016). 

When Strava and Cycle Atlanta were compared in terms of user information, Strava opt-in users showed a 
skewedness for male. For age and commute, Cycle Atlanta users were younger than Strava users, and Cycle 
Atlanta had more commuters (Watkins et al., 2016).  

Bicycle Volume Analysis 
Using ridership data per segment provided by Strava Metro, two studies aggregated BKT by multiplying 
bicycle counts by segment length. Griffin and Jiao (2015a) aggregated BKT again at the block group level and 
regressed OLS models to determine the effects of socioeconomic features and the built and natural 
environment on bicyclists. The results showed that the job-housing balance was positively related to 
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ridership. Additionally, Strava users preferred bicyclist-supportive facilities (bicycle lanes, shoulders, and 
paths) for commuting, and those who ride a bicycle for leisure preferred steep hills.  

The other study conducted in Miami-Dade County, FL, predicted the impacts of weekdays and weekends on 
bicycle ridership separately by census track (Hochmair et al., 2017). For commuter BKT, employment was an 
important predictor, and trails increased non-commuter BKT. 

Proulx and Pozdnukhov (2017) developed an innovative method to estimate bicycle volume across the 
networks in San Francisco. Researchers fused Strava Metro data with bike-share program data, manual and 
automated counts, and data from two regional full-population travel demand models. The results revealed 
that combining the given data improved model predictive accuracy.  

A study by Morency et al. (2017) provides an example of a longitudinal analysis of bicycle trip volume using 
six years of bike-share program operation records in Montreal, Canada. Researchers estimated indicators 
that affect the levels of BIXI usage, such as temporal elements (e.g., day of the week), weather conditions 
(e.g., temperature and rainfall), station attributes (e.g., number of stations, capacity, and elevation), and 
neighborhood attributes around stations (e.g., residential density). The factors that positively influenced the 
use of the bike-share services included the capacity of stations, whereas negative impacts were in part 
associated with adverse weather conditions and high elevations of stations.  

Exposure Estimation 
Mon RésoVélo and Strava travel data were also applied to estimate bicyclists’ exposure to conflicts and air 
pollution based on traffic counts. By combining annual average daily bicycle ridership predicted from field 
counts with Mon RésoVélo bicycle volume, injury risks were measured at both the intersection level and 
segment level in Montreal, Canada (Strauss et al., 2015). In this study, signalized intersections had a higher 
concentration of injuries and higher risk than non-signalized intersections.  

Sun and Mobasheri (2017) used Strava Metro data to assess different levels of air pollution exposure by 
bicycling purpose (commuting versus non-commuting). Bicycling to work generated more exposure to air 
pollution than riding for leisure.  

Evaluation Studies 
Another form of active data application came from evaluating a new bicycle facility’s usage in Australia 
(Heesch et al., 2016). While most of the previous studies were based on a micro-level database (e.g., trip 
routes and volume in an entire network at the city or county level), this study used macro-scale bicycle flow 
data to evaluate the performance of a segment of bikeway. Researchers compared bicycle volumes before 
and after the provision of the bikeway. This study shows the potential of Strava data to be used for 
longitudinal analysis as well. 

In addition to the evaluation of new infrastructure, crowdsourced tracking data can be used for verification of 
model simulation. Leao and Pettit (2016) simulated bicycle commuting between suburban areas and the city 
center in Sydney, assuming that bicyclists choose the shortest paths. Researchers verified the simulated 
shortest paths using a real path taken by RiderLog users. The simulation showed 69 percent accuracy.  

Other Applications 
Selala and Musakwa (2016) mapped a year of bicycle ridership flow purchased from Strava Metro. Bicycling 
patterns were depicted area-wide for Johannesburg, South Africa, for the first time. This study shows the 
potential of using Strava Metro data in areas without adequate bicycle monitoring data. 

