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Abstract 
Studies have shown that fatalities due to unintentional roadway departures can be 
significantly reduced if Lane Departure Warning and Lane Keep Assist systems are used 
effectively. However, these systems have not been widely adopted due, in part, to the 
lack of suitable standards for pavement markings that enable reliable functionality of 
sensor systems.  The objective of this project is to develop a reference lane detection 
system that will provide a benchmark for evaluating different lane markings and 
perception algorithms. The project will also validate the effectiveness of lane markings’ 
material characteristics as well as the vision algorithms through a systematic testing of 
lane detection algorithms in a robust test/vehicle environment. 
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Introduction 
Lane Detection (LD) systems are an integral part of most commercial Advanced Driver Assistance 
Systems (ADAS), which are designed to improve the safety of automobiles. The systems can 
include features such as lane departure warning (LDW), lane keep assist (LKA), adaptive cruise 
control (ACC), lane centering, lane change assist, and autonomous driving modes. LDW and LKA 
systems alone have the potential to prevent or mitigate 483,000 crashes—87,000 nonfatal injury 
and 10,345 fatal—in the United States every year [1]. While LDW and LKA technologies are 
widely available, customer acceptance and market penetration of these technologies remain low. 
These deficiencies can be traced to the inability [1] [2] of many perception systems to consistently 
recognize lane markings and localize the vehicle with respect to the lane marking in a real-world 
environment of variable markings, changing weather, and other vehicles. These challenges 
translate to (i) inconsistent detection of lane markings, (ii) misidentification of lane markings, and 
(iii) the inability of the systems to locate lane markings in some conditions. These challenges can 
be addressed both by improving the consistency and detectability of the lane markings and by 
improving the perception algorithms currently employed in the sensors. Currently, there is no 
available standard or benchmark to evaluate the quality of either lane markings or perception 
algorithms or how they relate to ADAS functions [2].  

The key functional feature for a reliable LDW or LKA system is road and lane perception. The 
main perceptual cues for driving used by both human drivers and autonomous vehicles include 
road color and texture, road boundaries, and lane markings [2]. While different modes of sensing, 
including the use of LIDAR and radar, exist for road vehicles, due to recent advances in image 
processing techniques and the low-cost of cameras, vision-based LD has become the most 
prominent mode of sensing employed in modern LD systems. The prominence of vision systems 
in LD can also be attributed to the fact that road markings are primarily developed for human 
vision [2]. This goal of this project was to conduct a detailed study on lane infrastructure and its 
effect on the vision systems used in LD. An in-depth review of factors and components (e.g., lane 
marking characteristics, marking quality, etc.) that affect LD performance was carried out by 
incorporating pavement marking material characteristics into the LD system evaluation 
framework. The framework was tested extensively using data collected from College Station, TX 
and nearby cities, as well as using lane marking materials provided by 3M at the Texas A & M 
University System RELLIS Campus.   

Background 
LD systems can be broadly divided into three functional components: (i) hardware, (ii) software, 
and (iii) infrastructure. The hardware component corresponds to the equipment used for the 
sensing modality of the LD system. Although vision-based LD systems traditionally suffer from 
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functional limitations due to changing environmental conditions like illumination variation (direct 
sun on camera, glare, oncoming vehicle lights), shadows, and bad weather (rain, fog, snow), 
vision-based detection is still a widely adopted ADAS sensing mode and is expected to continue 
dominating in the future. Monocular camera and stereo vision cameras are the main sensors that 
have been used in vision-based LD systems. The variations in the hardware components include 
the type of sensor, type of lens (wide angle, fisheye), lens properties (field of view, focal length), 
and camera specification (pixel size, megapixels, resolution, frame rate). The software component 
refers to the algorithms that are employed on the LD system to detect lanes and help navigate the 
vehicle.  

Vision-based LD systems generally consist of three main subprocesses: (i) image preprocessing, 
(ii) LD, and (iii) lane tracking. According to Xing et.al [3], conventional vision-based LD 
algorithms can be roughly classified into two categories: feature-based and model-based. Feature-
based methods rely on the detection of lane marking features such as colors, textures, and edges. 
Model-based methods usually assume that lanes can be described with a specific model, such as a 
linear, parabolic, or various kinds of spline models. Since the advent of machine learning and deep 
learning techniques, several new algorithms that leverage the power of deep networks, parallel 
computing, and large data approaches for LD have been developed. Many deep learning algorithms 
have consistently produced significantly better results as compared to conventional approaches. 
Bei et al.  reported that by using a convolutional neural network (CNN), the LD accuracy increased 
from 80% to 90% compared with traditional image processing methods. Several review papers in 
the literature [2], [3], [4] give a detailed account of the various works that have been carried out 
towards the development of LD algorithms. However, most conclude that the challenges and 
limitations for future research extend to the scope of developing better road understanding 
techniques and methods to increase detection reliability [2]. 

