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Abstract 
Between 2009 and 2016, the number of pedestrian and bicyclist fatalities saw a marked 
trend upward. Taken together, the overall percentage of pedestrian and bicycle crashes 
now accounts for 18% of total roadway fatalities, up from 13% only a decade ago. 
Technological advancements in transportation have created unique opportunities to 
explore and investigate new sources of data for the purpose of improving safety 
planning. This study investigated data from multiple sources, including automated 
pedestrian and bicycle counters, video cameras, crash databases, and GPS/mobile 
applications, to inform bicycle and pedestrian safety improvements. Data mining 
techniques, a new sampling strategy, and automated video processing methods were 
adopted to demonstrate a holistic approach that can be applied to identify facilities with 
highest need of improvement. To estimate pedestrian and bicyclist counts at 
intersections, exposure models were developed incorporating explanatory variables 
from a broad spectrum of data sources. Intersection-related crashes and estimated 
exposure were used to quantify risk, enabling identification of high-risk signalized 
intersections for walking and bicycling. The modeling framework and data sources used 
in this study will be beneficial in conducting future analyses for other facility types, such 
as roadway segments, and also at more aggregate levels, such as traffic analysis 
zones. 
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Introduction 
Statistics show that, over the last decade, more Americans have taken up walking and bicycling 
for commuting and recreation (1). While it is desirable to provide high levels of safety for these 
eco-friendly modes of travel, historical crash data do not appear to indicate that is happening. 
According to the fatality analysis reporting system (FARS; https://www-
fars.nhtsa.dot.gov/Main/index.aspx) encyclopedia, between 2009 and 2016, the annual average 
pedestrian and bicyclist roadway fatalities numbers were around 4,800 and 720, respectively, while 
the annual average pedestrian and bicyclist injury numbers hovered around 65,000 and 50,000. 
Between 2009 and 2016, the number of pedestrian and bicyclist fatalities saw a marked trend 
upward. Taken together, pedestrian and bicycle crashes account for 18% of total fatalities in 2016, 
up from 13% in 2009. In 2016, there were over 6,000 pedestrian deaths and over 800 bicyclist 
deaths. In San Diego County, a similar trend is observed from FARS data: the overall percentage 
of pedestrian and bicycle fatalities increased from 27% in 2009 to 32% in 2016. This alarming 
trend requires researchers’ and practitioners’ urgent attention. While the figures presented above 
were extracted from the FARS database, it should be noted that other sources may report pedestrian 
and bicyclist fatality and injury data differently; for example, according to the Centers for Disease 
Control and Prevention (CDCP; https://www.cdc.gov/injury/wisqars/), 1,015 bicyclists and 7,330 
pedestrians died in 2016 in the U.S. 

Bicycle and pedestrian volumes, known as exposure data, are an essential part of safety 
assessments. However, most existing bicycle and pedestrian networks are not equipped to 
routinely collect count data in the manner it is typically collected for vehicular networks (e.g., via 
loop detectors). Because local agency staff lack bicycle and pedestrian exposure data, they are not 
able to accurately assess which facilities are in highest need of improvement. Specifically, 
identification of high crash risk locations is deemed important in prioritizing critical candidate 
locations for countermeasure implementation. Technological advancements and data mining 
algorithms are creating unique opportunities to investigate and analyze new sources of data to 
more accurately count pedestrian and bicycle activity and risk exposure, thereby improving safety 
modeling and planning. This study investigated data from multiple sources, including automated 
pedestrian and bicycle counters, video cameras, crash databases, and GPS/mobile applications 
(both active and passive monitoring), to inform bicycle and pedestrian safety improvements. The 
study goal is to integrate and use these data sources to produce useful insights in transportation 
safety planning. Utilizing these data, this study developed a process to identify high-risk 
intersections for walking and bicycling. The modeling framework in this study will be beneficial 
for conducting future analyses for other facility types, such as roadway segments, and also at more 
aggregate levels, such as in traffic analysis zones. 

An important consideration in exposure and crash risk studies is the unit of analysis with regards 
to geographic scale. Some studies (2–5) focus on area-wide risk analysis, while others (6–9) focus 
on facility-specific analysis. The unit of analysis at the area-wide level includes traffic analysis 

https://www-fars.nhtsa.dot.gov/Main/index.aspx
https://www-fars.nhtsa.dot.gov/Main/index.aspx
https://www.cdc.gov/injury/wisqars/
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zones, census tracts, cities, counties, etc. On the other hand, roadway segments and intersections 
are usually considered the unit of analysis at the facility-specific level (10, 11). The present study 
focuses on signalized intersections in the city of San Diego, which are by definition facility-
specific. Several steps should be taken for a safety evaluation to identify high risk intersections, as 
outlined below. 

1. Identifying a sample of intersections for collecting short-term count data. Ideally, 
pedestrian and bicyclist counts at all intersections are desirable for safety assessment. 
However, it is not feasible to collect data for all intersections due to budget, time, and 
equipment constraints. A sampling strategy is therefore required to obtain volume data at 
a subset of intersections with which a model is developed. Subsequently, this model is 
utilized to estimate the volumes at other intersections. 

2. Adopting a mechanism to collect short-term (e.g., 2 hrs, 12 hrs, days, or weeks) counts. 
Most studies and agencies have used a manual approach (2, 12, 13) that includes having 
people collect counts in the field or having them extract counts by watching video data 
collected at the selected intersections. To facilitate the manual work, advanced video 
processing algorithms (14–16) can be applied to automatically count pedestrians and 
bicyclists. Different methods and technologies for collecting vulnerable road users are 
extensively discussed in (17). 

3. Applying methodologies to extrapolate short-term count data to yearly data. The average 
annual daily bicyclist/pedestrian volume (AADB, AADP) are measures used in non-
motorized transportation studies that can be estimated by averaging the daily 
bicyclist/pedestrian volume measured throughout the year. As it is not feasible to collect 
count data for a whole year at the selected sites, a common practice is to collect data for 
shorter periods of time (i.e., step 2) and apply an extrapolation method to convert short-
term count data to yearly data in AADB and AADP forms. Continuous count data at several 
locations are also required to perform this estimation. Extrapolation has been used in 
several studies for estimating AADP and AADB volumes (18–22). 

4. Developing exposure models and quantifying crash risk. Crash risk is generally estimated 
by dividing the number of unsafe events, such as crashes, by a total number of people who 
were likely to be involved in the unsafe events (i.e., exposure). Hence, crash risk is the 
probability of crash occurrence per unit of exposure. Focusing on pedestrians and 
bicyclists, exposure has been defined in different ways, including as “intersection 
pedestrian or bicycle counts,” (23) “millions of cyclists or pedestrians,” (3) and “10 million 
pedestrian crossings” (4). In most studies, the number of pedestrian/bicyclist crashes has 
been divided by a single exposure variable in order to calculate the crash risk. However, 
exposure can also be defined using multiple variables simultaneously. For example, the 
number of pedestrians and vehicles were used in (24); average daily pedestrians, average 
daily traffic, and distance crossed were used in (25); and hundred million 
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pedestrian/bicycle miles of roadway traveled were used in a study conducted in 
Washington, D.C. (5, 26).  

Literature Review 

Exposure Modeling for Vulnerable Road Users 
This section provides a brief review on exposure modeling, particularly direct demand models. For 
a comprehensive review of direct demand models, please see (27). 

The direct-demand model relates walking and bicycling demand directly to various associated 
factors, such as sociodemographic and land use characteristics. Studies dating back as far as 50 
years have used this modeling approach to forecast nonmotorized traffic, and it has been widely 
used in different areas of transportation. Recently, this approach has attracted attention because it 
benefits from the availability of a large volume of good-quality data and spatial database 
management software, such as geographic information systems, and results in comparatively 
simple tools that enable transport planners to predict nonmotorized traffic at relevant locations 
where count data are not available.  

There have been various studies that used the direct-demand modeling approach to estimate 
pedestrian, bicycle, and trail traffic volume at different locations (see (28–32)). While the 
objectives of the studies are similar, researchers and transportation planners have used myriad 
approaches based on the magnitude of the available data and the characteristics of the study area. 
The generalized approach to develop a direct-demand model includes selection of a wide array of 
independent variables, often at various spatial scales, and choice of a suitable analysis method to 
estimate pedestrian, bicycle, or trail traffic in an area or location. Typically, the dependent 
variables of direct-demand models are pedestrian, bicycle, or trail traffic volumes for various time 
periods, such as during the peak period, hourly, daily, or annually. While some research has 
directly used data for the specific collection period, other studies have expanded short-period data 
to longer periods by using a scaling factor to be integrated and used in models. Studies have also 
explored a wide array of independent variables. Preference for explanatory variables often varies 
by location and time period, and might be categorized into nine groups: demographic, 
socioeconomic, network/interaction with vehicle traffic, pedestrian- or bicycle-specific 
infrastructure, transit facilities, major generators, weather and environmental, temporal or time 
related, and land use factors. Studies have highlighted that walking and bicycling trip behaviors 
differ substantially and need to be investigated separately. To identify the impact of land-use and 
built-environment characteristics on nonmotorized volume, a number of studies have considered 
a range of buffer widths. Investigating the influence of various independent variables by different 
buffer widths, studies have suggested that the best model may be obtained using different scales 
of buffer zones for different variables, as the variables are unlikely to be significant at the same 
buffer scale. A wide variety of approaches and methods (e.g., ordinary least squares, negative 
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binomial, and Poisson models) have been used in predicting nonmotorized activity using direct-
demand models.  

The major advantage of the direct-demand modeling approach is that it can be developed largely 
using existing data and common software packages. Because the model explains the impact of 
different factors that influence travel mode choice, it can provide important contributions to the 
decision-making process. However, direct demand modeling has some limitations, especially 
when transferred far into the future and for large areas, and researchers and practitioners need to 
be judicious in developing and applying these models.  

Risk Quantification 
This section summarizes the methods that have been used to quantify walking and bicycling crash 
risk at specific locations. Several studies have focused on pedestrian and bicyclist crash risk 
modeling to investigate the factors that increase or decrease that risk. However, the current study 
does not intend to examine the impacts of different variables, but rather focuses on determining a 
metric to quantify risks based on the literature. Crash risk is generally estimated by dividing the 
number of unsafe events (e.g., crashes and/or near crashes) by the total number of people likely to 
be involved in the unsafe events (i.e., exposure) as shown in Equation 1. Hence, the crash risk is 
the probability of crash occurrence per unit of exposure.  

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝐶𝐶𝐶𝐶𝐸𝐸𝐸𝐸ℎ 𝑅𝑅𝐸𝐸𝐸𝐸𝑅𝑅 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁  𝑜𝑜𝑜𝑜 𝑁𝑁𝑢𝑢𝑢𝑢𝑢𝑢𝑜𝑜𝑁𝑁 𝑁𝑁𝑒𝑒𝑁𝑁𝑢𝑢𝑒𝑒𝑢𝑢
𝐸𝐸𝐸𝐸𝐸𝐸𝑜𝑜𝑢𝑢𝑁𝑁𝑁𝑁𝑁𝑁

    Equation 1 

Focusing on pedestrians and bicyclists, exposure has been defined in different ways, such as 
pedestrian or bicyclist volume and estimated number of streets or travel lanes crossed (33). As the 
equation numerator and the denominator have been defined in different ways, the pedestrian and 
bicycle crash risk can also be calculated in several ways. Appendix A summarizes the methods 
that have been applied in a number of previous studies to calculate risk.  

Vision-based Data Collection 
Two main modules of object detection and object tracking comprise a vision-based monitoring 
system that can be employed to automatically count the number of pedestrians and bicyclists, or 
moving objects in general. Object detection is the process of identifying and classifying different 
objects (e.g., pedestrians, bicycles) in an image or in video frames. Once the objects are detected, 
an object tracking module traces different objects frame by frame to monitor their spatial and 
temporal characterization. Object detection and tracking through video cameras are considered 
critical topics in transportation safety monitoring, as they can significantly reduce manual work 
and enhance safety assessment. Objects are usually defined as any moving entity, such as 
pedestrians, bicyclists, passenger cars, trucks, etc., all interacting with one another at intersections.  

Vision-based monitoring systems have several applications, such as speed evaluation (34, 35), 
count estimation (14, 34, 36), waiting time assessment (14), lane change detection (37), violation 
evaluation (35, 38), overtaking detection (39), and safety evaluations (40). For example, a 
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pedestrian-oriented system was presented in (14) to estimate pedestrian counts, waiting time, and 
crossing speed. The authors improved the contextual fusion system, which was previously 
proposed in (41). Their system added a local binary pattern to a Gaussian mixture model to detect 
pedestrians. A Gaussian mixture model (42) is an adaptive background subtraction method and is 
typically used to detect moving pedestrians in a scene by creating the adaptive background. A 
bicycle-oriented system was developed in (34) to count the number bicyclists and calculate their 
travel speed. Detection was accomplished by using a machine learning classifier, while the 
movement was recorded in sequence of frames. Researchers found that the addition of variables 
such as bicycle type, gender, and helmet use, which were manually collected, could be integrated 
to improve system capability. 