Another innovative approach to other forms of crowdsourced data was tried in a study that used public 
profiles from Endomondo (Qiao, n.d.). The researcher downloaded almost 8 million workout records from the 
web server and used them to find factors associated with exercise duration.  
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Santos et al. (2016) used similar methods to collect data from GPSies. In their study, GPSies data open to the 
public were used to measure the intensity of using biking and running tracks. The researchers measured and 
visualized potential conflicts between cyclists and runners in a park in Portugal. 

In terms of physical activity apps based on wearable devices (e.g., wristbands), data application focuses on 
health studies by recruiting study participants. Zenko et al. (2017) has conducted a study testing several 
methods to examine exercise (walking) intensity using Fitbit device records (e.g., heat rate). The study is 
ongoing, and researchers will recruit participants by early 2018. Wearable-device-based physical activity data 
are largely used for health studies or validating data for monitoring health activities (Tully et al., 2014; Symer 
et al., 2017). 

By conducting bicycle OD analysis, Ma et al. (2015) examined how bike-share programs positively influenced 
transit ridership. Higher CaBi ridership was associated with greater transit usage. The results show an 
example of how policy makers or transit agencies can use bike-share data to integrate bicycle facilities into 
public transportation systems to increase transit market share.  

Jestico et al. (2017) identified environmental factors that affect bicycle crashes at intersections between 
multiuse trails and roads using Bikemap.org data. Their results show that while a higher percentage of bicycle 
collisions were reported at trail-road intersections, the injury severity was lower than at road-road 
intersections. Researchers also pointed out that, for bicycle safety studies, crowdsourced crash data might be 
a better resource than police, insurance, or hospital records. 

Potential Capabilities  
Emerging data generated from active contributors have positively influenced non-motorized transportation 
planning in recent years: 

• Almost ubiquitous smartphone use and the penetration of GPS tracking apps on the market have 
expanded the scope of monitoring to the entire network. 

• Smartphone-based fitness app companies began to provide a large volume of bicycle data for 
commercial purposes. 

• Regional bicycling apps that collect personal profiles, trip purposes, and bicyclists’ comfort levels 
have made it possible to conduct more comprehensive research. 

Before the availability of crowdsourcing, three data collection techniques were typically used for collecting 
route data for individual trips: web-based surveys for route preference, route-recall surveys relying on 
respondents’ memory, and standalone GPS devices (Sener et al., 2009; Howard and Burns, 2001; Menghini et 
al., 2009). Compared to these methods, active crowdsourced monitoring requires less time and fewer 
resources, while also providing more samples. Based on the literature, the use of crowdsourced data in the 
non-motorized planning field has increased and will continue to do so. 

One of the promising applications of emerging active data is route-choice modeling. In particular, for route-
choice decision estimation, regional bicycling tracking apps (e.g., CycleTracks) are suitable because they 
contain rich information on a single track chosen by individual bicyclists, as well as demographic specificity. 
For this reason, such apps have fewer limitations in diverse applications than any other monitoring methods. 
For cities that do not have a customized app-based bicycling tracking program, Strava Metro data can be an 
option. Because this commercial data aggregator traces physical activity as long as there is a Strava user in 
the region of interest, the coverage area is extensive, but it is not without limitations (e.g., sample bias), as 
discussed in the following section.  

Active crowdsourced data collection also brings more opportunities for demand models. Increased data 
coverage in terms of time and space increases the potential to estimate a robust travel demand model for a 
specific type of bicycle facility. In addition to demand models, traffic-volume-based studies become feasible 
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at the point, segment, and regional scale (e.g., estimating crash exposure and air pollution exposure at 
intersections, in the streets, and on the entire network). Since the importance of public engagement in the 
planning process is growing, active monitoring methods can provide inclusion of stakeholders’ opinions for 
transportation planners and practitioners (Watkins et al., 2016). Communities can report hot spots with 
higher crash risk and communicate their needs for new bicycle lanes or bicycle parking facilities.  

Limitations of Emerging Crowdsourced Data 
Despite their potential capabilities, there are some concerns about the emerging data (both passive and 
active). 