The infrastructure component corresponds to the lane markings and pavement surfaces that will 
be used by machine vision systems for sensing lanes. The variations in lane markings could include 
color, geometry (continuous/intermittent lanes, width, length), lane marking performance 
characteristics (luminance, retroreflectivity, color), and other pavement variables (asphalt, 
concrete). Several independent studies have investigated the effects of various lane marking 
properties towards an effective machine vision system [5], [6], [7], [8]. Studies ( [6], [7], and [8]) 
evaluating the effect of wet retroreflective properties of lane markings and their effect on machine 
vision indicate that considering the lane markings into the detection framework helps improve LD 
performance. 

The essential requirement for a safe LD system is to provide accurate and robust LD. While most 
of the recent machine learning algorithms strive to provide accurate results, robustness remains an 
issue, since lane measurements are affected by heavy traffic and adverse weather conditions. 
According to Xing et al. [3], the factors that limit progress towards achieving robustness are the 
lack of public benchmarks and data sets due to the difficulty of labeling lanes as the ground truth. 
Hillel et al. [2] also make a similar observation, stating that the challenge of current research is the 
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inability to compare the performance of different LD methods due to the lack of public annotated 
benchmarks.  

Developing a large public video benchmark has the potential to reduce evaluation costs. To address 
this issue, recently, large public datasets focusing on LD have been developed. The most prominent 
among those are the CULane Dataset (developed by the Multimedia Laboratory at The Chinese 
University of Hong Kong) [9], TuSimple Benchmark (developed by the San Diego-based tech 
startup TuSimple) [10], and the lane marking dataset in BDD100K (Developed by the Berkley 
Artificial Intelligence Research (BAIR) Lab at UC Berkley) [11]. CULane consists of more than 
55 hours of video data collected by cameras mounted on six different vehicles driven on the roads 
of Beijing. The test set is divided into one normal and eight challenging categories, including 
crowded scenes, shadows, night, dazzle light, curved roads, crossroads, arrows, and no lanes. The 
TuSimple dataset is made up of clips with 20 frames collected at 1 Hz in good and medium weather 
conditions during different times of the day and in different traffic conditions. 

However, none of these datasets have provisions to evaluate the effects of hardware and lane 
markings towards comparing the performance of LD systems. As noted in studies [5], [6], [7], and 
[8], different types of lane markings do affect the performance of an LD system and thus should 
be an integral part of the evaluation methodology for LD performance. According to [3], another 
challenging task in LD systems is to design an evaluation system that can verify system 
performance. Due to the lack of standard evaluation metrics that can comprehensively assess the 
system performance for both accuracy and robustness, no objective assessment of the lane 
estimation process currently exists.  An American Traffic Safety Services Association report in 
2019 [12] noted a few key recommendations (based on a summary of road-marking challenges by 
Mobileye) to improve infrastructure to aid LD performance. These recommendations were also 
included in the key-summaries developed by the National Committee on Uniform Traffic Control 
Devices, as described by Council Member Paul Carlson in MTC-CAV TF.Criteria.v08  [13]. A 
few notable recommendations include the following: 

• Robust markings that are visible in a variety of lighting and weather conditions. 

• Minimum pavement marking retroreflectivity levels. 

• Longitudinal markings (edge lines, centerlines, and lane lines) shall be six inches wide on 
roads with a posted speed of 40 mph (64 km/h) or greater. 

• Lane line markings shall be 15 feet long (about 4.5 meters) with a gap of 25 feet (about 7.6 
meters). 

• Dotted edge line extensions shall be marked along the exit and entrance ramps on roads 
with a posted speed of 40 mph (64 km/h) or greater. 
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• Crosshatch (i.e., chevron) markings shall be included in gore areas on roads with a posted 
speed ≥ 40 mph. 

• Non-reflective Botts’ Dots should be eliminated or only used when supplementing 
pavement markings. 

• Contrast striping should be required in Portland cement concrete roadways with a posted 
speed of 40 mph (65 km/h) or greater. 

This work plans to address some of these limitations through a detailed study on lane infrastructure. 
An in-depth review of factors and components (e.g., lane marking characteristics, marking quality) 
that affect LD performance was carried out by incorporating pavement marking material 
characteristics into the LD system evaluation framework. 

Method 
Datasets were developed to comprehensively evaluate the different material and hardware 
properties and their effect on LD vision systems. The datasets were collected in two stages. Stage 
1 included data from pavement markings on roads in Central Texas under different environmental 
conditions. Stage 2 included data from custom lane markings (provided by 3M) on a closed course 
runway at the Texas A&M University System RELLIS campus. Stage 2 data collection was carried 
out in a controlled environment in the sense that different lane marking materials of known 
material properties were evaluated on the same pavement under similar environmental conditions, 
a scenario that is difficult to simulate on typical roads.  

Video Data 
Video Data Collection 
The video data were collected by using a 5 MP camera mounted on a standard test vehicle owned 
by Texas A&M University. The camera setup used was a Blackfly BFS-U3-51S5C-C camera 
sensor (Sony IMX250 CMOS – 5 MP – USB 3.1 camera) attached with a Kowa LM8HC Manual 
Iris C-Mount f=8 mm/F 1.4 Lens. To maintain homogeneity throughout the dataset, the videos 
were collected at 25 frames per second. 