Several object detection and tracking methods have been proposed that use video data from 
cameras installed on vehicles (i.e., moving cameras) and installed at infrastructure (i.e., stationary 
cameras). Methods for detecting and tracking pedestrians and bicyclists have been investigated 
through moving cameras mostly in autonomous vehicle systems. For example, a warning and 
control system was proposed, in which a support vector machine was employed to perform 
pedestrian detection (43). AdaBoost and cascaded classifiers with appearance and motion features 
were also used to identify pedestrians (44). An efficient method was proposed in (45), in which 
AdaBoost was combined with other algorithms to improve efficiency. Analyzing vulnerable road 
users has also been conducted using stationary cameras, as investigated in (14, 38, 46) for 
pedestrians, and in (34, 47, 48) for bicyclists. These studies were proposed mostly for monitoring 
road users at critical locations, such as intersections, to conduct safety analysis, speed evaluation, 
and count estimation. For example, a system which can count the number and speed of pedestrians 
at intersections was proposed in (14), and a system was developed for counting the number and 
speed of bicyclists in (34). In addition, researchers have developed open source software for 
tracking objects; a combination of blob and feature based tracking was used to develop Urban 
Tracker for tracking objects in urban mixed traffic (49), and a deep learning approach was adopted 
in the European Union’s InDev project to develop STRUDL (Surveillance Tracking Using Deep 
Learning) (50). 

Emerging Data Sources 
While traditional pedestrian and bicyclist monitoring methods require active efforts from data 
collectors, advancements in technology have made it possible to use the proliferation of mobile 
phones to capture real-world walking and bicycling patterns. These emerging methods promise 
new opportunities, but much work remains to fully realize the potential of accessible data and 
practices. In an effort to explore available resources and approaches, the research team conducted 
a review of currently available crowdsourced data and how those data are used (see (51)).  

Researchers also contacted several large companies about their ability and willingness to provide 
passively-collected GPS data for purposes of measuring pedestrian and bicyclist use/activity 
levels. However, the data were not available to be used within the current study’s timeframe. 
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Data Description 
The unit of analysis in the present study is signalized intersections in the City of San Diego. A 
total of 1,522 signalized intersections were identified using an ArcGIS shapefile. Short-term video 
data were collected by National Data and Surveying Services at a sample of 45 intersections. These 
intersections were equipped with cameras, and the videos were recorded for 12 hours (7:00 a.m. 
to 7:00 p.m., a period that is believed to best cover the morning and evening peaks based on local 
knowledge) on a Tuesday, Wednesday, or Thursday workday, which are the typical days for short 
term data collection (52, 53) in May, June, or July 2018. Short-term data collection can be 
conducted for different lengths of time, from a few hours to a few weeks, and generally more data 
leads to smaller extrapolation errors. In this study, a data collection length of 12 hours was used 
for two reasons. First, data collection for long periods were not feasible due to budget constraints. 
Second, according to Nordback et al.’s study (53), it was found that extrapolation error rates do 
not decrease significantly from 12 to 24 hours. Following data collection, pedestrian and bicycle 
short-term counts were automatically obtained through machine-vision modeling. In addition to 
the short-term counters at selected intersections, 43 of San Diego’s automated counters were also 
utilized. These counters are not located at intersections, but they have been continuously collecting 
pedestrian and bicyclists counts since 2012, which provides pedestrian and bicyclist activity 
patterns. Due to the vandalization of some equipment and issues with battery counters, data from 
2015 were used, as this is the year believed to contain the most reliable data. For every intersection, 
demographic and socioeconomic characteristics and built environment variables were obtained by 
buffer analysis in ArcGIS. Specifically, this study gathered 396 explanatory variables, of which 
129 were buffer variables (three different buffer sizes, including 0.1, 0.25, and 0.5 miles were used 
based on similar studies (54–59)) and 9 variables were point- or intersection-related variables. The 
data sources for these variables were as follows: 2015 five-year estimates from the U.S. Census 
Bureau, 2015 longitudinal employer-household dynamics data, the San Diego crime dataset, and 
San Diego’s Regional Planning Agency. In addition, crash data involving pedestrians and 
bicyclists were obtained from the Statewide Integrated Traffic Records System through the 
Transportation Injury Mapping System. Crash data per victim for each intersection was extracted 
from 2006 to 2016. 

Methodology 
This section consists of several steps and methods utilized or developed to conduct safety 
evaluation with the goal of identifying high-risk intersections for walking and bicycling. The four 
major steps, as discussed below and also illustrated in Appendix B are: (1) site selection; (2) short-
term data collection: vision-based monitoring system, (3) extrapolation, and (4) exposure modeling 
and risk quantification. 
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Site Selection 
The first step in identifying high crash risk intersections is to determine a sample of intersections 
for short-term data collection. The site selection task applies methods to select intersections with 
a wide variety of characteristics to obtain a representative sample for the entire area of interest. 

Two general groups of sampling methods for site selection include probabilistic and non-
probabilistic sampling (10, 60). Non-probabilistic sampling techniques are mostly based on non-
random factors, such as engineering judgment. These techniques have low cost and are easy to 
implement. However, they may not lead to a representative sample. In contrast, probabilistic 
sampling techniques involve some random selection in the process and thus result in better 
generalization. As the population size grows, the simple random selection technique and other 
similar versions of this method may require larger observations to ensure a representative sample. 
Other probabilistic sampling techniques include stratified sampling, cluster analysis, and multi-
stage random, which is basically a combination of clustering and stratification (10, 60).  

In stratified sampling, a few variables are used to create strata and each intersection is associated 
with a stratum. For example, population density, median income, and proximity to commercial 
properties, each with three levels of high, moderate, and low were used in (61, 62) to create 27 
strata (e.g., high population density, low median income, and moderate proximity to commercial 
properties make a single stratum). Stratified sampling is effective in that it ensures that the sample 
contains observations with different levels for the variables used. However, as the number of 
variables increase, the number of strata grows rapidly and thus selecting one intersection per 
stratum could make sample too large to use due to limited resources. Stratified sampling could 
restrict the number of variables used in the site selection process. Cluster analysis classifies all the 
intersections into different clusters with similar characteristics. More variables can be used in 
cluster analysis compared to stratified sampling without having to increase the sample size. Cluster 
analysis is suitable when the population is too large, but the sample resulting from a cluster analysis 
may not be as representative (10). In some studies, combinations of different methods with some 
variations have been used. For example, stratified sampling was used in (12) with six variables, 
including different number of categories per variables (e.g., day of week with seven categories). 
As another selection method, which is a non-probabilistic sampling technique, inputs from local 
stakeholders were also used in conjunction with other methods (63). 

A multi-stage random approach was adopted in the present study to benefit from both stratification 
and cluster analysis. Since the population size in our case is fairly large (~ 1,500 signalized 
intersections), cluster analysis allowed us to use many variables without making the sample size 
too large. These variables were selected based on literature review as well as common sense. In 
addition, the stratified sampling reinforced our approach to make the sample as representative as 
possible. The data in this study contain both numerical and categorical variables and thus the 
Gower coefficient, proposed in (64), was used to handle both numerical and categorical variables 
when calculating distances or similarities between two observations. After determination of 
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pairwise distance among observations, a partitional clustering algorithm, partitioning around 
mediods (PAM) (65), was employed to identify the clusters. In the stratification step, depending 
on the number of clusters used, a stratified sampling method can be applied using one or more 
intersection characteristics to ensure that intersections with different levels for these characteristics 
are included in the sample. If the number of clusters turns out to be very high or very low, then the 
number of variables and/or levels of variables used for stratification can be adjusted to obtain the 
desired sample size. This flexibility was adopted due to resource limitations.  

Short-term Data Collection: Vision-Based Monitoring System 
A vision-based monitoring system was used to count the number of pedestrians and bicyclists 
crossing the intersections using short-term video data. The system consists of three steps: object 
detection, object tracking, and object counting, as illustrated in Figure 1. 

Object detection was performed by utilizing Faster R-CNN (15) to detect pedestrians and bicyclists 
in video frames. Subsequently, detection results were used to perform object tracking using an 
Intersection-over-Union (IoU) (66) tracker, which associates each detection result with the highest 
IoU to the last detection result in the previous frame. The tracker will start a new trajectory and 
end the old trajectories if all detections are unassociated with any old trajectories. Finally, 
pedestrian and bicyclist counts were obtained from regions of interest, which were defined as areas 
typically used by pedestrians and bicyclists to cross intersections. To obtain the counts, any 
trajectory that entered the regions of interest was counted as a crossing pedestrian or bicyclist.  

 
Figure 1. Vision-based monitoring system framework. 

Extrapolation 
To estimate AADP and AADB from short-term counts, similar pedestrian and bicyclist volume 
patterns for each short-term data collection site need to be identified. These volume patterns are 
utilized for extrapolating long-term counts from short-term counts. Permanent counters, even at a 
different location than the short-term counters, are typically used to identify similar demand 
patterns. Therefore, each short-term counter should be matched with one or more permanent 
counters. In this study, the matching process was performed in two steps as proposed by the authors 
in (67): in the first step, the PAM clustering method was applied to classify long-term counters 
into different clusters based on traffic distribution indexes, including the morning over the midday 
peak index (AMI), the weekend over weekday index (WWI) and the peak period to non-peak 
period index (PPI) for bicycle counters and AMI and WWI for pedestrian counters. (More details 
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about these indices can be found in (68–70).) In the second step, the classified long-term counters 
were used as the training data for developing a K-nearest neighbor (65) model to match short-term 
counters to appropriate clusters.  

Several variables were calculated and utilized in the extrapolation process. These variables include 
population density, employment density, and land use density (commercial, residential, 
government, industrial, park and recreational) within a given 0.402-kilometer counter buffer (0.25-
mile buffer), as well as traffic distribution indices such as AMI, WWI, and PPI, which are 
introduced in (68, 69). These indices reflect bicyclist volume in morning peak hour over midday 
peak hour, weekend over weekday, and monthly variations, respectively. 

Several extrapolation methods have been used in previous studies and a few—such as day-of-year 
(70), day-by-month (68), and weather model—have been shown to produce lower AADP and 
AADB estimation errors. The day-of-year method was not applicable in this study, as it required 
the short-term and long-term data to be collected in the same year; our short-term data collection 
was conducted in 2018 while long-term data were collected in 2015. In addition, the weather model 
was not deemed to be beneficial due to San Diego’s year-round mild weather. Thus, the day-by-
month method was applied with minor modification, as described below.  

First, 12-hour counts were converted to 24-hour counts using Equation 2. Equation 3 shows how 
day-by-month factor was calculated for every day of week (d) and month (m). Subsequently, 
AADP and AADB counts were estimated by applying day-by-month adjustment factors to the 24-
hour counts using Equation 4. The long-term counter data in the following equations refer to a 
counter that has been matched with the short-term counter of interest. However, it should be noted 
that if two or more permanent counters are matched to a short-term counter, the mean of adjustment 
factors across all matched counters was used. Please also note that the following equations are for 
estimating pedestrian counts (i.e., AADP), but they were also used for estimating bicyclist counts 
(i.e., AADB). To properly modify the equations for bicyclists, the letter P is changed to B in all 
equations, as noted in the variable descriptions following the equations. 