Passive Data Limitations 
Passive crowdsourced data are not collected primarily for pedestrians and bicyclists. To make use of these 
data, it is necessary to extract walking and bicycling trips from messy and muddled raw datasets. Processing 
emerging passive data requires sophisticated and advanced computational work. Primary limitations of 
passive data include the areas of mode detection, data precision, contextual information, and sampling bias.  

Mode Detection 
One of the challenges of passive crowdsourced data mining is mode detection because it should be 
performed with no aid of traveler input. A number of trials have attempted to infer transportation modes 
from raw datasets using phone-based GPS and MPP data. In the literature, transportation modes are 
generally split into motorized modes (e.g., cars, buses, and transit) and non-motorized modes (e.g., walking, 
running, bicycling, and remaining stationary) (Nikolic and Bierlaire, 2017). Differences in mode characteristics 
are used to infer mode type. For example, walking and bicycling have a lower speed than motorized modes.  

Previous mode detection approaches showed acceptable accuracies.3 Zheng et al. (2008) inferred driving, 
taking a bus, walking, and bicycling from GPS logs based on supervised learning. These researchers collected 
dedicated GPS traces from 65 people over 10 months and obtained different accuracies for walking and 
bicycling at 89.1 percent and 66.6 percent, respectively. Stenneth et al. (2011) used smartphone GPS data 
from six individuals to infer various transportation modes (i.e., train, car, bus, walking, bicycling, and 
stationary). Walking detection accuracy was 96.8 percent, and bicycling detection accuracy was 88.9 percent. 
When a GPS signal receiver was combined with other sensors, transportation modes were better detected 
(Reddy et al., 2008). Researchers developed a mode classification system for five modes (i.e., walking, 
stationary, bicycling, running, and motorized) and tested it using smartphone-based GPS and accelerometer 
sensor trace data collected from six individuals. The accuracy of walking detection was 96.8 percent, and that 
of bicycling was 92.8 percent. Jahangiri and Rakha (2015) classified five transportation modes (i.e., driving a 
car, riding a bicycle, riding a bus, walking, and running) from data obtained by smartphone sensors including 
GPS, accelerometer, gyroscope, and rotation vector. Researchers employed seven supervised learning 
methods and evaluated the performances of the different approaches. Walking and bicycling showed high 
accuracies ranging from 87.4 percent to 95.9 percent and from 85.8 percent to 96.9 percent, respectively. 
However, these trials were aided by subjects’ input such as manual labeling that mostly requires initial 
training. In the supervised learning mechanism, GPS traces include quality information that helps 
transportation mode detection, which is almost impossible for data passively collected (i.e., without 
interaction with travelers). 

                                                             
3 Accuracy denotes the ratio of the number of correctly detected modes to the number of detected modes (Nikolic 
and Bierlaire, 2017). 
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Lin et al. (2013) used an unsupervised scheme for detecting modes of transportation, eliminating the need 
for tedious manual labeling and pre-training. Detecting precision was satisfactory; walking was 76.0 percent, 
and biking was 52.4 percent. Other studies have tried to classify different transportation modes from raw 
MPP signal data based on an unsupervised method. Since MPP data are coarser grained than the relatively 
high locational precision of GPS, it is more challenging to detect the mode. However, Anderson and Muller 
(2006) and Sohn et al. (2006) differentiated walking, driving, and remaining stationary, and both research 
teams obtained a relatively high accuracy for walking with 87 percent and 70.2 percent, respectively. In the 
study that jointly used MPP and Wi-Fi signals, accuracy for detecting walking was high at 90.2 percent (Mun 
et al., 2008).  