Stage 1: On-road LD evaluation in Central Texas 
College Station Dataset 
Stage 1 data collection included the College Station Dataset and US 290 Dataset (discussed in 
Appendix 1. US-290 Dataset). For the College Station dataset, video data were collected by driving 
on roads with varied lane markings in and around Central Texas. These roads included asphalt and 
concrete road surfaces, multilane and two-lane two-way roadways, and sections with tangents and 
curves. The pavement markings on these roadways varied from new to several years old to 
represent a range of marking conditions. To study the effect of natural light vs incident light on 
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LD performance, video data were collected at three different times of day during summer: (1) 
morning (11 a.m. CST, sunny day with clear sky), (2) evening (6 p.m. CST, sunny day with clear 
sky) and (3) nighttime (10 p.m. CST with clear sky). Figure 1 shows the driving map for the 
College Station dataset. Figure 2 shows the images of different roads that were considered in this 
dataset. 

 

Figure 1: A driving map for the College Station dataset. Map Credits: https://www.google.com/maps 

 
Figure 2: Images of different roads in the College Station dataset collected during daytime. 

https://www.google.com/maps
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Stage 2: Closed Course 3M Panel Dataset 
Stage 2 consisted of the closed course 3M panel dataset. For both the College Station dataset and 
the 3M dataset, video data were collected along with the pavement marking material characteristic 
data. We evaluated LD performance from state-of-the-art LD algorithms on the video data and the 
different factors that affect it. The data collection procedure and LD evaluation methods are 
discussed below.  

RELLIS Closed Course Pavement Marking Evaluation 
Environmental conditions like sun glare, shadows, and road illumination change depending on the 
road and driving direction. In order to selectively evaluate the effect that material characteristics 
of lane markings have on LD performance, it is beneficial to eliminate external environmental 
factors that may affect the study. Therefore, the team chose to evaluate different lane marking 
materials in a controlled environment by conducting the data collection of different materials on 
the same road (pavement). Doing so reduces impacts from other factors, such as changing sun-
glare, lane marking deteriorations, and other factors that may affect LD performance. 

One area of the closed course (Runway 35L) on the RELLIS campus was identified to carry out 
the experiments for this study. To check the acceptability of the runway, lane marking data were 
collected for the existing lane markings on runway 35L. Details of the study can be found in 
Appendix 2. RELLIS Closed Course Evaluation. There were limited interactions from the ghost 
markings, concrete block edges, or faded lane markings that affected the measurement and LD 
performance on 35L. Therefore, the runway area was deemed acceptable to study the LD 
performance of the 3M panels. 

3M Panel Data Collection 
Video data were collected by laying out the different 3M panels on the same runway section where 
the other closed-course evaluations took place (Runway 35L). In this study, four different 
pavement marking materials (01, 02, 06, 08) were evaluated. Each panel was either 4-inches wide 
(01W–4, 02W–4, 06W–4, 08W–4) or 6-inches wide (02W–6, 06W–6). The first number in the 
name refers to the specific marking material, which has its inherent properties like daytime 
reflectivity (Qd), nighttime reflectivity (RL), and Luminance Factor Y. “W” in the panel name 
refers to the white color of the panel. The last number refers to the marking width. Figure 3 explains 
the panel identification scheme used. These panels were grouped into three sets—Set 1: [01W–
08W], Set 2: [02-6–06W-6], and Set 3: [02W–06W]. A set refers to a pair of markings that were 
laid out on the road during data collection, one on each side of the data collection vehicle; i.e., 
01W on the left and 08W on the right. Each set of the markings were evaluated for LD performance 
(F1 score) using the spatial convolutional neural network (SCNN) algorithm. The "combined" data 
corresponds to the analysis that involves both set markings in the image. Individual F1 scores 
corresponding to each material were extracted from the combined data. Figure 4 shows the layout 
configuration of the panels in the test area. Figure 5 shows images from the closed course 3M 
panel dataset.  
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These three sets of panels were placed on the runway in two different spacing configurations: (a) 
30 ft gap between panels and (b) 40 ft gap between panels, to evaluate the effect of panel spacing 
on LD performance.  LD data were collected for the two panel configurations during daytime (clear 
sky conditions, around 10 a.m., in the month of May) and nighttime (clear sky conditions, around 
9:30 p.m. on the same date, using high beam light and low beam light separately), by driving in 
two different directions (northbound and southbound). Table 1 captures the different testing 
conditions under which the video data was collected. 

Table 1: Combinations of Driving Conditions for 3M Pavement Panel Data Collection 

Vehicle Driving Direction Panel Gap Driving Conditions 

Northbound 30 ft Daylight 
Northbound 30 ft Night High Beam 
Northbound 30 ft Night Low Beam 
Northbound 40 ft Daylight 
Northbound 40 ft Night High Beam 
Northbound 40 ft Night Low Beam 
Southbound 30 ft Daylight 
Southbound 30 ft Night High Beam 
Southbound 30 ft Night Low Beam 
Southbound 40 ft Daylight 
Southbound 40 ft Night High Beam 
Southbound 40 ft Night Low Beam 

 

 
Figure 3. Panel identification scheme. 
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Figure 4: Google Earth view of runway 35L at RELLIS campus and locations of 3M panel placement. 

