Railroad Considerations for the Future Connected and Automated Vehicle Environment

August 22, 2019

Curtis Morgan
TTI Multimodal Freight Program

Presentation Overview

Outline of Initial Safe-D Project Goals

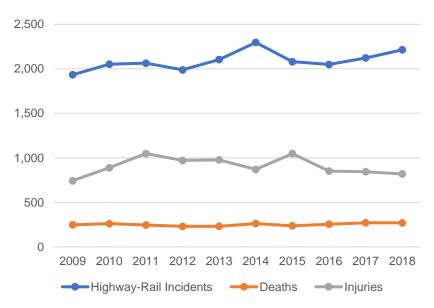
Look at Highway-Rail Grade Crossings/Known Safety Issues in

Light of Automated and Connected Vehicle Development

- Review 2018 Rail Industry/Research Developments
- Examples of Problem Cases for C/AVs
- Impacts of Potential Rail Automation

Railroad Considerations for Future C/AV Environment

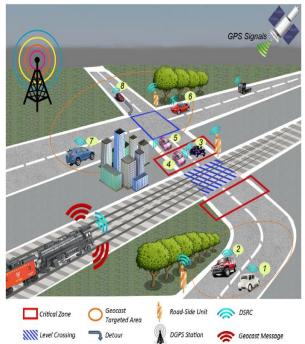
Safe-D University Transportation Center


Planning for the future of Connected and Automated Vehicles has been highly focused from the vehicle/highway perspective. Need to better understand how rail systems will interface with C/AVs.

Initial Project Goals:

- Look at Highway-Rail Grade Crossing (HRGC) from the perspective of railroad operations.
- Identify information/sources of information that might be shared between highway and rail to improve HRGC safety.
- Identify impediments, barriers, and additional research needs in this area.

Safety Challenges at Highway-Rail Grade Crossings



- The majority of issues relevant to highway-rail operations/infrastructure in the future C/AV environment are in highway-rail at-grade crossings
- 94% of train-vehicle collisions pertain to driver behavior or poor judgement
- More than 60% of collisions occur at active crossings (FRA)

Common/Known Safety Factors/Scenarios at Highway-Rail Grade Crossings

Source: Ansari, K. (April 2014)

https://core.ac.uk/download/pdf/33491241.pdf

- Complicated Intersection Type(s)
- Train Visibility/Sight Distance
- Driver Error/Human Behavior
- Second Train Coming
- Congested HRGC/Traffic Storage
- Large Trucks/Longer Vehicles/Humped
- ? Potential for Rail Automation

How are these known safety factors impacted by the introduction of C/AVs?

Autonomous Trucks and Highway-Rail Grade Crossings

- Truck-involved collisions: 36%
- Single accident could cause huge losses in both life and property
- Trucks transporting hazardous materials
- Truck routing issues (incomplete GPS info)
- High gate violation rate (University of Nebraska)
- Short storage & High-profile/humped crossings

Rail Industry/Research Developments Impacting this area during 2018

Automated Vehicles at Highway-Rail Grade Crossings: Final Report FRA Rail Automation Request for Information (RFI)
 & Replies (March-May 2018)

Office of Research, Development and Technology Washington, DC 20590

- USDOT AV 3.0 Release (October 2018)
- AAR Response to AV 3.0 Docket (December 2018)

- FRA/Battelle Report on AV at Highway-Rail Grade Crossings: Final Report (December 2018)
- Rail Positive Train Control (PTC) Implementation Deadline (December 2018)



DOT/FRA/ORD-18/38 Final Report
December 2018

SAE Levels of Vehicle Automation

SOCIETY OF AUTOMOTIVE ENGINEERS (SAE) AUTOMATION LEVELS

Full Automation

0

No Automation

Zero autonomy; the driver performs all driving tasks.

Driver Assistance

1

Vehicle is controlled by the driver, but some driving assist features may be included in the vehicle design.

Partial Automation

2

Vehicle has combined automated functions, like acceleration and steering, but the driver must remain engaged with the driving task and monitor the environment at all times.

Conditional Automation

3

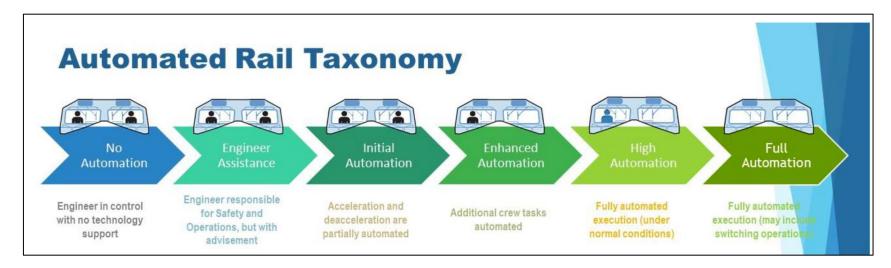
Driver is a necessity, but is not required to monitor the environment. The driver must be ready to take control of the vehicle at all times with notice.

High Automation

4

The vehicle is capable of performing all driving functions under certain conditions. The driver may have the option to control the vehicle.

5


Full Automation

The vehicle is capable of performing all driving functions under all conditions. The driver may have the option to control the vehicle.

AAR Proposed Rail LoA Taxonomy (May 2018)

May 2019: FRA rescinded two-person crew mandate for freight rail operations potentially opening the door for exploring the use of automation to reduce crew size in some operations

Next Steps/Additional Needed Research

Short Term

- Better incorporate rail operations and HRGC safety into roadway C/AV planning
- Monitor RR experience with PTC/potential for data sharing in the future
- Seek methods for involving freight & passenger rail representatives into C/AV system architecture development
- Evaluate safety of AV trucks/longer vehicles near HRGCs

Longer Term

- Examine HRGC scenarios in more complex configurations
- Address need for more C/AV safety features for passive crossings
- Review interoperability of rail and AV automation equipment as both systems mature
- Explore impacts of potential reduced crew size on HRGC safety/ C/AV use
- Conduct research into policy and legal issues associated with HRGCs and C/AVs
- Conduct research on standardization of equipment associated with HRGCs and C/AVs

Conclusions

- SafeD project was an initial scoping study- much more research needed
- FRA and Battelle/others are working on additional research/HRGC interface
- Sharing of PTC info is not supported at this time
- PTC information is not the "silver bullet" needed for train location information on a system-wide basis
- C/AV and rail automation are evolving technology areas and their interfaces need to be monitored and studied

https://tti.tamu.edu/

Curtis Morgan- Multimodal Freight Program (979) 317-2562 c-morgan@tti.tamu.edu