𝑃𝑃𝑑𝑑𝑁𝑁𝑢𝑢  = ∑ 𝑃𝑃ℎ𝑑𝑑𝑁𝑁𝑢𝑢
18
ℎ=7 ×  ∑ 𝑃𝑃ℎ𝑑𝑑𝑑𝑑𝑑𝑑

24
ℎ=1  

∑ 𝑃𝑃ℎ𝑑𝑑𝑑𝑑𝑑𝑑
18
ℎ=7  

 Equation 2 

𝑃𝑃𝑃𝑃𝑑𝑑𝑁𝑁  = 𝐴𝐴𝐴𝐴𝐴𝐴𝑃𝑃𝑑𝑑  
𝐴𝐴𝐴𝐴𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑  

 Equation 3 

𝐴𝐴𝐴𝐴𝐴𝐴𝑃𝑃𝑢𝑢  = 𝑃𝑃𝑑𝑑𝑁𝑁𝑢𝑢  × 𝑃𝑃𝑃𝑃𝑑𝑑𝑁𝑁   Equation 4  

ℎ: Hour of day. ℎ = {1,2, … ,24}  

𝐸𝐸: Day of week. 𝐸𝐸 = {1 = 𝑀𝑀𝑀𝑀𝑀𝑀, 2 = 𝑇𝑇𝑇𝑇𝐸𝐸, … ,7 = 𝑆𝑆𝑇𝑇𝑀𝑀} 

𝐸𝐸: Month of year. 𝐸𝐸 = {1 = 𝐽𝐽𝐸𝐸𝑀𝑀, 2 = 𝑃𝑃𝐸𝐸𝐹𝐹, … ,12 = 𝐴𝐴𝐸𝐸𝐷𝐷} 

𝑃𝑃𝑑𝑑𝑁𝑁𝑢𝑢  (𝑀𝑀𝐶𝐶 𝐵𝐵𝑑𝑑𝑁𝑁𝑢𝑢  𝑓𝑓𝑀𝑀𝐶𝐶 𝐹𝐹𝐸𝐸𝐷𝐷𝑏𝑏𝐷𝐷𝑏𝑏𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸): Pedestrian (bicyclists) count on day d of a week, in month m estimated for 
short-term counter s 

𝑃𝑃ℎ𝑑𝑑𝑁𝑁𝑢𝑢  (𝑀𝑀𝐶𝐶 𝐵𝐵ℎ𝑑𝑑𝑁𝑁𝑢𝑢  𝑓𝑓𝑀𝑀𝐶𝐶 𝐹𝐹𝐸𝐸𝐷𝐷𝑏𝑏𝐷𝐷𝑏𝑏𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸): Pedestrian (bicyclist) count in hour h of day d of a week, in month m from 
short-term counter s 
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𝑃𝑃ℎ𝑑𝑑𝑁𝑁𝑙𝑙  (𝑀𝑀𝐶𝐶 𝐵𝐵ℎ𝑑𝑑𝑁𝑁𝑙𝑙  𝑓𝑓𝑀𝑀𝐶𝐶 𝐹𝐹𝐸𝐸𝐷𝐷𝑏𝑏𝐷𝐷𝑏𝑏𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸): Pedestrian (bicyclist) count in hour h of day d of a week, in month m from 
matched long-term counters  

𝑃𝑃𝑃𝑃𝑑𝑑𝑁𝑁  (𝑀𝑀𝐶𝐶 𝐵𝐵𝑃𝑃𝑑𝑑𝑁𝑁  𝑓𝑓𝑀𝑀𝐶𝐶 𝐹𝐹𝐸𝐸𝐷𝐷𝑏𝑏𝐷𝐷𝑏𝑏𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸): Pedestrian (bicyclists) day-by-month factor for day d of a week, in month 
m 

𝐴𝐴𝐴𝐴𝐴𝐴𝑃𝑃𝑙𝑙  (𝑀𝑀𝐶𝐶 𝐴𝐴𝐴𝐴𝐴𝐴𝐵𝐵𝑙𝑙  𝑓𝑓𝑀𝑀𝐶𝐶 𝐹𝐹𝐸𝐸𝐷𝐷𝑏𝑏𝐷𝐷𝑏𝑏𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸): Average annual daily pedestrian (bicyclist) count obtained from 
matched long-term counters 

𝐴𝐴𝐴𝐴𝑃𝑃𝑑𝑑𝑁𝑁𝑙𝑙  (𝑀𝑀𝐶𝐶 𝐴𝐴𝐴𝐴𝐵𝐵𝑑𝑑𝑁𝑁𝑙𝑙  𝑓𝑓𝑀𝑀𝐶𝐶 𝐹𝐹𝐸𝐸𝐷𝐷𝑏𝑏𝐷𝐷𝑏𝑏𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸): Average daily pedestrian (bicyclist) volume on day d, in month m 
from matched long-term counters 

𝐴𝐴𝐴𝐴𝐴𝐴𝑃𝑃𝑢𝑢 (𝑀𝑀𝐶𝐶 𝐴𝐴𝐴𝐴𝐴𝐴𝐵𝐵𝑢𝑢 𝑓𝑓𝑀𝑀𝐶𝐶 𝐹𝐹𝐸𝐸𝐷𝐷𝑏𝑏𝐷𝐷𝑏𝑏𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸): Average annual daily pedestrian (bicyclist) count estimated for short-
term counter s 

Exposure Modeling and Risk Quantification 
A wide variety of approaches and methods have been used in predicting nonmotorized activity 
using direct-demand models. Given the nature of the dependent variable, exposure, which is 
discrete in nature and with a variance greater than the mean, the negative binomial model was 
selected as the exposure model for this study. The wide array of variables and the limited number 
of observations pose challenges for model development, which is often the case for both pedestrian 
and bicycle datasets. When many exploratory variables are available, identifying the best subset 
of those variables to include in a model is one of the hardest parts of model building (71) since 
evaluating models with a high number of variables is too computationally intensive. To develop a 
model with satisfactory performance, it is imperative to select a set of variables that can explain 
the variation of the pedestrian and bicycle annual average volumes for all locations.  

As discussed earlier, many variables (a total of 396) were considered in the analysis. Univariate 
and bivariate correlation analyses were first conducted to explore variables’ distribution or pattern 
and to investigate the relationship between the dependent and independent variables. Several 
variable forms and functions were examined to get the best data fit. The process also investigated 
interactions between several pairs of variables to see how the variables might interact with each 
other. A set of key variables were identified to be included in the final model-building process 
based on statistical tests, intuitive considerations, and insights from the previous literature. 

After several model trials with different combinations of the key variables, the best models were 
evaluated based on their predictive accuracy regarding mean absolute error (MAE), and root mean 
squared error (RMSE). A cross-validation technique was employed for performance evaluation. 
Cross-validation is a resampling technique that helps identify a parameter value, ensuring a proper 
balance between bias and variance (72). For cross-validation, a subset of the data, known as the 
training set, is used to train the model, and the remaining data points serve as a test set or validation 
set. While fitting a model on a training set, it is desirable to have minimum MAE, so there is 
minimal difference between the prediction and the actual observation. This research used a 10-
fold cross-validation method to evaluate and compare the performance of the developed models. 
This method split the feature vector sets into 10 approximately equally sized distinct partitions. 
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While one set was used for testing, the other nine sets were used for training. Then, the procedure 
was repeated 10 times (with each of the 10 sets used once for testing), and all accuracy rates over 
these 10 runs were averaged to improve the estimate. The performance evaluation criterion was 
the average accuracy. The final models were identified based on statistical, predictive and intuitive 
considerations as well as insights from the literature. 

Utilizing the estimated pedestrian and bicycle exposure, risks associated with walking and 
bicycling at signalized intersections can be calculated. Considering Equation 1, several variables 
were examined in terms of their contribution in quantifying risk. Several studies have used the 
number of crashes in the risk equation as the number of unsafe events. As a result, two different 
locations with same number of crashes and exposure would lead to the same level of risk, though 
each crash may involve more than one victim. Taking number of victims into consideration 
instead, a crash with multiple victims should be associated with a higher risk compared to a crash 
with only one victim. In addition, crashes with higher levels of severity should be considered 
higher risk. Alternately, the number of fatalities could be used to provide an estimate of the relative 
lethality of intersections. Therefore, a combination of fatalities and injuries was utilized to provide 
a more holistic risk estimate. Crash severity was incorporated in risk quantification by utilizing 
crash costs associated with severity levels. Other factors, such as AADP (AADB), as the exposure 
and distance crossed, were also included in the risk equation, as presented in Equation 5. The unit 
of risk in this equation is crash cost per average annual daily pedestrian (or bicyclist) feet. In 
addition to the crash cost, the equation numerator includes a term 𝑁𝑁𝑘𝑘 to produce more weight on 
the locations with a higher frequency of victims. Since crashes are rare events, it is important to 
magnify the number of occasions that led to fatalities and injuries. The tuning parameter 𝑅𝑅 can also 
be used to provide the extent of the weight. For example, if zero is selected for this parameter, 𝑁𝑁𝑘𝑘 
becomes one, which means zero weight is given to the victim frequency. As 𝑅𝑅 increases, it there is 
more weight on the victim frequency, resulting in higher risks. 

Crash cost has been used for different purposes, such as analyzing the effectiveness of a specific 
roadway enhancement and measuring the effect of seatbelts based on injury severity in several 
studies (73–77). In 1993, Miller estimated motor-vehicle crash comprehensive costs by injury 
severity and body region (73). Another study estimated crash costs of medium and heavy trucks 
by seven injury severity levels (74). Miller et al. broke down pedestrian and bicyclist crash costs 
by age, injury severity, and body region in the U.S. (75). The Federal Highway Administration 
(78) also presented an estimation of crash cost based on maximum police-reported injury severity. 

In crash cost studies, maximum abbreviated injury severity is defined as the maximum threat of a 
crash to a victim’s life (79). Crash cost generally results from a combination of cost categories, 
including medical, emergency service, lost productivity, the monetized value of the pain and 
suffering, and lost quality of life costs. Collectively, these costs have been called comprehensive 
costs. Monetary or economic cost value of a crash can be obtained by subtracting lost quality of 
life from the comprehensive cost (73). In this study, lifetime costs were used; these included 
medical, work loss, and quality of life costs (75). It should be pointed out that vehicle volume may 



12 
 

also impact the quantified risk. However, this variable was not considered in this work as the 
exposure was defined as the multiplication of AADP (AADB) and distance crossed (i.e., equation 
denominator). Ideally, to capture the impact of vehicle volume, total number of interactions 
between pedestrians (bicyclists) and vehicles should be used as a measure of exposure. However, 
the historical data do not include number of interactions and it would also be very difficult to 
collect new data to measure number of interactions, which is outside the scope of this study. 

𝑄𝑄𝑇𝑇𝐸𝐸𝑀𝑀𝐸𝐸𝐸𝐸𝑓𝑓𝐸𝐸𝐸𝐸𝐸𝐸 𝑅𝑅𝐸𝐸𝐸𝐸𝑅𝑅 𝑓𝑓𝑀𝑀𝐶𝐶 𝐸𝐸𝑀𝑀 𝐸𝐸𝑀𝑀𝐸𝐸𝐸𝐸𝐶𝐶𝐸𝐸𝐸𝐸𝐷𝐷𝐸𝐸𝐸𝐸𝑀𝑀𝑀𝑀 =
𝐶𝐶 × 𝑁𝑁𝑘𝑘

𝐴𝐴𝐴𝐴𝐴𝐴𝑃𝑃(𝐴𝐴𝐴𝐴𝐴𝐴𝐵𝐵) × 𝐴𝐴
 

𝐶𝐶 = ∑ 𝑁𝑁𝑢𝑢 × 𝐶𝐶𝑢𝑢𝑢𝑢        Equation 5 

Where, 

𝐶𝐶: Total crash cost weighted by severity  

𝑁𝑁𝑢𝑢: Number of pedestrian or bicycle victims with injury severity level s 

𝐶𝐶𝑢𝑢: Cost per victim with injury severity level s 

𝐸𝐸: Severity level = {fatal, severe injury, other visible injury, and complaint of pain} 

𝑁𝑁: Total number of victims 

𝑅𝑅: Exponent of N, a tuning parameter to magnify the frequency of victims  

𝐴𝐴𝐴𝐴𝐴𝐴𝑃𝑃(𝐴𝐴𝐴𝐴𝐴𝐴𝐵𝐵): Average Annual daily pedestrian (bicyclist) count  

𝐴𝐴: Distance a pedestrian or bicyclist crossed 

Results and Discussion 

Site Selection  
To select a representative sample of intersections, several intersection characteristics (i.e., 
variables) can be utilized in the site selection process, including those that influence pedestrian 
and bicyclist activity as well as their safety. The selection of variables was made based on previous 
studies and common sense (i.e., their potential impact on pedestrian and bicyclist exposure and 
safety). A total of 18 variables were examined and, after several trials with different subsets of 
variables, a subset of 12 variables were selected to perform site selection—population density, 
land use (parks and recreational, residential), presence of college, presence of school, transit stops 
density, mean traffic volume, pedestrian victims, bicyclist victims, proximity to Balboa Park, 
proximity to beaches, sidewalk density, and bikeway density. Using the selected variables, 
signalized intersections were grouped into clusters by applying the PAM clustering method. The 
silhouette metric and elbow method were applied to identify the best number of clusters. The 
silhouette metric provides a way to measure how similar a data point is to its assigned cluster 
compared to other clusters. This provides a way to evaluate clustering performance in relation to 
the number of clusters used. The highest silhouette value—that which shows the highest clustering 
performance—was obtained when using five clusters, as shown in Figure 2. The elbow method 
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plots the total within sum of squares against number of clusters used. A lower value of sum of 
squares mean data points within each cluster are very close to each other and thus contribute to a 
better clustering performance. The best number of clusters is typically identified at a point on the 
plot beyond which no significant decrease is observed, known as the elbow point. Based on the 
elbow plot in Figure 2, as the number of clusters increases, the total sum of squares decreases. 
However, no clear elbow point is visible, and thus the best number of clusters was selected to be 
five based on the silhouette method only. The geographic distribution of these five clusters is 
shown in Appendix C. 