 
Figure 5: Images of 40 ft gap pavement markings on 35L (Set 2: 06W-6 on left and 02W-6 on right) during 

day (above) and night (below). 
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Video Data Evaluation Metric 
To enable evaluation of LD performance, images were extracted from the videos and annotated 
using the Scalabel Annotation tool [14]. Scalabel was developed by the Berkeley Deep Drive group 
for labeling their BDD100K [11] dataset. The Scalabel tool supports different types of annotations 
needed for training computer vision models, especially for a driving environment. For each image 
in the dataset, the research team manually annotated the lane markings using 2D polylines as 
supported in Scalabel. The annotations include three feature attributes for the lane markings—(i) 
lane categories (road curb, white, yellow, crosswalk), (ii) lane type (single, double) (iii) lane 
continuity (continuous/solid, dashed/skip)—and the lanes are annotated accordingly. 

LD performance was evaluated using LD algorithms powered by three different state-of-the-art 
neural networks. (i) SCNN [9] (ii) LaneNet [15] (iii) ENet [16]. SCNN was developed to address 
prevalent LD issues, including processing speeds and complexity, and to efficiently learn the 
spatial relationship of structured objects like lane markings in driving scenarios. SCNN generalizes 
the traditional deep layer-by-layer convolutions to slice-by-slice convolutions within feature maps 
and enables message passing between pixels across rows and columns in each layer. Thus, SCNN 
type algorithms are particularly suitable for long continuous shape structures or large objects, with 
a strong spatial relationship but minimal appearance features, such as poles, walls, traffic lanes, 
etc. An optimized implementation of SCNN won first place in the TuSimple Benchmark Lane 
Detection Challenge, achieving an accuracy score of 96.53%. To evaluate the performance of the 
SCNN algorithm on the College Station dataset, the annotations in BDD100K format were 
converted to annotations to suit the SCNN format. SCNN supports the detection of three lanes, 
which corresponds to a maximum of four pavement markings in an image. The ground truth 
information from the annotation files is used to evaluate LD performance.  

Neven et al. [17] developed an end-to-end algorithm that approaches LD as an instance 
segmentation problem. LaneNet is used as the backbone CNN, which combines the benefits of 
binary lane segmentation by forming an instance of each lane that can be trained end-to-end.  
Additionally, a network referred to as H-Net estimates the parameters for an “ideal” perspective 
transformation customized for each input image in contrast to the typical “bird’s eye view” 
transformation, thus ensuring a robust lane fitting model. LaneNet supports a maximum of five 
lane markings in lanes, where four lane markings correspond to the current lane and left/right 
lanes. The extra lane is in place for cases during lane changes in order to reduce confusion in 
identifying the current lane. Annotations contain polyline data of the lane markings constructed 
using pixel data organized by the same distance gap (“h_sample” in each label data) from the 
recording car/bottom of the image frame.  

ENet, short for Efficient neural network, is a deep neural network architecture specifically created 
for tasks like semantic segmentation, which requires low latency in its execution, that can operate 
in real-time on low-power mobile devices. ENet-label [16] is a light-weight LD model based on 
ENet and adopts self-attention distillation. It has 20 times fewer parameters and runs 10 times 
faster compared to SCNN. ENet-label achieves an F1-measure of 72.0 on the CULane testing set 
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(better than SCNN, which achieves 71.6). It also achieves 96.64% accuracy in the TuSimple 
testing set. The researchers choose to evaluate this algorithm because of its claims of high 
performance and low latency.  

The LD algorithm performance is measured in terms of the conventional pixel-accuracy-based 
performance metrics, such as True Positive (TP), False Positive (FP), False Negative (FN), F-
Measure, etc. Both SCNN and ENet-label follow the same performance evaluation method. To 
evaluate if a lane marking is successfully detected, the lane markings are detected as lines with 
widths equal to 30 pixels. The intersection-over-union (IoU) metric (Figure 6) is calculated using 
the ground truth annotation and the lane prediction from the algorithm. The lane predictions where 
IoUs are larger than a certain threshold (in our evaluation we consider 0.5) are viewed as TPs. 
Based on the predictions the F-Measure is calculated as   

𝐹𝐹 −𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 =  
(1 + 𝛽𝛽2)(𝑃𝑃 ∗ 𝑅𝑅)
𝛽𝛽2(𝑃𝑃 + 𝑅𝑅)

 

where, 

𝑃𝑃𝑚𝑚𝑚𝑚𝑃𝑃𝑃𝑃𝑚𝑚𝑃𝑃𝑃𝑃 (𝑃𝑃) =  
𝑇𝑇𝑃𝑃

(𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃) =  
𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 𝑃𝑃𝑃𝑃𝑚𝑚𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚

𝑇𝑇𝑃𝑃𝑃𝑃𝑚𝑚𝑇𝑇 𝑑𝑑𝑚𝑚𝑃𝑃𝑚𝑚𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑚𝑚 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑑𝑑 𝑃𝑃𝑃𝑃𝑚𝑚𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑚𝑚 
 