Overall, non-motorized modes (walking and bicycling) can be successfully detected from motorized modes 
due to low speed (Nikolic and Bierlaire, 2017). Although supervised approaches showed greater performance 
in terms of detection accuracy than unsupervised methods, the latter’s results are satisfactory to some 
extent. The acceptable performance of unsupervised learning procedures implies that it would be possible to 
extract pedestrian and bicycle trips from passive data even if there is no traveler input. However, all the 
studies tested used a limited number of samples ranging from one user to 65 users who were recruited. 
Given the massive volume of emerging passive data (often called big data) with limited individual traveler 
information, a question about generality and wider acceptance of the proposed methods is raised. 
Similarities between slow walking and the stationary mode and between bicycling and slow cars are obstacles 
to accurate mode detection. Also, there is no standard defining the success of mode detection. Proposed 
solutions and disciplines are specific to each study (Prelipcean et al., 2017).  

Data Precision 
In the context of locational precision, the limitations of MPP data should be considered before discussing 
their application for non-motorized travel monitoring, especially for walking. Given that a widely accepted 
walkable distance is 400 m (Cervero, 2001), which may change depending on personal propensity, trip 
purpose, weather, and other factors, it is difficult to capture walking trips in many cases. For example, for a 
locational precision lower than 400 m, short walking trips (e.g., 300 m walking) cannot be detected correctly.  

The coarse granularity of the cellular positioning data is problematic in securing locational precision. Several 
studies used cellular signaling data provided by AirSage to identify human mobility patterns 
(Phithakkitnukoon et al., 2010; Wang et al., 2010; Calabrese, 2013). The studies all divided the study areas 
into cells of 500 m by 500 m to capture aggregated travel patterns rather than analyzing discrete trips due to 
localization errors (e.g., 350 m in the study by Wang et al.). Wang et al. (2010) proposed a method to infer 
transportation mode share (driving and public transit) from AirSage data based on the same origin and 
destination. The study included only trips longer than 3 km. The authors explained that due to the coarse-
grained sampling frequency over time (e.g., data are collected when mobile phones are used), the AirSage 
datasets “cannot be used to infer transportation modes for very short trips.” According to the recent 
literature review on transportation mode inference based on smartphones, MPP datasets “provided by 
mobile phone operators are not used for transportation mode detection” (Nikolic and Bierlaire, 2017). 
Despite difficulties in mode classification, StreetLight recently provided a preliminary dataset of pedestrians 
using LBS data, and the company is expected to expand the service soon. 

GPS data have higher confidence in positional accuracy and frequent sampling, but weak signal strength 
indoors and in dense urban environments (tall buildings obstruct and occlude signals from satellites) can be 
limitations.  

Contextual Information 
Non-motorized traveler monitoring with emerging passive data is limited by the lack of contextual 
information. Information on travelers is not available in detail at the individual or household level. Due to 
privacy concerns, data can only be provided after being anonymized and aggregated. Although context 
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specificity such as demographic characteristics is a determinant factor that affects travel behavior, it is not 
obtainable through passively crowdsourced data. StreetLight supplements its data by combining census data, 
but StreetLight data are still available at the aggregate level. Therefore, even if emerging passive data are 
fully used to monitor pedestrians and bicyclists, disaggregate-level monitoring, such as that performed by the 
traditional travel survey, will be still challenging.  

Sampling Bias 
Despite vast sample size, the sampling bias of emerging passive data still causes issues associated with 
representativeness. Passive data are less likely to capture non-mobile phone (app) users. Identifying 
differences between mobile phone users and non-mobile phone users is critical to eliminate the significant 
bias inherent in passive crowdsourced data.  

Active Data Limitations 
Similar to passive data, there are also some limitations about active crowdsourced data, especially regarding 
sampling bias, contextual information, and sample size.  

The sampling bias concern of passive data also exists for active data. In most studies, the number of bicycle 
tracking app users is higher for males, young generations, and commuters (Charlton et al., 2011; Hood et al., 
2011; Blanc and Figliozzi, 2016; Hochmair et al., 2017; Jestico et al., 2016; Zimmermann et al., 2017). When 
using app-based tracking data, the user may need to consider how to deal with a specific bicycle population 
that is less likely to use a smartphone (e.g., weight the data for women, older users, and recreational 
bicyclists). 