Within each cluster, stratified sampling was performed using two variables: the number of 
pedestrian victims and the number of bicyclist victims. The purpose was to ensure that the sample 
included intersections with high, moderate, and low numbers of victims. The number of pedestrian 
victims, ranging from 0 to 13, was divided into three levels (low: 0, 1, 2; moderate: 3, 4, 5; high: 
≥ 6). Similarly, the number of bicyclists victims was divided into three levels (low: 0, 1; moderate: 
2, 3, 4; high: ≥ 5). Consequently, nine strata for each cluster (3*3 = 9) resulted. Subsequently, a 
sample of 45 intersections was identified, as shown in Figure 2, by selecting one intersection per 
stratum (5*9 = 45). This selection was mainly random, but we opted not to select adjacent 
intersections or intersections close in proximity, as these intersections could be very similar to 
each other in some respects. 

 
Figure 2. Identifying the best number of clusters: silhouette method on left and elbow method on right. 

Vision-based Monitoring System 
Video data were collected at the selected sample of intersections as described in the data 
description section. The video data collected from three intersections were utilized for training 
machine-vision models to automatically detect, track, and count pedestrians and bicyclists. These 
intersections were selected by manually reviewing and identifying high presence of both 
pedestrian and bicyclist activities. Several pedestrians and bicyclists were labeled to perform the 
training task. These models were tested in several scenarios and system performance was assessed 
using real-world video data at these intersections. Using test data, the average pedestrian and 
bicycle counting accuracies (correctly counted peds/bikes over total peds/bikes) were 85% and 
81%, respectively. Several factors impacted the model performance, including the number of 
pedestrians and bicyclists labeled, intersection shape and size, lighting condition, occluded objects, 
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and video quality. The best counting accuracy of 95% was achieved for both pedestrians and 
bicyclists. It appears several different factors impact the counting accuracy, such as number of 
objects labeled, lighting conditions (i.e., different time of day, presence of shadows), object 
distance to the camera, and the way pedestrians cross (individually vs in groups) the intersection. 

As expected, more labeled pedestrians and bicyclists led to better model performance, as the 
models were provided with more information in terms of positioning, angles, and lighting 
conditions. For example, the detection accuracy increased by 68% when the number of labeled 
pedestrians increased from 15 to 32. Model transferability was examined by using data from one 
intersection to train models and then testing them on a different intersection. The benefit was that 
manual labeling efforts were reduced, but the models performed poorly (counting accuracy ≤ 60%) 
since different intersections have different shapes and sizes. Focusing on one intersection for both 
training and testing, the way people cross the intersection (as individuals vs in groups) and lighting 
conditions due to time of day significantly affected model generalizability. For instance, the 
models had difficulty detecting and tracking pedestrians and bicyclists crossing the intersection in 
groups since some were occluded by others in multiple video frames. In addition, the object 
distances to the camera impacted the results. Cameras used in this study were set at a corner of 
each intersection. Detecting objects crossing the two farther intersection approaches from the 
camera was challenging, especially in large intersections where pedestrian and bicyclists were too 
small to distinguish, as can be inferred from Figure 2. 

Extrapolation 
Pedestrian and bicycle volume patterns at permanent counters were identified using the PAM 
clustering method. Appendix D illustrates pedestrian counters classified into three clusters 
(recreational, mixed, utilitarian) based on AMI and WWI. Similarly, bicyclist counters were 
grouped into four clusters—utilitarian, recreational, mixed recreational, mixed utilitarian—based 
on AMI, PPI, and WWI as shown in Appendix D. Pattern classification into three and four clusters 
has been used in past studies (80–82) and the only reason three clusters were used (instead of four) 
for pedestrian counters was the limited number of counters, which would have led to having only 
one counter in one of the clusters, which is not recommended (53, 83). 

Appendix D shows the clustering results for the four groups of long-term bicycle counters. 
Utilitarian counters have two distinct peak hours: mornings and evenings on weekdays. They also 
have a relatively uniform distribution throughout the week, as evident in their daily pattern. 
Recreational counters have higher weekend than weekday peaks, as expected. The daily patterns 
also represent the highest volume on Saturday and Sunday compared to other days of the week. 
Mixed, mixed recreational, or mixed utilitarian counters represent different combinations of 
utilitarian and recreational sites. These classifications for bicycle and pedestrian counters were 
consistent with the literature as identified in (81). Finally, each short-term counter was matched to 
one of the specified clusters by implementing a K-nearest neighbor model that identifies the 
volume patterns most similar to the identified long-term counters’ clusters. 
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Exposure Modeling and Risk Quantification 
After the estimation of AADP and AADB for the short-term sample, exposure modeling was 
applied to calculate AADB and AADP for the remainder of intersections (i.e., not in the short-term 
sample). The dependent variables for the pedestrian and bicycle exposure models are AADP and 
AADB, respectively. Tables 3–4 show the results of the negative binomial regression models of 
pedestrian and bicycle annual average daily volume. The tables present the explanatory variables 
and their estimates. The number following each variable represents the buffer area of influence.  

Table 1 and Table 2. Negative Binomial Regression Model for Pedestrians 

Variable Estimates t-stat Sig. 
(Intercept) 4.865 23.24 0.000 
Transit stop density (0.805 kilometers ≈ 0.5 miles) 8.782 3.81 0.000 
Percentage of regular transit rider, pedestrian, or bicyclist population 
(0.402 kilometers ≈ 0.25 miles) 

3.717 1.95 0.051 

Employment density (0.402 kilometers ≈ 0.25 miles) 0.051 2.41 0.016 
Maximum speed limit within the intersection less than 64 kph (40 mph) 1.135 5.37 0.000 
Percentage of vacant housing units (0.805 kilometers ≈ 0.5 miles) −3.517 −2.99 0.003 
Total commercial or mixed-use land area (0.160 kilometers ≈ 0.1 mile) 0.190 5.01 0.000 
If the area contains a higher crime count than the average crime counts 
among the buffers (0.402 kilometers ≈ 0.25 miles) 

−0.292 −1.65 0.098 

 

Measure Estimates 
R-squared 0.70 
RMSE 1633.24 
MAE 1147.41 

 
Table 3 and Table 4. Negative Binomial Regression Model for Bicyclists 

Variable Estimates t-stat Sig. 
(Intercept) 4.265 12.56 0.000 
Regular bicyclist population (0.402 kilometers ≈ 0.25 miles)  0.015 3.90 0.000 
Transit stop density (0.160 kilometers ≈ 0.1 miles)  0.852 1.55 0.121 
Maximum speed limit within the intersection less than 64 kph (40 mph) 0.457 2.90 0.004 
Distance between the intersection and beachfront access point less than 
or equal to 16 kilometers (10 miles)  0.379 2.33 0.020 

Presence of a school (0.805 kilometers ≈ 0.5 miles) −0.483 −2.40 0.016 
Bike facility density (0.805 kilometers ≈ 0.5 miles) 1.371 2.00 0.045 
Total commercial or mixed-use land area (0.402 kilometers ≈ 0.25 miles)  0.021 2.18 0.030 

 

Measure Estimates 
R-squared 0.67 
RMSE 105.93 
MAE 87.68 

 
As shown in the first two tables, the pedestrian model has seven variables, and all of them were 
statistically significant at the 90% confidence level. As shown in the second two tables, the bicycle 
model also has seven variables, and all variables except one (transit stop density at 0.160 
kilometers or 0.1 miles) were statistically significant at the 95% confidence level. The number of 
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observations in both models was 45. The R-squared values for the pedestrian and bicycle models 
were 0.7 and 0.67, respectively. 

The negative binomial model results revealed that the variables were influential at multiple buffer 
areas and showed differences across pedestrian and bicycle activity. The results underscored the 
importance of location and community in characterizing nonmotorized demand, and targeted 
improvements to encourage nonmotorized activities. Appendix E provides a detailed discussion 
on the variables’ effects for both bicycle and pedestrian models.  

After estimating pedestrian and bicycle volumes (i.e., AADP and AADB) as the exposure measure, 
the risk was quantified by applying the proposed quantified risk equation (Equation 5). In this 
equation, number of victims and crash severity levels were obtained from the Statewide Integrated 
Traffic Records System data; distance pedestrians or bicyclists crossed at the intersection was 
calculated by multiplying the average number of lanes (across all approaches) by the lane width 
(3.65 m [12 ft] was assumed); cost per victim was obtained based on the victim’s age and injury 
severity as estimated by Miller et al. (75). After experimenting with several values for the tuning 
parameter 𝑅𝑅, a value of three was chosen for the final model. It should be noted that there is no 
right or wrong value for this parameter and the researcher should determine the weight they wish 
to put on crash frequency and severity. Models with smaller values of 𝑅𝑅  identified some 
intersections as high risk (i.e., top 50) with only one or two victims in the past 10 years. Although 
other factors such as a small AADP (AADB) and/or a high crash cost contributed to identification 
of high-risk intersections, it may not be practical to recognize an intersection with only one victim 
in the past 10 years as a high-risk intersection. This potential issue could apply to intersections 
with a small number of victims but with high severity levels (i.e., high cost). On the other hand, 
high values of k resulted in extreme values of risk for locations with higher number of victims 
compared to locations with lower number of victims. This significantly diminished the impact of 
crash severity in the numerator (i.e., crash cost) and therefore the risk. Consequently, risk 
calculated for an intersection with a high number of victims but with low severity levels could be 
significantly higher than that of an intersection with a medium to high number of victims with 
severe injuries. Accordingly, the value of three was selected as it provided a reasonable outcome. 
The risk for all signalized intersections was calculated to identify high-risk intersections for 
walking and bicycling, as mapped in Figure 3. 
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Figure 3. High-risk intersections for walking (left side) and bicycling (right side). 

Previously, 15 intersections, known as the “fatal 15,” were identified as the deadliest intersections 
for pedestrians in the city of San Diego (84). As expected, it was found that these intersections had 
a higher number of victims than other intersections. However, when exposure and other factors 
were taken into account using the quantified risk equation, not all intersections with the highest 
number of pedestrian and bicyclist victims were identified as high-risk. For example, out of 39 
intersections with the highest number of pedestrian victims (victims ≥ 8), only 22 made it to the 
top 39 high-risk intersections based on quantified risk. Similarly, out of 36 intersections with the 
highest number of bicyclist victims (victims ≥ 5), only 26 remained in the top 36 high-risk 
intersections. 
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Conclusions and Recommendations 
While statistics show an increasing trend in using eco-friendly modes of travel, such as walking 
and bicycling, historical crash data shows a growing trend in road crash victims involving 
pedestrians and bicyclists. Utilizing multiple data sources, such as automated pedestrian and 
bicycle counters and video cameras, this study estimated pedestrian and bicyclist exposure and 
identified signalized intersections with the highest risk for walking and bicycling within the city 
of San Diego, California.  

A sampling strategy was used to identify a representative sample of intersections to collect short-
term video data by applying cluster analysis and stratified sampling. A vision-based monitoring 
system was developed to automatically detect, track, and count pedestrians and bicyclists at the 
selected intersections. Situations where high-quality videos were used, a sufficient number of 
pedestrians and bicyclists were annotated, pedestrians and bicyclists were not too far from the 
camera, did not cross the intersection in groups, and good lighting was present, led to a high 
counting accuracy of 95%. Utilizing permanent counters, an extrapolation and a novel matching 
method were employed to estimate yearly counts that were used for estimating exposure by direct 
demand models. Exposure analysis identified transportation network, population, traffic generator, 
and land use variables as statistically significant in estimating pedestrian and bicyclist volume. 
Accounting for exposure as a normalization factor and considering other factors, such as frequency 
of victims and crash severity, in quantifying risk had a significant impact on the selection of high-
risk intersections; not all intersections with the highest number of pedestrian and bicyclist victims 
were identified as high-risk. In addition, the variables were found to be influential at multiple 
buffer areas and showed differences across pedestrian and bicycle activity. The results underscored 
the importance of location and community in characterizing nonmotorized demand, and targeted 
improvements to encourage nonmotorized activities. 

The modeling framework and data sources used in this study will be beneficial in conducting future 
analyses for other facility types, such as roadway segments, and also at more aggregate levels, 
such as traffic analysis zones. The approach is also beneficial to public agencies, as it can help 
quantify the risk of walking and bicycling at intersections, which in turn can aid in the development 
of procedures to identify high-risk facilities and prioritize them for countermeasure 
implementation. It should be pointed out that safety performance functions were not considered in 
this study, and thus potential future work might focus on how a combination of risk quantification 
and performance functions can assess safety. Since crashes are rare events, the identification of 
high-risk facilities will be lengthy, and a potential future direction is to proactively assess safety 
by discovering near-crash situations in video analysis. This would enable researchers and 
practitioners to quantify risk and evaluate safety in a much shorter period of time. 
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Additional Products 
The Education and Workforce Development and Technology Transfer products created as part of 
this project are located on the project page of the Safe-D website, here. The final project dataset is 
located in the Safe-D Collection of the VTTI Dataverse. 