𝑅𝑅𝑚𝑚𝑃𝑃𝑚𝑚𝑇𝑇𝑇𝑇 (𝑅𝑅) =  
𝑇𝑇𝑃𝑃

(𝑇𝑇𝑃𝑃 + 𝐹𝐹𝐹𝐹)
=  

𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 𝑃𝑃𝑃𝑃𝑚𝑚𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑚𝑚
𝑇𝑇𝑃𝑃𝑃𝑃𝑚𝑚𝑇𝑇 𝑃𝑃𝑃𝑃𝑚𝑚𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚 𝑃𝑃𝑃𝑃 𝐺𝐺𝑚𝑚𝑃𝑃𝑚𝑚𝑃𝑃𝑑𝑑 𝑃𝑃𝑚𝑚𝑚𝑚𝑃𝑃ℎ

 

𝛽𝛽 = 1, which gives the harmonic mean (F1-measure).  

Algorithm performance is related to Precision (P), Recall (R), and F1 scores on a linear scale. 
Higher scores represent better algorithm LD performance.  The LD outputs from the SCNN 
algorithm are illustrated in Figure 7. Algorithm outputs in “Green” are the ground truth markings. 
The algorithm outputs in “Red” are the FP lane predictions. Algorithm outputs in “Blue” are the 
TP lane predictions that match the ground truth with an IoU > 0.5. IoU is the intersection area over 
the union measure between the ground truth and the prediction.  

 

Figure 6: Definition of intersection over union. Source: https://www.pyimagesearch.com/ 

https://www.pyimagesearch.com/
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Figure 7: LD outputs of 40 ft gap lane markings on 35L (Set 2: 06W-6 on left - 02W-6 on right ) during day 

(above) and night (below). 

Material Characteristics Data 
Retroreflectivity and Other Material Properties 
Most surfaces have mixed reflection, made up of diffuse reflection, retroreflection, and mirror 
reflection. Figure 8 shows an illustration of different types of light reflections from a surface. 
Retroreflection is when an object returns light back toward the direction of the light source. The 
physical measure of the brightness of a surface is luminance L, which is the luminous intensity of 
light towards the driver’s eyes in proportion to the apparent area of the surface. As the luminous 
intensity is measured in units of candela (cd) and surface area is measured in square meters (m2), 
the unit of luminance is cd⋅m-2. Daylight reflection of pavement markings is described by the 
luminance factor β (or Y) measured in 45°/0° geometry and/or by the luminance coefficient under 
diffuse illumination (Qd) with observation as in standard 30 m geometry [18].  Retroreflection is a 
very useful marking property for nighttime driving. A driver of a vehicle sees the retroreflection 
from the marking that is brighter than the pavement surface, thus making the marking stand out. 
The luminance coefficient is applicable for a retroreflecting surface but is referred to as 
“coefficient of retroreflected luminance” or “retroreflectivity (RL).” RL is a surrogate measure for 
how visible the marking will be at night. A higher retroreflectivity value indicates a marking that 
is more efficient at returning light from the vehicle headlamps back toward the vehicle's driver, 
making the marking appear bright. Each marking was evaluated for Qd and RL along the entire 
length of the test area.  
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Figure 8: Illustration of types of light reflections from a surface. Source: https://madebydelta.com/ 

Material Data Collection 
The color of the markings was evaluated using a spectrophotometer in the CIE 1931 x, y, Y, color 
space using illuminant D65 (representing daylight; ISO/CIE 10526) and a 2-degree standard 
observer. The x and y values are the color coordinate locations on the CIE 1931 chromaticity 
diagram. The CIE Y value is the brightness, with 0 representing perfect black and 100 representing 
perfect white. Color measurements were conducted at multiple locations in each test area at 
locations that were representative of the test area. A combination of mobile and portable 
retroreflectometers was used to capture the pavement marking reflectivity values. Lane marking 
performance characteristic data (including color, Qd, and RL) were collected around the same time 
that the video data was collected.  

Results 

College Station Dataset 
The performance of the LD algorithms for different test scenarios in the College Station dataset 
was evaluated in terms of Precision, Recall, and F1 scores; results are tabulated in Table 2. The 
evaluation was carried out without explicitly training the algorithms on the College Station dataset. 
The reasoning behind this was that we aimed to evaluate the performance of an LD algorithm when 
it encounters a completely new test scenario and check how the LDs could co-relate to the lane 
marking characteristics.  

Table 3 lists the lane marking performance characteristic data collected along the same roads. 
ENet-Label performed best on the College Station dataset among the three LD algorithms 
evaluated. The LD algorithms had the lowest performance on 03 Jones Road, mainly due to the 
absence of pavement markings for most of the road. Lane markings on 04 Leonard Road had the 
best overall performance in terms of detectability. This can be attributed to several factors, 
including high contrast between the roadway and the pavement markings, and viewing conditions, 
which include observation direction and time of day. LD algorithms performed better detections 
overall during morning times as compared to other times of the day.  
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Since the sun was more overhead at 11 a.m., the glare-inducing light sources were absent and the 
luminance of the roadway surface was relatively constant, resulting in improved LD performance. 
Roads with higher CapY and RL values of pavement markings produced better LD performance 
scores. Overall, LD performance was significantly lower on roads (01, 02, 03, 05, 06) during 
evening times than other times of day when driving westwards. This can be attributed to the direct 
sun glare on the camera sensor and the low angle solar illumination of the road. In these cases, 
since the source of light (i.e., the sun) was over the horizon, emitting light towards the camera at 
a low angle, the specular reflections on the roads were high. These specular reflections tend to 
reduce the contrast between pavement marking and road, affecting the ability of LD algorithms to 
detect pavement markings.  