The lack of contextual information is also a common problem for emerging passive and active data. When 
personal information is collected, user privacy issues or user protection problems may occur. Approaches to 
personal profile collection must be carefully considered. For example, although it provides valuable 
information, Strava data have privacy limitations in that single-route journey information is not accessible 
(e.g., age, gender, trip length, trip time, and trip purpose). Although Strava Metro offers summary findings 
(i.e., aggregated sociodemographic information), there is a limitation on analyzing important determinant 
factors that affect travel behavior at the individual level (Romanillos et al., 2016).  

Unlike emerging passive data, emerging active data are more prone to suffer from sample size issues. For 
example, considering the possibility of multiple apps in a study area, it may be hard to monitor all app users 
through only one app. For cities where a small sample size causes an issue, integrating data collected from 
other types of apps or combining the crowdsourced data with other datasets can be a solution.  

Conclusion  
This study reviewed current emerging data crowdsourced through mobile devices for pedestrian and bicyclist 
monitoring. The review included an examination of both emerging passive and active data, recognizing their 
potential to improve pedestrian and bicyclist safety studies. While emerging passive data require no or 
minimal levels of direct interaction with pedestrians or bicyclists during data collection, active data require 
users’ voluntary participation in data collection.  

So far, emerging non-motorized travel monitoring tools are more concentrated on active data, especially for 
bicycling. While actively crowdsourced data are beneficial for bicycle monitoring, limited sources are 
currently available for pedestrian research and programs. Since the launch of CycleTracks in 2009, many 
public agencies have developed GPS-based bicycle tracking programs to better understand bicycle traffic 
patterns in their regions. As for commercial apps, a fitness tracking app company, Strava, sells app users’ 
physical activity GPS traces. With the success of these fitness tracking apps, increased data availability in 
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time, space, and volume has enabled many bicycle travel behavior studies including route-choice modeling, 
collision exposure estimation, and evaluation of new facility provision at the entire network level. These kinds 
of studies have typically been limited due to lack of data. For example, in the majority of bicycle route-choice 
studies where detailed and widespread data on bicycle trips were not available, link characteristics over the 
entire route needed to be aggregated, rather than identifying variations across individual links (LaMondia and 
Watkins, 2017). While the apps sponsored by agencies (e.g., CycleTracks, Cycle Atlanta, and Mon RésoVélo) 
have extensive data coverage, such as individual-level trip records and sociodemographic features, they are 
limited in terms of geographical boundaries where the app is operated (e.g., San Francisco, Atlanta and 
Montreal). Such a limitation might be overcome by commercial apps (e.g., Strava) because these apps are 
used more broadly (e.g., globally). However, these commercial app data also suffer from data limitations in 
terms of providing additional travel information at a disaggregate level. Given that each emerging collection 
method has its own strengths and drawbacks, jointly applying different sources of data would generate 
synergistic effects.  

For emerging passive data, commercial vendors provide a vast volume of travel data, but their products focus 
on vehicle trips rather than non-motorized trips due to limited positional precision, the short trip distances of 
walking and bicycling, and subsequent uncertainties of mode detection. At least one company, StreetLight, 
recently started to provide a preliminary dataset of pedestrians around transit stations on a trial basis. 
Considering that passive crowdsourced data account for a significant proportion of the total population, 
these data have greater potential for non-motorized travel monitoring, compared to traditional monitoring 
methods. 

Overall, despite the benefits of these emerging data, there are several concerns, such as sample bias, sample 
size, and privacy issues. As for the two sample-related concerns, combining passive crowdsourced data with 
other sources of data (e.g., census data, actual counts, and surveys) or combining different sources of 
emerging data (e.g., CycleTracks and Strava Metro) can be a strategy for non-motorized travel planners who 
might face sample bias or limited sample size issues. For this data fusion, weighting a certain type of data or 
specific age group may be needed. Data collectors and providers must consider privacy issues as long as 
personal information is required to fix sample bias, as well as the purpose of research and projects. Special 
attention needs to be paid to ways to take advantage of emerging data sources for pedestrian monitoring. 
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