Education and Workforce Development Products 
The following resulted from project activities: 

1. This research study contributed to a graduate master’s thesis. SDUS’s Mahdie Hasani’s 
thesis is titled “Evaluation of Pedestrian and Bicycle Exposure and Crash Risk at 
Signalized Intersections in San Diego.” Another master’s student from SDSU, Christopher 
Galan, and a PhD student from TTI, Silvy Munira, were also involved in this research. 
While the project did not directly contribute to their thesis/dissertation, it increased their 
knowledge in the field.  

2. The data collected and processed throughout the project were utilized in a group project 
assignment for CIVE 160 Statistical Methods for the Built Environment course at SDSU. 
The assignment tasks can be found in Appendix F. 

3. A pedestrian and bicyclist vision-based counting tool was developed in MATLAB. The 
tool shows how machine-vision can be applied to automatically count the number of 
crossing pedestrians and bicyclists at intersections. More details can be found in Appendix 
G. 

4. Demo video files of the counting tool were developed and used at the VT Science Festival 
on November 4, 2017 at VTTI headquarters in Blacksburg, VA. 

5. The project team had a booth display and technology demonstration of Safe-D projects, 
including the current project, on March 17, 2018 for SDSU Explore Day event at SDSU, 
San Diego, CA. https://admissions.sdsu.edu/tours_events/explore  

6. The project team convened a meeting with the City of San Diego and discussed project 
methodology and activities on September 15, 2017. 

Technology Transfer Products 
The following T2 products resulted from project activities: 

1. One journal paper and seven presentations (peer reviewed conference papers and other 
presentations) were resulted from this project as listed on the project website.  

2. A web-based tool (Utilized Shiny, an open source R package that provides an elegant and 
powerful web framework for building web applications using R.) was developed to 
visualize high-risk intersections for walking and bicycling. This interactive tool can be 
accessed here: https://g-hasani.shinyapps.io/RiskCalc/  

https://www.vtti.vt.edu/utc/safe-d/index.php/projects/data-mining-to-improve-planning-for-pedestrian-and-bicyclist-safety/
https://dataverse.vtti.vt.edu/dataverse/safed
https://admissions.sdsu.edu/tours_events/explore
https://g-hasani.shinyapps.io/RiskCalc/
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Data Products  
• Link to Dataset – https://doi.org/10.15787/VTT1/IUTNDS 

• Project Description – The study goal was to identify high-risk signalized intersections for 
walking and bicycling in the City of San Diego using data mining methods. The data used 
in this study was collected from multiple sources, such as San Diego’s automated 
pedestrian and bicyclist counting system in 2015, several video cameras through National 
Data and Surveying Services in June and July 2018, crash data from SWITERS from 2006 
to 2016, and GIS shapefiles.  

• Data Scope – The data from multiple sources, as mentioned above, were compiled to create 
a data table in CSV format. Total number of observations for this table is 1,520, with a 
total of 502 variables (i.e., columns). 

• Data Specification – a detailed description of each variable in data set can be found in 
Appendix H. 

• Citation Metadata: 

o Title of data set: “SafeD-01-003-Data.csv” 
o Author list with researcher ORCIDs 

 Mahdie Hasani, 0000-0003-3787-0547 
 Arash Jahangiri, 0000-0002-8825-961X 
 Christopher Johnathan Galan, 0000-0001-9437-7754 
 Ipek Nese Sener, 0000-0001-5493-8756 
 Sirajum Munira, 0000-0002-4953-2628 

o Contact information (email) for corresponding author: AJahangiri@sdsu.edu 
o Keywords: high-risk signalized intersections, exposure modeling, direct demand 

models, pedestrian and bicyclist safety planning, data mining  

  

https://doi.org/10.15787/VTT1/IUTNDS
mailto:AJahangiri@sdsu.edu
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Appendices 
 

Appendix A - Risk Quantification Methods 

Crash risk (rate) calculation 
(Relative risk is indicated by r*) 

Geographic unit of 
analysis; number 

of units 
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𝑀𝑀𝑣𝑣𝐸𝐸𝐶𝐶 𝐸𝐸 𝐸𝐸𝑝𝑝𝐸𝐸𝐷𝐷𝐸𝐸𝑓𝑓𝐸𝐸𝐷𝐷 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑝𝑝𝐸𝐸𝐶𝐶𝐸𝐸𝑀𝑀𝐸𝐸 

10 𝐸𝐸𝐸𝐸𝑏𝑏𝑏𝑏𝐸𝐸𝑀𝑀𝑀𝑀 𝑝𝑝𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐶𝐶𝐸𝐸𝐸𝐸𝑀𝑀 𝐷𝐷𝐶𝐶𝑀𝑀𝐸𝐸𝐸𝐸𝐸𝐸𝑀𝑀𝑤𝑤𝐸𝐸  

Facility-specific; 22 
intersections (4) 

𝐶𝐶

=
𝑁𝑁𝑇𝑇𝐸𝐸𝐹𝐹𝐸𝐸𝐶𝐶 𝑀𝑀𝑓𝑓 𝑃𝑃𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐶𝐶𝐸𝐸𝐸𝐸𝑀𝑀 𝐶𝐶𝐶𝐶𝐸𝐸𝐸𝐸ℎ𝐸𝐸𝐸𝐸 𝑀𝑀𝑣𝑣𝐸𝐸𝐶𝐶 5 𝑏𝑏𝐸𝐸𝐸𝐸𝐶𝐶𝐸𝐸

𝑆𝑆𝑇𝑇𝐸𝐸 𝑀𝑀𝑓𝑓 𝐷𝐷𝐶𝐶𝑀𝑀𝐸𝐸𝐸𝐸 𝑝𝑝𝐶𝐶𝑀𝑀𝐸𝐸𝑇𝑇𝐷𝐷𝐸𝐸 𝑀𝑀𝑓𝑓 𝐸𝐸ℎ𝐸𝐸 𝐸𝐸𝑣𝑣𝐸𝐸𝐶𝐶𝐸𝐸𝑤𝑤𝐸𝐸 𝐸𝐸𝐸𝐸𝐸𝐸𝑏𝑏𝑏𝑏 𝑝𝑝𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐶𝐶𝐸𝐸𝐸𝐸𝑀𝑀𝐸𝐸 ∗
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑀𝑀𝐷𝐷𝐸𝐸 𝐷𝐷𝐶𝐶𝑀𝑀𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 ∗  𝐸𝐸𝑣𝑣𝐸𝐸𝐶𝐶𝐸𝐸𝑤𝑤𝐸𝐸 𝐸𝐸𝐸𝐸𝐸𝐸𝑏𝑏𝑏𝑏 𝐸𝐸𝐶𝐶𝐸𝐸𝑓𝑓𝑓𝑓𝐸𝐸𝐷𝐷 𝑓𝑓𝑀𝑀𝐶𝐶 𝐸𝐸𝐸𝐸𝐷𝐷ℎ 𝐸𝐸𝐸𝐸𝐶𝐶𝐸𝐸𝐷𝐷𝐸𝐸𝐸𝐸𝑀𝑀𝑀𝑀𝐸𝐸𝑏𝑏 𝐸𝐸𝑝𝑝𝑝𝑝𝐶𝐶𝑀𝑀𝐸𝐸𝐷𝐷ℎ 

 

Facility-specific; 52 
intersections (87) 

𝐶𝐶 =
𝑁𝑁𝑇𝑇𝐸𝐸𝐹𝐹𝐸𝐸𝐶𝐶 𝑀𝑀𝑓𝑓 𝑃𝑃𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐶𝐶𝐸𝐸𝐸𝐸𝑀𝑀 𝐶𝐶𝐶𝐶𝐸𝐸𝐸𝐸ℎ𝐸𝐸𝐸𝐸 𝑀𝑀𝑣𝑣𝐸𝐸𝐶𝐶 5 𝑏𝑏𝐸𝐸𝐸𝐸𝐶𝐶𝐸𝐸
𝐸𝐸𝑀𝑀𝐸𝐸𝐸𝐸𝑏𝑏 𝑏𝑏𝐸𝐸𝑀𝑀𝑤𝑤𝐸𝐸ℎ 𝑀𝑀𝑓𝑓 𝐸𝐸ℎ𝐸𝐸 𝐶𝐶𝑀𝑀𝐸𝐸𝐸𝐸𝑤𝑤𝐸𝐸𝑏𝑏 𝐷𝐷𝐸𝐸𝐸𝐸𝐸𝐸𝑤𝑤𝑀𝑀𝐶𝐶𝑏𝑏 ∗

𝐴𝐴𝑣𝑣𝐸𝐸𝐶𝐶𝐸𝐸𝑤𝑤𝐸𝐸 𝐸𝐸𝐸𝐸𝐸𝐸𝑏𝑏𝑏𝑏 𝐸𝐸𝐶𝐶𝐸𝐸𝑓𝑓𝑓𝑓𝐸𝐸𝐷𝐷 𝑓𝑓𝑀𝑀𝐶𝐶 𝐸𝐸ℎ𝐸𝐸 𝐶𝐶𝑀𝑀𝐸𝐸𝐸𝐸𝑤𝑤𝐸𝐸𝑏𝑏 𝐷𝐷𝐸𝐸𝐸𝐸𝐸𝐸𝑤𝑤𝑀𝑀𝐶𝐶𝑏𝑏 

 Facility-specific; 135 
roadway segments (87) 
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𝐶𝐶 =
𝑁𝑁𝑇𝑇𝐸𝐸𝐹𝐹𝐸𝐸𝐶𝐶 𝑀𝑀𝑓𝑓 𝐹𝐹𝐸𝐸𝐷𝐷𝑏𝑏𝐷𝐷𝑏𝑏𝐸𝐸 𝐷𝐷𝐶𝐶𝐸𝐸𝐸𝐸ℎ𝐸𝐸𝐸𝐸
𝐼𝐼𝑀𝑀𝐸𝐸𝐸𝐸𝐶𝐶𝐸𝐸𝐸𝐸𝐷𝐷𝐸𝐸𝐸𝐸𝑀𝑀𝑀𝑀 𝐹𝐹𝐸𝐸𝐷𝐷𝑏𝑏𝐷𝐷𝑏𝑏𝐸𝐸 𝐷𝐷𝑀𝑀𝑇𝑇𝑀𝑀𝐸𝐸𝐸𝐸 Facility-specific; 232 

intersections (23) 

𝐶𝐶 =
𝑁𝑁𝑇𝑇𝐸𝐸𝐹𝐹𝐸𝐸𝐶𝐶 𝑀𝑀𝑓𝑓 𝐹𝐹𝐸𝐸𝐷𝐷𝑏𝑏𝐷𝐷𝑏𝑏𝐸𝐸 𝐷𝐷𝐶𝐶𝐸𝐸𝐸𝐸ℎ𝐸𝐸𝐸𝐸

𝐶𝐶𝑀𝑀𝐸𝐸𝐸𝐸𝑤𝑤𝐸𝐸𝑏𝑏 𝐸𝐸𝐷𝐷𝐶𝐶𝐸𝐸𝐸𝐸𝑀𝑀𝑏𝑏𝐸𝐸𝑀𝑀𝐸𝐸 𝐹𝐹𝐸𝐸𝐷𝐷𝑏𝑏𝐷𝐷𝑏𝑏𝐸𝐸 𝐷𝐷𝑀𝑀𝑇𝑇𝑀𝑀𝐸𝐸𝐸𝐸 Facility-specific; 816 
roadway segments (23) 

𝐶𝐶 =
𝑁𝑁𝑇𝑇𝐸𝐸𝐹𝐹𝐸𝐸𝐶𝐶 𝑀𝑀𝑓𝑓 𝑝𝑝𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐶𝐶𝐸𝐸𝐸𝐸𝑀𝑀 𝑓𝑓𝐸𝐸𝐸𝐸𝐸𝐸𝑏𝑏𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
10 𝐸𝐸𝐸𝐸𝑏𝑏𝑏𝑏𝐸𝐸𝑀𝑀𝑀𝑀 𝑝𝑝𝐸𝐸𝐶𝐶𝐸𝐸𝑀𝑀𝑀𝑀 ℎ𝑀𝑀𝑇𝑇𝐶𝐶𝐸𝐸 𝐸𝐸𝐶𝐶𝐸𝐸𝑣𝑣𝐸𝐸𝑏𝑏𝐸𝐸𝐸𝐸 

Area-wide; 1 country 
(United States) (88) 