However, we observed the exact opposite trend on roads where the data were collected when 
driving eastwards (04 Leonard Road) during the evening. Since the source of light was illuminating 
the road along with the camera’s field-of-view (FOV), these lighting conditions resulted in high 
road illumination, improving the detectability of the lane markings, which resulted in better LD 
performance during the evening. During the nighttime, since the source of light (vehicle 
headlights) illuminated the road along the camera’s FOV, the pavement markings light up because 
of retroreflection, whereas the roadway appears darker because it is not retroreflective. Thus, the 
perceived levels of contrast are expected to be much higher on roads with higher pavement 
marking retroreflectivity and CapY, resulting in better LDs.  

Similarly, as seen in Table 2, roads with pavement markings having higher retroreflectivity (RL) 
values (01, 02, and 04) showed better performance during nighttime detection as compared to 
roads with lower retroreflectivity values (03 and 05). The retroreflectivity values and CapY 
appeared to have a positive effect on LD performance during nighttime conditions. However, roads 
06 and 07 exhibited unanticipated behavior. Even though they had the highest retroreflectivity 
values among all the roads, their nighttime detections were found to be poor, which indicates that 
additional parameters also need to be considered to predict road detectability behavior. Parameters 
like road surface roughness, road surface cracks, ghost markings and speed of vehicle can also 
influence the performance of LD algorithms, which we did not account for in this analysis. 

Table 2: Performance of Different Algorithms (IoU Threshold = 0.5) on College Station Dataset 

Road  
(Driving 
Speed) 

Road 
Conditions* 

Driving 
Direction 

Time of 
Day 

Image 
Count 

SCNN 
Precision 

(P) 

SCNN 
Recall 

(R) 

SCNN 
F1-Score 

(F1) 

LaneNet 
Precision 

(P) 

LaneNet 
Recall 

(R) 

LaneNet 
F1-Score 

(F1) 

ENet-
label 

Precision 
(P) 

ENet-
label 

Recall 
(R) 

ENet-
label 

F1-Score 
(F1) 

01. S. College 
Ave (50 mph) 

2-Lane Road,  
M Quality, 
M Contrast 

NW Morning 84 0.6 0.547 0.572 0.587 0.603 0.595 0.734 0.650 0.689 

01. S. College 
Ave (50 mph) 

2-Lane Road,  
M Quality,  
M Contrast 

NW Evening 25 0.306 0.339 0.322 0.424 0.485 0.452 0.435 0.357 0.392 

01. S. College 
Ave (50 mph) 

2-Lane Road,  
M Quality,  
M Contrast 

NW Night 94 0.494 0.391 0.437 0.325 0.468 0.384 0.506 0.382 0.435 

02. W Villa 
Maria 
(45 mph) 

2-Lane Road,  
M Quality,  
M Contrast 

SW Morning 225 0.445 0.444 0.445 0.318 0.357 0.336 0.551 0.377 0.448 
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Road  
(Driving 
Speed) 

Road 
Conditions* 

Driving 
Direction 

Time of 
Day 

Image 
Count 

SCNN 
Precision 

(P) 

SCNN 
Recall 

(R) 

SCNN 
F1-Score 

(F1) 

LaneNet 
Precision 

(P) 

LaneNet 
Recall 

(R) 

LaneNet 
F1-Score 

(F1) 

ENet-
label 

Precision 
(P) 

ENet-
label 

Recall 
(R) 

ENet-
label 

F1-Score 
(F1) 