𝐶𝐶 =
𝑁𝑁𝑇𝑇𝐸𝐸𝐹𝐹𝐸𝐸𝐶𝐶 𝑀𝑀𝑓𝑓 𝑝𝑝𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐶𝐶𝐸𝐸𝐸𝐸𝑀𝑀 𝐷𝐷𝐶𝐶𝐸𝐸𝐸𝐸ℎ𝐸𝐸𝐸𝐸

𝑝𝑝𝑀𝑀𝑝𝑝𝑇𝑇𝑏𝑏𝐸𝐸𝐸𝐸𝐸𝐸𝑀𝑀𝑀𝑀  

𝐶𝐶 =
𝑁𝑁𝑇𝑇𝐸𝐸𝐹𝐹𝐸𝐸𝐶𝐶 𝑀𝑀𝑓𝑓 𝑝𝑝𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐶𝐶𝐸𝐸𝐸𝐸𝑀𝑀 𝐷𝐷𝐶𝐶𝐸𝐸𝐸𝐸ℎ𝐸𝐸𝐸𝐸

𝑀𝑀𝑇𝑇𝐸𝐸𝐹𝐹𝐸𝐸𝐶𝐶 𝑀𝑀𝑓𝑓 𝐸𝐸𝐶𝐶𝐸𝐸𝑝𝑝𝐸𝐸  

𝐶𝐶 =
𝑁𝑁𝑇𝑇𝐸𝐸𝐹𝐹𝐸𝐸𝐶𝐶 𝑀𝑀𝑓𝑓 𝑝𝑝𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐶𝐶𝐸𝐸𝐸𝐸𝑀𝑀 𝐷𝐷𝐶𝐶𝐸𝐸𝐸𝐸ℎ𝐸𝐸𝐸𝐸

𝐸𝐸𝐶𝐶𝐸𝐸𝑝𝑝 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑀𝑀𝐷𝐷𝐸𝐸𝐸𝐸  

𝐶𝐶 =
𝑁𝑁𝑇𝑇𝐸𝐸𝐹𝐹𝐸𝐸𝐶𝐶 𝑀𝑀𝑓𝑓 𝑝𝑝𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐶𝐶𝐸𝐸𝐸𝐸𝑀𝑀 𝐷𝐷𝐶𝐶𝐸𝐸𝐸𝐸ℎ𝐸𝐸𝐸𝐸

𝐸𝐸𝐶𝐶𝐸𝐸𝑝𝑝 𝐸𝐸𝑇𝑇𝐶𝐶𝐸𝐸𝐸𝐸𝐸𝐸𝑀𝑀𝑀𝑀  

𝐶𝐶 =
𝑁𝑁𝑇𝑇𝐸𝐸𝐹𝐹𝐸𝐸𝐶𝐶 𝑀𝑀𝑓𝑓 𝑝𝑝𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐶𝐶𝐸𝐸𝐸𝐸𝑀𝑀 𝐷𝐷𝐶𝐶𝐸𝐸𝐸𝐸ℎ𝐸𝐸𝐸𝐸
𝑀𝑀𝑇𝑇𝐸𝐸𝐹𝐹𝐸𝐸𝐶𝐶 𝑀𝑀𝑓𝑓 𝐸𝐸𝐸𝐸𝐶𝐶𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝐷𝐷𝐶𝐶𝑀𝑀𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸  

Area-wide; 1 Ottawa-
Carleton (community 
in Ontario, Canada) 

(7) 

𝐶𝐶 =
𝑁𝑁𝑇𝑇𝐸𝐸𝐹𝐹𝐸𝐸𝐶𝐶 𝑀𝑀𝑓𝑓 𝑝𝑝𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐶𝐶𝐸𝐸𝐸𝐸𝑀𝑀 𝐷𝐷𝐶𝐶𝐸𝐸𝐸𝐸ℎ𝐸𝐸𝐸𝐸

𝑀𝑀𝑇𝑇𝐸𝐸𝐹𝐹𝐸𝐸𝐶𝐶 𝑀𝑀𝑓𝑓 𝐸𝐸𝐶𝐶𝐸𝐸𝑝𝑝𝐸𝐸  

𝐶𝐶 =
𝑁𝑁𝑇𝑇𝐸𝐸𝐹𝐹𝐸𝐸𝐶𝐶 𝑀𝑀𝑓𝑓 𝑝𝑝𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐶𝐶𝐸𝐸𝐸𝐸𝑀𝑀 𝐷𝐷𝐶𝐶𝐸𝐸𝐸𝐸ℎ𝐸𝐸𝐸𝐸

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑀𝑀𝐷𝐷𝐸𝐸 𝐸𝐸𝐶𝐶𝐸𝐸𝑣𝑣𝐸𝐸𝑏𝑏𝐸𝐸𝐸𝐸  

𝐶𝐶 =
𝑁𝑁𝑇𝑇𝐸𝐸𝐹𝐹𝐸𝐸𝐶𝐶 𝑀𝑀𝑓𝑓 𝑝𝑝𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐶𝐶𝐸𝐸𝐸𝐸𝑀𝑀 𝐷𝐷𝐶𝐶𝐸𝐸𝐸𝐸ℎ𝐸𝐸𝐸𝐸

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝐸𝐸𝑝𝑝𝐸𝐸𝑀𝑀𝐸𝐸 𝐸𝐸𝐶𝐶𝐸𝐸𝑣𝑣𝐸𝐸𝑏𝑏𝑏𝑏𝐸𝐸𝑀𝑀𝑤𝑤  

Area-wide; 1 county 
(Rhône county, 
France) (6) 
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Appendix B – Study workflow 
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Appendix C – Site selection results by cluster 
analysis and stratification 
 

 
 

* Triangles represent the final selection. 
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Appendix D – Clustering result of long-term 
pedestrian and bicyclist counters 

Clustering result of long-term pedestrian counters classified into three groups: recreational, mixed, and 
utilitarian. 
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Clustering result of long-term bicycle counters classified into four groups: utilitarian, recreational, mixed 
recreational, and mixed utilitarian. 
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Appendix E – Discussion of the Bicycle and 
Pedestrian Exposure Model Results 
The pedestrian volume was characterized by transportation network (transit stop density and speed 
limit), population (employment density, and regular transit rider, pedestrian, or bicyclist 
population), and land use (vacant housing units, commercial or mixed-use land area, and high-
crime area). The best model was obtained with variables of different spatial scales. This finding is 
consistent with previous studies (89–91) that suggested it is unlikely to have all the variables 
significant at the same buffer scale. The direct-demand model for bicycle traffic included variables 
that represent characteristics of the transportation network (density of bicycle facility, maximum 
posted speed within an intersection, and transit stops density), population (total regular bicyclist 
population), traffic generator (presence of a school and proximity to the beach), and land use (total 
commercial or mixed-use area). 

Interestingly, some variables, such as commercial or mixed-use land area and transit stop density, 
influence both pedestrian and bicycle traffic for the study area, but the spatial scale of influence 
varies. The commercial or mixed-use land area influences pedestrian and bicycle volume within 
0.160 kilometers (0.1 miles) and 0.402 kilometers (0.25 miles), respectively. This indicates that 
the commercial and mixed-use land area attracts bicyclist traffic for a larger catchment area than 
pedestrian traffic does. Previous studies have also indicated that commercial areas attract 
pedestrian (28, 91) and bicycle (90, 28, 92, 89) activity. However, the study by Tabeshian and 
Kattan (2014), conducted in Canada, found a significant impact of commercial areas on pedestrian 
and bicycle traffic within 0.402 kilometers (0.25 miles) and 0.160 kilometers (0.1 miles), 
respectively, which is contrary to this study’s findings (28). Two separate studies in Alameda 
County, California, have also found a significant influence on commercial areas on pedestrians 
within 0.402 kilometers (0.25 miles) (89) and bicyclists within 0.160 kilometers (0.1 miles) (92). 
The comparison suggests that not only the explanatory variables but also their influence area for 
nonmotorized traffic activity vary with location and community.  

Similarly, transit stop density influences pedestrians within 0.805 kilometers (0.5 miles), which is 
larger than the bicycle buffer of 0.160 kilometers (0.1 miles). The results indicate that pedestrians 
are likely to travel more to ride a transit facility than bicyclists are. Previous studies have also 
observed a significant association of transit facilities with pedestrians within 0.805 kilometers 
(0.5 miles) (93) and bicyclists within 0.805 kilometers (0.5 miles) (29). Given that mass transit 
facilities are bicycle-friendly in San Diego (San Diego Metropolitan Transit System, 2018), transit 
riders probably make up a large proportion of pedestrians and bicyclists in the city. 

Pedestrian and bicycle volumes decrease when the maximum intersection speed limit exceeds 64 
kph (40 mph). The finding confirms that pedestrians and bicyclists are more likely to avoid high-
speed intersections and find an alternative route. Fagnant, D. J., and K. Kockelman, (30) also 



35 
 

observed a similar relationship for bicycle traffic in the Seattle, Washington, area. The finding is 
not surprising given the rise of traffic fatalities. A report (94) indicated that around 1,000 
pedestrians and bicyclists are hit and seriously injured annually in San Diego, and in 2012, 
pedestrian collisions increased 20 percent compared to previous years. In 2017, there were 12 
deaths and 71 serious injuries involving pedestrians and bicyclist (94, 95). The high crash risk 
could discourage pedestrians and bicyclists from using high-speed intersections.  

The pedestrian model had a strong positive association between the pedestrian volume and the 
percentage of regular transit rider, pedestrian, or bicyclist population within 0.402 kilometers (0.25 
miles). As expected, the population inclined to use active modes and public transportation was 
more likely to contribute to the walking volume within their neighborhood. The pedestrian volume 
also increased with increasing employment density within 0.402 kilometers (0.25 miles). Previous 
studies also observed similar influence in San Francisco (31) and San Diego, California (96). The 
results suggest that with more people working in a neighborhood, intersections are more likely to 
observe higher pedestrian volume. Similarly, the negative association between pedestrian volume 
and total vacant housing units indicates that pedestrians are less likely to generate from 
neighborhoods with many vacant properties. The negative influence of crime on pedestrian 
volume, but not on bicyclists was also observed, which shows that people are more likely to avoid 
high-crime locations and conforms with previous research (83, 84). 

As expected, the bicycle model indicated higher bicycle volume in areas with a larger population 
of regular bicyclists. The model also indicated that the intersections near beach access points (less 
than 1.6 kilometers (10 miles)) were more likely to observe high bicycle traffic. The density of 
bike facilities also had a positive influence on daily bicycle volume. The finding can be attributed 
to the recent surge of dockless bicycles in the city (97) as well as the 2.5 kilometers (16 miles) of 
separated bike paths around San Diego Bay, completed in February 2018 (San Diego Association 
of Governments, 2018). The Bay Shore bikeway was built with a vision to provide a scenic and 
convenient way for bicyclists to travel in the San Diego area. The dockless bike sharing facilities 
were first launched in February 2018 and added the convenience of using bicycles. The combined 
influence may contribute to a higher bicycle volume in locations near beach areas and with better 
bicycle facilities. Surprisingly, the model revealed a negative association between the presence of 
a school and bicyclist volume, which contradicts previous studies conducted in Canada (29, 98). 
However, a study conducted in the United States suggested that the number of students (ages 5 to 
18) who walk or bike to school decreased sharply in recent years due to increased traffic collisions, 
lack of sidewalks, and urban sprawl (McMillan, 2009). Perhaps the increasing collision rate in the 
city discouraged children from bicycling to schools, and adult bicyclists tend to avoid locations 
near schools.  
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Appendix F - Group Project Assignment for CIVE 160: 
Statistical Methods for the Built Environment 
For this project, use the data set that is assigned to your group to perform the following tasks: 

Task 1: Descriptive Statistics 
• Task 1-1: What is the variable that you are trying to estimate? (e.g., AADP). Use 

descriptive statistics to summarize this variable. 
• Task 1-2: See other variables that are included in your data set. Select two variables 

(preferably continuous) in your data set that you think have impact on the variable you 
identified in Task 1-1. Use descriptive statistics to summarize these two variables. 

Task 2: Hypothesis Testing 
• Task 2-1: From your data set, select the variable identified in Task 1-1. 

o Perform a hypothesis testing at 95% confidence level to find out if the criterion 
for this variable (e.g., AADP > 200) is met (apply the p-value approach). 

o Construct a 99% CI on the population mean based on the criterion applied earlier. 
• Task 2-2: Choose another continuous variable (i.e. different from AADP) of your choice, 

define a hypothetical criterion that requires a two-sided hypothesis, and perform the 
hypothesis testing for your scenario (use sample size of 60). 

Task 3: Regression Analysis 
• Task 3-1: Develop a simple linear regression model to estimate the variable identified in 

Task 1-1. Try to find the best simple linear regression model. Plot the best model and 
report the outcomes (model parameters as well as the R2 measure). Interpret the results. 

• Task 3-2: Develop a multiple linear regression model to estimate the variable identified 
in Task 1-1. Find the best model and report the outcomes of the best model. You could 
include as many independent variables as you want in your model but see if adding 
variables would improve your model. Interpret the results. 
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Appendix G - Pedestrian/Bicyclist Counting Tool 
*Only for windows systems 

First, take the following four steps to install required software/packages in order to use the 
counting tool. 

Step 1: 

 - Install MATLAB Runtime software by clicking on the link below.  

https://www.mathworks.com/products/compiler/matlab-runtime.html 

 - Must be 64-bit, each release should work. 

Step 2: 

 - Download the app package attached (PedCounterMLRuntime.rar) and uncompress it. Install 
the app by clicking the "PedCounterMLRuntime\for_redistribution\MyAppInstaller_web.exe" 
file. 

 - You will be asked to fill in the Matlab Runtime software installation path, like "C:\Program 
Files\MATLAB\MATLAB Runtime". 

 - The app will be installed in a path like "C:\Program Files\PedCounterMLRuntime". 

Step 3: 

 - Copy the "PedCounterMLRuntime\Frames" folder into the "application" folder of app 
installation path "C:\Program Files\PedCounterMLRuntime\application\". 

Step 4: 

 - Run the system by clicking the PedCounterMLRuntime.exe in the "application" folder of app 
installation path "C:\Program Files\PedCounterMLRuntime\application\". 

Second, follow the below instructions to use the tool: 

After running the PedCounterMLRuntime.exe, a GUI pops up that shows three buttons: Select 
Region; Play; and Clear Region. For the first time, click on the "Play" button so the video images 
are loaded. Then, click on the Select Region to define an area for counting by drawing a 
rectangle. Then, hit play; the pedestrians entering the area will be counted and total number of 
pedestrians counted are shown on the screen. To define a new region, you can use "Clear 
Region" button and then use the "Select Region" button to define a new area. 

  

https://www.mathworks.com/products/compiler/matlab-runtime.html
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Appendix H - Data Specification 
X indicates three different buffer sizes including 0.160, 0.402, and 0.805 kilometers (0.1, 0.25, 
and 0.5 miles) = {1: 0.1 mile, 2: 0.25 mile, 5: 0.5 mile} 

xx indicates year 2006 to 2016. (06: 2006, 07:2007, …, 16: 2016) 

 

TOT_POP_X (Double)  

-- The total sum of population within a given intersection buffer, proportioned by total 
population by census block group over buffer acreage.  

POP_DENS_X (Double) 

-- Calculated by TOT_POP divided by BUFF_ACRE. This is the population density of 
each acre within the intersection buffer. 

WHITE_X (Double) 

--The total sum of population who self-identifies as white within a given intersection 
buffer, proportioned by total population by census group over buffer acreage.  

WHITE_PCT_X (Double) 

-- Calculated by WHITE divided by TOT_POP. This is the percentage of the intersection 
buffer that identifies as white.  

BLK_X (DOUBLE) 

--The total sum of population who self-identifies as African-American within a given 
intersection buffer, proportioned by total population by census block group over buffer 
acreage.  

BLACK_PCT_X (Double) 

-- Calculated by BLACK divided by TOT_POP. This is the percentage of the intersection 
buffer that identifies as African-American.  

AM_IND_X (DOUBLE) 

--The total sum of population who self-identifies as American-Indian within a given 
intersection buffer, proportioned by total population by census block group over buffer 
acreage.  

AM_IND_PCT_X (Double) 
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-- Calculated by AM_IND divided by TOT_POP. This is the percentage of the 
intersection buffer that identifies as American-Indian 

ASIAN_X (DOUBLE) 

--The total sum of population who self-identifies as Asian within a given intersection 
buffer, proportioned by total population by census block group over buffer acreage.  

ASIAN_PCT_X (Double) 

-- Calculated by ASIAN divided by TOT_POP. This is the percentage of the intersection 
buffer that identifies as Asian. 

NAT_HI_X (DOUBLE) 

 --The total sum of population who self-identifies as Native-Hawaiian within a given 
intersection buffer, proportioned by total population by census block group over buffer acreage.  

NAT_HI_PCT_X (Double) 

-- Calculated by NAT_HI divided by TOT_POP. This is the percentage of the 
intersection buffer that identifies as Native-Hawaiian.  

OTHER_X (DOUBLE) 

--The total sum of population who self-identifies as any other race, not previously 
mentioned, within a given intersection buffer, proportioned by total population by census 
block group over buffer acreage.  

OTHER_PCT_X (Double) 

-- Calculated by OTHER divided by TOT_POP. This is the percentage of the intersection 
buffer that identifies as Other.  

MIXED_X (DOUBLE) 

--The total sum of population who self-identifies as Mixed within a given intersection 
buffer, proportioned by total population by census block group over buffer acreage.  

MIXED_PCT_X (Double) 

-- Calculated by MIXED divided by TOT_POP. This is the percentage of the intersection 
buffer that identifies as Mixed. 

MINOR_X (Double) 

--The total sum of population who self-identifies as a minority, including BLK, 
AM_IND, ASIAN, NAT_HI, OTHER, and MIXED within a given intersection buffer, 
proportioned by total population by census block group over buffer acreage.  
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MINOR_PCT_X (Double) 

-- Calculated by MINOR divided by TOT_POP. This is the percentage of the intersection 
buffer that identifies as a minority. 

HISPANIC_X (Double) 

--The total sum of population who self-identifies as a Hispanic or Latino within a given 
intersection buffer, proportioned by total population by census block group over buffer 
acreage.  

PCT_HISP_X (Double) 

-- Calculated by HISPANIC divided by TOT_POP. This is the percentage of the 
intersection buffer that identifies as a Hispanic or Latino. 

MALE_X (Double) 

-- The total sum of population who self-identifies as male within a given intersection 
buffer, proportioned by total population by census block group over buffer acreage.  

PCT_MALE_X (Double) 

-- Calculated by MALE divided by TOT_POP. This is the percentage of the intersection 
buffer that identifies as a male. 

FEMALE_X (Double) 

-- The total sum of population who self-identifies as female within a given intersection 
buffer, proportioned by total population by census block group over buffer acreage.  

PCT_FEMALE_X (Double) 

-- Calculated by FEMALE divided by TOT_POP. This is the percentage of the 
intersection buffer that identifies as a female. 

A_18_LESS_X (Double) 

-- The total sum of population 18 years old or less within a given intersection buffer, 
proportioned by total population by census block group over buffer acreage.  

PCT_18_LESS_X (Double) 

-- Calculated by A_18_LESS divided by TOT_POP. This is the percentage of the 
intersection buffer that identifies as under 18 years old. 

A_65_OLDER_X (Double) 

-- The total sum of population 65 years old or older within a given intersection buffer, 
proportioned by total population by census block group over buffer acreage.  
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PCT_65_OVER_X (Double) 

-- Calculated by A_65_OLDER divided by TOT_POP. This is the percentage of the 
intersection buffer that identifies as over 65 years old. 

A18_TO_65_X (Double) 

-- The total sum of population between the ages of 18 and 65 years old within a given 
intersection buffer, proportioned by total population by census block group over buffer 
acreage.  

PCT_18_65_X (Double) 

-- Calculated by A18_TO_65 divided by TOT_POP. This is the percentage of the 
intersection buffer that identifies within this age group.  

A18_24_X (Double) 

-- The total sum of population between the ages of 18 and 24 years old within a given 
intersection buffer, proportioned by total population by census block group over buffer 
acreage.  

PCT_A18_24_X (Double) 

-- Calculated by A18_24 divided by TOT_POP. This is the percentage of the intersection 
buffer that identifies between the ages of 18 and 24 years old.  

TBP_Ridership_X (Double) 

-- The total sum of population that that are transit riders, pedestrians, or bicyclists within 
a given intersection buffer, proportioned by total population by census block group over 
buffer acreage.  

PCT_TBP_X (Double) 

-- Calculated by TBP_Ridership divided by TOT_POP. This is the percentage of the 
intersection buffer that identifies as a regular transit rider, bicyclist, or pedestrian. 

Transit_RS_X (Double) 

-- The total sum of population that that are regular transit riders within a given 
intersection buffer, proportioned by total population by census block group over buffer 
acreage.  

Bicycle_RS_X (Double) 

-- The total sum of population that that are regular bicyclists within a given intersection 
 buffer, proportioned by total population by census block group over buffer acreage.  
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Ped_RS_X (Double) 

-- The total sum of population that that are regular pedestrians within a given intersection 
buffer, proportioned by total population by census block group over buffer acreage. 

College_Cnt_X (Double) 

-- The total sum of population with some college education within a given intersection 
buffer, proportioned by total population by census block group over buffer acreage.  

PCT_COLLEGE_X (Double) 

-- Calculated by College_Cnt divided by TOT_POP. This is the percentage of the 
intersection buffer that has some college education. 

POVERTY_X (Double) 

-- The total sum of population living in conditions of Poverty (as defined by Census.gov 
ID= B17010) within a given intersection buffer, proportioned by total population by 
census block group over buffer acreage.  

PCT_POV_X (Double) 

-- Calculated by Poverty divided by TOT_POP. This is the percentage of the intersection 
buffer that is living in poverty. 

EMP_2015_X (Double) 

-- The total sum of employees within a given intersection buffer, proportioned by total 
employees in 2015 by census block group over buffer acreage. (Used ID= B24080).  

EMP_DENS_X (Double) 

 -- EMP_2015 divided by acres within the intersect created for apportioning.  

TOT_JOBS_X (Double) 

-- The total sum of jobs within a given intersection buffer. 

EMP_POP_X (Double) 

-- Calculated by EMP_2015 divided by TOT_POP. This is the ratio of employees to 
population within the intersection buffer. 

MED_INC_X (Double) 

 --The average median income within a given intersection buffer.  

TOT_HH_X (Double) 
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-- The total sum of households within a given intersection buffer, proportioned by total 
households by census block group over buffer acreage.  

TOT_HU_X (Double) 

-- The total sum of housing units within a given intersection buffer, proportioned by total 
housing units by census block group over buffer acreage.  

TOT_VAC_X (Double) 

-- The total sum of vacant housing units within a given intersection buffer, proportioned 
by total housing units by census block group over buffer acreage. 

PCT_VAC_X (Double) 

-- Calculated by TOT_VAC divided by TOT_HU. This is the percentage of vacant 
housing units within the intersection buffer. 

NO_CAR_HH_X (Double) 

--The total sum of households without an automobile within a given intersection buffer, 
proportioned by total households without an automobile by census tract over buffer 
acreage.  

SW_FEET_X (Double) 

 -- The total sum of sidewalk length in feet within a given intersection buffer.  

SW_DENS_X (Double) 

 -- Sidewalk feet within the buffer divided by roadway feet within the buffer 

BIKE_FEET_X (Double) 

 -- The total sum of bicycle facility length in feet within a given intersection buffer.  

BIKE_DENS_X (Double) 

 -- Bicycle facility length within the buffer divided by the roadway within the buffer. 

R_INT_CNT_X 

 -- The total sum of intersections within a given buffer.  

R_INT_DENS_X 

 --Calculated by dividing R_INT_CNT by the total acreage of the buffer.  

AUTO_LU_X (Double) 

 -- The total sum of automobile-dependent acres within the buffer.  
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A_LU_DENS_X (Double) 

 -- AUTO_LU divided by buffer acres. 

AG_LU_X (Double) 

 -- The total sum of Agriculture Land Use acres within the buffer.  

AG_LU_DENS_X (Double) 

 -- AG_LU divided by buffer acres. 

COMM_LU_X (Double) 

 --The total sum of Commercial or Mixed-Use Land use acreage within the buffer. 

C_LU_DENSE_X (Double) 

 --C_LU divided by acreage within the buffer. 

GOVT_LU_X (Double) 

 --The total sum of Government Land Use acreage within the buffer. 

GOVT_LU_DENS_X (Double) 

 --GOVT_LU divided by acreage within the buffer. 

IND_LU_X (Double) 

 --The total sum of Industrial Land Use acreage within the buffer. 

IND_LU_DENS_X (Double) 

 --C_LU divided by acreage within the buffer. 

PAR_REC_LU_X (Double) 

 --The total sum of Parks and Recreation Land Use acreage within the buffer. 

P_R_LU_DENS_X (Double) 

 --PAR_REC_LU divided by acreage within the buffer. 

RES_LU_X (Double) 

 --The total sum of Residential Land Use acreage within the buffer. 

RES_LU_DENS_X (Double) 

 --RES_LU divided by acreage within the buffer. 

TRVL_LU_X (Double) 
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 --The total sum of Travel Land Use acreage within the buffer. 

TRVL_LU_DENS_X (Double) 

 --TRVL_LU divided by acreage within the buffer. 