02. W Villa 
Maria 
(45 mph) 

2-Lane Road,  
M Quality,  
M Contrast 

SW Evening 76 0.246 0.358 0.292 0.224 0.325 0.265 0.321 0.386 0.351 

02. W Villa 
Maria 
(45 mph) 

2-Lane Road,  
M Quality,  
M Contrast 

SW Night 166 0.470 0.407 0.437 0.412 0.384 0.397 0.462 0.450 0.456 

03. Jones 
Road 
(30 mph) 

1-Lane Road, 
Yellow Centre 
Line / No lane 
Markings 

NW Morning 116 0.100 0.491 0.167 0.102 0.152 0.122 0.089 0.403 0.146 

03. Jones 
Road 
(30mph) 

1-Lane Road, 
Yellow Centre 
Line / No lane 
Markings 

NW Evening 58 0.081 0.474 0.128 0.076 0.228 0.114 0.107 0.632 0.183 

03. Jones 
Road 
(30 mph) 

1-Lane Road, 
Yellow Centre 
Line / No lane 
Markings 

NW Night 97 0.107 0.684 0.186 0.085 0.156 0.110 0.098 0.449 0.161 

04. Leonard 
Road 
(55 mph) 

1-Lane Road,  
G Quality,  
H Contrast 

NE Morning 116 0.799 0.794 0.796 0.751 0.698 0.723 0.619 0.651 0.635 

04. Leonard 
Road 
(55 mph) 

1-Lane Road,  
G Quality,  
H Contrast 

NE Evening 71 0.811 0.771 0.791 0.824 0.726 0.772 0.791 0.749 0.769 

04. Leonard 
Road 
(55 mph) 

1-Lane Road,  
G Quality,  
H Contrast 

NE Night 192 0.786 0.765 0.775 0.691 0.712 0.701 0.659 0.721 0.688 

05. Harvey 
Mitchell Pway 
(60 mph) 

2-Lane Road,  
G Quality, 
M Contrast 

NW Morning 87 0.729 0.866 0.791 0.735 0.811 0.771 0.755 0.931 0.834 

05. Harvey 
Mitchell Pway 
(60 mph) 

2-Lane Road,  
G Quality,  
M Contrast 

NW Evening 48 0.547 0.761 0.637 0.673 0.587 0.627 0.589 0.787 0.674 

05. Harvey 
Mitchell Pway 
(60 mph) 

2-Lane Road,  
G Quality,  
M Contrast 

NW Night 95 0.494 0.391 0.437 0.356 0.483 0.410 0.506 0.381 0.435 

06. TX – 21 
(65 mph) 

2-Lane 
Highway,  
G Quality,  
H Contrast 

SW Morning 130 0.676 0.792 0.729 0.659 0.735 0.695 0.682 0.759 0.718 

06. TX – 21 
(65 mph) 

2-Lane 
Highway,  
G Quality,  
H Contrast 

SW Evening 106 0.577 0.687 0.627 0.563 0.628 0.594 0.528 0.683 0.595 

06. TX – 21 
(65 mph) 

2-Lane 
Highway,  
G Quality,  
H Contrast 

SW Night 242 0.470 0.407 0.437 0.441 0.412 0.426 0.462 0.450 0.456 

07. Hway 47 
(75 mph) 

2-Lane 
Highway,  
G Quality,  
H Contrast 

SE Morning 35 0.712 0.743 0.727 0.699 0.724 0.711 0.701 0.744 0.722 

07. Hway 47 
(75 mph) 

2-Lane 
Highway,  
G Quality,  
H Contrast 

SE Evening 15 0.611 0.628 0.619 0.712 0.602 0.652 0.536 0.628 0.579 

07. Hway 47 
(75 mph) 

2-Lane 
Highway,  
G Quality,  
H Contrast 

SE Night 28 0.103 0.450 0.167 0.105 0.126 0.114 0.098 0.449 0.162 

*Good = G, Medium = M, High = H 

 

Table 3: Lane Marking Characteristics Data of College Station Dataset Based on ASTM Standards 

Road 
Left 

Markings 
Color 

Left 
Markings 

 

Left 
Markings 

 

Left 
Markings 

 

Left Markings 
 
 

Right 
Markings 

Color 

Right 
Markings 

 

Right 
Markings 

 

Right 
Markings 

 

Right 
Markings 
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Lane 
Type 

x y Cap Y Average RL 
(mcd/m2/lx) 

 
Lane 
Type 

x y Cap Y Average RL 
(mcd/m2/lx) 

01. S. College Ave White 
Skip 0.334 0.35 24.758 190.34 White 

Edge 0.3375 0.3530 28.7339 200 

01. S. College Ave White 
Skip 0.3361 0.3522 34.7373 212 No Lane 

Marking     

01. S. College Ave Yellow 
Centre 0.4237 0.3958 25.2798 73.33 White 

Edge 0.3316 0.3493 44.87 149 

02. W Villa Maria White 
Skip 0.333 0.3502 35.8026 114.33 No Lane 

Marking     

03. Jones Road Yellow 
Centre 0.4057 0.3894 24.124 88 No Lane 

Marking     

04. Leonard Road Yellow 
Centre 0.4111 0.3900 24.3590 107.67 White 

Edge 0.3406 0.3559 34.6 171 

05. Harvey 
Mitchell Pway 

White 
Skip 0.3303 0.3469 36.4182 56.67 

White 
Edge 
 

0.3329 0.3495 33.324 88 

06. TX – 21 White 
Skip 0.3375 0.3534 38.09 254.33 White 

Edge 0.3356 0.3518 33.67 259.34 

07. Hway 47 White 
Skip 0.3406 0.3570 37.61 191 White 

Edge 0.3344 0.3519 46.21 199 

 

Closed Course 3M Panel Dataset 
Based on the different testing conditions employed, or aim was to evaluate different factors’ effects 
on LD performance (F1 scores). The following factors were chosen based on which had a major 
influence on LD performance of markings in previous trials and the literature.  

 Factor 1: Spacing between panels: 30 ft vs 40 ft.  
 Factor 2: Time (illumination): daytime vs nighttime (high beam headlamps [HB] vs low 

beam headlamps [LB]),  
 Factor 3: Driving Direction:  northbound (NB) vs southbound (SB)  
 Factor 4: Evaluation Area: full length vs near FOV vs far FOV. 

o Near FOV corresponds to the visible area up to 30 ft ahead of where the camera 
sees the road. Far FOV corresponds to the visible area 30 ft away from where the 
camera sees the road up to the horizon of visibility. Figure 9 illustrates the area-
split for near FOV vs far FOV evaluations. 