VAC_UN_LU_X (Double) 

 --The total sum of Vacant and Undeveloped Land Use acreage within the buffer. 

VA_UN_LU_DENS_X (Double) 

 --VAC_UN_LU divided by acreage within the buffer. 

Office_LU_X (Double) 

 --The total sum of Office Land Use acreage within the buffer. 

Pct_Office_X (Double) 

 --Office_LU divided by acreage within the buffer. 

S_Fam_LU_X (Double) 

 --The total sum of Single-Family Housing Land Use acreage within the buffer. 

Pct_S_Fam_X (Double) 

 --S_Fam_LU divided by acreage within the buffer. 

M_Fam_LU_X (Double) 

 --The total sum of Multi-Family Housing Land Use acreage within the buffer. 

Pct_M_Fam_X (Double) 

 --M_Fam_LU divided by acreage within the buffer. 

Retail_LU_X (Double) 

 --The total sum of Retail Land Use acreage within the buffer. 

Pct_Retail_X (Double) 

 --Retail_LU divided by acreage within the buffer. 

Business_LU_X (Double) 

 --The total sum of Business Land Use acreage within the buffer. 

Pct_Business_X (Double) 

 --Business_LU divided by acreage within the buffer. 
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RoadAll_Ft_X (Double) 

-- The total sum footage of All Roads within the given intersection buffer.  

Major_Arterial_X (Double) 

-- The total sum footage of all Major Arterial Roads within the given intersection buffer.  

Pct_MjrArt_X (Double) 

-- Calculated by Major_Arterial divided by RoadAll_Ft. This is the percentage of the 
intersection buffer’s roadways that are classified as a Major Arterial.  

MajorRD_4L_X (Double) 

-- The total sum footage of all 4-Lane Major Roads within the given intersection buffer.  

Pct_4L_MRd_X (Double) 

-- Calculated by 4L_MajorRD divided by RoadAll_Ft. This is the percentage of the 
intersection buffer’s roadways that are classified as a 4-Lane Major Road. 

Collector_4L_X (Double) 

-- The total sum footage of all 4-Lane Collector Roads within the given intersection 
buffer.  

Pct_4L_Col_X (Double) 

-- Calculated by 4L_Collector divided by RoadAll_Ft. This is the percentage of the 
intersection buffer’s roadways that are classified as a 4-Lane Collector Road. 

Local_St_X (Double) 

-- The total sum footage of all Local Streets within the given intersection buffer.  

Pct_LcalSt_X (Double) 

-- Calculated by Local_St divided by RoadAll_Ft. This is the percentage of the 
intersection buffer’s roadways that are classified as a Local Street. 

Local_Rd_X (Double) 

-- The total sum footage of all Local Roads within the given intersection buffer.  

Pct_LcalRd_X (Double) 

-- Calculated by Local_Rd divided by RoadAll_Ft. This is the percentage of the 
intersection buffer’s roadways that are classified as a Local Road or Rural Light 
Collector. 
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Multi_UsePth_X (Double) 

-- The total sum footage of all Pedestrianways or Bikeways within the given intersection 
buffer.  

Pct_MU_Pth_X (Double) 

-- Calculated by Multi_UsePth divided by RoadAll_Ft. This is the percentage of the 
intersection buffer’s roadways that are classified as a Pedestrianway or Bikeway 

Collector_2L_X (Double) 

-- The total sum footage of all 2-Lane Collector Roads within the given intersection 
buffer.  

Pct_2L_COL_X (Double) 

-- Calculated by 2L_Collector divided by RoadAll_Ft. This is the percentage of the 
intersection buffer’s roadways that are classified as a 2-Lane Collector Road. 

Rrl_Cllctr_X (Double) 

-- The total sum footage of all Rural Collector Roads within the given intersection buffer.  

Pct_RClctr_X (Double) 

-- Calculated by Rrl_Cllctr divided by RoadAll_Ft. This is the percentage of the 
intersection buffer’s roadways that are classified as a Rural Collector Road. 

Private_St_X (Double) 

-- The total sum footage of all Private Streets within the given intersection buffer.  

Pct_Priv_X (Double) 

-- Calculated by Private_St divided by RoadAll_Ft. This is the percentage of the 
intersection buffer’s roadways that are classified as a Private Street. 

Alley_Ft_X (Double) 

-- The total sum footage of all Alleys within the given intersection buffer.  

Pct_Alley_X (Double) 

-- Calculated by Alley_Ft divided by RoadAll_Ft. This is the percentage of the 
intersection buffer’s roadways that are classified as an Alley. 

MjrRd_2L_X (Double) 

-- The total sum footage of all 2-Lane Major Roads within the given intersection buffer.  
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Pct_2L_MRd_X (Double) 

-- Calculated by 2L_MjrRd divided by RoadAll_Ft. This is the percentage of the 
intersection buffer’s roadways that are classified as a 2-Lane Major Road. 

Milit_St_X (Double) 

-- The total sum footage of all Military Streets within the given intersection buffer.  

Pct_Milit_X (Double) 

-- Calculated by Milit_St divided by RoadAll_Ft. This is the percentage of the 
intersection buffer’s roadways that are classified as a Military Street. 

MjrSt_6L_X (Double) 

-- The total sum footage of all 6-Lane Major Streets within the given intersection buffer.  

Pct_6L_MSt_X (Double) 

-- Calculated by 6L_MjrSt divided by RoadAll_Ft. This is the percentage of the 
intersection buffer’s roadways that are classified as a 6-Lane Major Street 

Unpaved_Rd_X (Double) 

-- The total sum footage of all Unpaved Roads within the given intersection buffer.  

Pct_Unpaved_X (Double) 

-- Calculated by Unpaved_Rd divided by RoadAll_Ft. This is the percentage of the 
intersection buffer’s roadways that are classified as an Unpaved Road. 

Freeway_Ft_X (Double) 

-- The total sum footage of all Freeways within the given intersection buffer.  

Pct_FW_X (Double) 

-- Calculated by Freeway_Ft divided by RoadAll_Ft. This is the percentage of the 
intersection buffer’s roadways that are classified as a Freeway. 

MTS_COUNT_X (Single)  

 -- Sum of total transit stops within a given intersection buffer.  

MTS_DENS_X (Double) 

 -- MTS_COUNT divided by acreage within the buffer. 

Bus_Km_X (Double)  

 -- Total sum kilometers of bus routes within a given intersection buffer.  
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ROUTE_CNT_X (Single)  

 -- Sum of total transit routes within a given intersection buffer.  

H_School_X (Single)  

 -- Sum of total high schools within a given intersection buffer.  

M_School_X (Single)  

 -- Sum of total middle schools within a given intersection buffer.  

E_School_X (Single)  

 -- Sum of total elementary schools within a given intersection buffer.  

Schools_X (Single)  

 -- Sum of total schools, including colleges, within a given intersection buffer.  

BUFF_ACRE_X (Double)  

 --Total acreage of each individual intersection buffer.  

SCHOOL_Y_X (Binary) 

--Binary code (1=yes, 0= no) distinguishes the presence of a school within a given 
intersection buffer.  

COLLEGES_Y_X (Binary) 

--Binary code (1=yes, 0= no) distinguishes the presence of a college within a given 
intersection buffer.  

FREEWAY_Y_X (Binary) 

--Binary code (1=yes, 0= no) distinguishes the presence of a freeway within a given 
intersection buffer.  

CRIME_07_12_X (Double) 

-- The total sum of reported incidents of crime between the years of 2007-2012 within a 
given intersection buffer, proportioned by total crime count by census block group over 
buffer acreage.  

CRIME_AVG_X (Binary) 

--Binary code (1=yes, 0= no) distinguishes whether the buffer contains a crime count that 
is higher than the average crime counts amongst the buffers.  

INTERID 
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-- Internal Feature Number 

LATITUDE 

 --provides the latitude geographic coordinates of a given intersection on a map. 

LONGITUDE  

 --Provides the latitude geographic coordinates of a given intersection on a map 

TOT_xx_X (Years 2006-16) 

-- The total sum of automobile collisions involving either bicyclists and/or pedestrians 
within a given intersection’s 9-meter (30-foot) buffer in a given year. 

TOT_F_xx_X (Years 2006-16) 

--The total sum of automobile collisions ending in a fatality that involved either bicyclists 
and/or pedestrians within a given intersection in a given year. 

P_xx_X (Years 2006-2016) 

--The total sum of automobile collisions involving a pedestrian within a given 
intersection in a given year. 

P_F_xx_X (Years 2006-2016) 

--The total sum of automobile collisions ending in a fatality and involving a pedestrian 
within a given intersection in a given year. 

B_xx_X (Years 2006-2016) 

--The total sum of automobile collisions involving a bicylist within a given intersection in 
a given year. 

B_F_xx_X (Years 2006-2016) 

--The total sum of automobile collisions ending in a fatality and involving a bicylist 
within a given intersection in a given year. 

INT_CNT_xx_X (Years 2006-16) 

-- The total sum of automobile collisions involving either bicyclists and/or pedestrians 
within a given intersection point in a given year. 

TOTAL_X 

-- The total sum of automobile collisions involving either bicyclists and/or pedestrians 
within a given intersection between the years 2006 and 2016. (Note: Data set for the 
years 2013-2016 remains provisional).  
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TOTAL_F_X 

-- The total sum of automobile collisions involving either bicyclists and/or pedestrians, 
that included a fatality, within a given intersection between the years 2006 and 2016. 
(Note: Data set for the years 2013-2016 remains provisional).  

MIN_LNS (Single) 

 -- The minimum number of roadway lanes within a given intersection. 

MAX_LNS (Single) 

 -- The maximum number of roadway lanes within a given intersection.  

MIN_VOL (Double)  

-- Flow data extracted from hwy573 load data from SANDAG. If no data was available, 
the value was given a default 0 

MAX_VOL (Double) 

--Flow data extracted from hwy573 load data from SANDAG. If no data was available, 
the value was given a default value of 3500. 

MIN_PT_SD (Single) 

 -- The minimum posted speed within an intersection measured by miles per hour.  

MAX_PT_SD (Single) 

 -- The maximum posted speed within an intersection measured by miles per hour.  

MILES_BP (Double) 

 -- Distance measured in miles from the intersection point to Balboa Park.  

MILES_BCH (Double) 

 -- Distance measured in miles from the intersection point to beach front access points.  

MILES_RAMP (Double) 

 -- Distance measured in miles from the intersection point to a highway on or off ramp.  

MEAN_VOL (Double) 

--Average of MIN_VOL and MAX_VOL 

MEAN_LNS (Double) 

--Average of MIN_LNS and MAX_LNS 
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BEACH (Double) 

-- Categorized by the following: 

  “pedDist” = Miles to beach less than 0.805 kilometers (0.5 miles) 

“bikeDist” = Miles to beach greater than 0.805 kilometers (0.5 miles) and less 
than 4.8 kilometers (3 miles) 

  “CarDist” = Miles to beach greater than 4.8 kilometers (3 miles) 

BALBOAP (Double) 

-- Categorized by the following: 

  “pedDist” = Miles to Balboa Park less than 0.805 kilometers (0.5 miles)  

“bikeDist” = Miles to Balboa Park greater than 0.805 kilometers (0.5 miles) and 
less than 4.8 kilometers (3 miles) 

  “CarDist” = Miles to Balboa Park greater than 4.8 kilometers (3 miles) 

PED_VIC 

 -- Number of pedestrian victims during year 2006 to 2016 

BIKE_VIC 

 -- Number of bicycle victims during year 2006 to 2016 

PED_CRA 

 -- Number of pedestrian crashes occurred during year 2006 to 2016  

BIKE_CRA 

 -- Number of bicycle crashes occurred during year 2006 to 2016  

PED_COST 

 -- Total pedestrian crash costs occurred at an intersection during year 2006 to 2016 
weighted by severity level. 

BIKE_COST 

-- Total bicycle crash costs occurred at an intersection during year 2006 to 2016 weighted 
by severity level. 

PED_SEV 

-- Average pedestrian injury severity level during year 2006 to 2016  
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BIKE_SEV 

-- Average bicyclist injury severity level during year 2006 to 2016  

DIST_CROSSED 

 -- Distance a pedestrian or a bicyclist crossed at an intersection 

aadp 

--Annual Average Daily Pedestrian counts calculated for 45 selected intersections by 
converting short-term count data to yearly count data 

aadb 

--Annual Average Daily Bicyclist counts calculated for 45 selected intersections by 
converting short-term count data to yearly count data 

AADP 

--Annual Average Daily Pedestrian counts calculated for all intersections through 
exposure modeling 

AADB 

--Annual Average Daily bicyclist counts calculated for all intersections through exposure 
modeling 

PED_RISK 

 --Pedestrian risk at an intersection calculated based on the proposed equation 

BIKE_RISK 

--Bicyclist risk at an intersection calculated 
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