 Factor 5: Panel Material [01W-4, 02W-4, 02W-6, 06W-4. 06W-6, 08W-4].  
o Each panel is associated with its material property: a) Qd for daytime data, b) RL 

for nighttime data, which are evaluated simultaneously. 

We expected there to be some overlap in interactions that affect LD performance, depending on 
the specific factor being studied. We studied these interactions to form a benchmark reference 
system on factors that affect LD. Table 4 lists the pavement material characteristic data collected 
under different test conditions.  
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Figure 9: Image showing the area-split for near FOV vs far FOV evaluations. 

 

Table 4: 3M Pavement Panel Material Characteristic Data – 05/21/2020 – RELLIS 35L – Retroreflectivity 
and Color 

Group Marking Type Measurement Direction RL QD x y Y 
Set 1 – L 01W NB 94 203 0.3297 0.3504 51.99 
Set 1 – L 01W SB 84 199 0.3297 0.3504 51.99 
Set 1 – L 01W Pavement 18 86 0.3680 0.3678 18.59 
Set 1 – R 08W NB 1404 184 0.3256 0.3447 58.15 
Set 1 – R 08W SB 1045 192 0.3256 0.3447 58.15 
Set 1 – R 08W Pavement 18 78 0.3690 0.37 20.08 
Set 2 – L 02W-6 NB 136 179 0.3227 0.3419 43.48 
Set 2 – L 02W-6 SB 127 181 0.3227 0.3419 43.48 
Set 2 – L 02W-6 Pavement 20 90 0.3687 0.3681 21.17 
Set 2 – R 06W-6 NB 312 171 0.3227 0.3419 43.48 
Set 2 – R 06W-6 SB 279 171 0.3227 0.3419 43.48 
Set 2 – R 06W-6 Pavement 18 77 0.3649 0.37 18.46 
Set 3 – L 02W NB 141 178 0.3221 0.3413 43.06 
Set 3 – L 02W SB 126 181 0.3221 0.3413 43.06 
Set 3 – L 02W Pavement 19 86 0.3686 0.3693 22.20 
Set 3 – R 06W NB 313 173 0.3237 0.3428 38.27 
Set 3 – R 06W SB 288 172 0.3237 0.3428 38.27 
Set 3 – R 06W Pavement 17 71 0.3738 0.3714 21.41 

 

Discussion 
A statistical approach was employed to analyze the 3M panel data and investigate the effect of 
different marking and evaluation condition factors on LD performance. An analysis of variance 
(ANOVA) model was employed to analyze the individual factors as well as the effect of two-way 
interactions between factors to identify those with statistical significance. Table 5 lists the factors 
that were considered in the ANOVA model with F1 scores as the response variable. The analysis 
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was carried out using the JMP software suite. ANOVA was conducted separately for daytime and 
nighttime data. Two-way interaction factors and individual factors without a statistically 
significant two-way interaction were removed from consideration in the final ANOVA model. 
Table 6 and Table 7 show the statistically significant factors as predicted by the ANOVA model 
for the nighttime and daytime testing. 

Table 5: List of Factors Considered in the ANOVA Model 

Factor Level 
Spacing 30 ft gap, 40 ft gap 
Light Day, Night-LB, Night-HB 
Driving Direction SB, NB 
Evaluation Area Near, Full Length, Far 
Panel-Width 01W-4, 02W-4, 02W-6, 06W-4, 06W-6, 08W-4 

 

Table 6: List of Statistically Significant Factors During Nighttime Based on ANOVA Model for LD 
Performance (F1-Scores) 

Source Nparm DF Sum of 
Squares F Ratio Prob > F 

Spacing 1 1 0.74899927 682.2828 < 0.0001* 
Light 1 1 0.00107002 0.9747 0.3255 
Driving Direction 1 1 0.02126749 19.3731 < 0.0001* 
Eval. Area 2 2 0.04663060 21.2385 < 0.0001* 
Panel 5 5 0.02830087 5.1560 0.0003* 
Spacing*Light 1 1 0.00490784 4.4707 0.0365* 
Spacing*Driving 
Direction 1 1 0.02145441 19.5434 < 0.0001* 

Spacing*Panel 5 5 0.13685526 24.9330 < 0.0001* 
Light*Panel 5 5 0.01803733 3.2861 0.0081* 

 

Table 7: List of Statistically Significant Factors During Daytime Based on ANOVA Model for LD 
Performance (F1-Scores) 

Source Nparm DF Sum of 
Squares F Ratio Prob > F 

Spacing 1 1 0.08099427 62.8570 < 0.0001* 
Driving Direction 1 1 0.03735097 28.9868 < 0.0001* 
Eval. Area 2 2 0.14112119 54.7597 < 0.0001* 
Panel 5 5 0.03871050 6.0084 0.0002* 
Spacing*Driving 
Direction 1 1 0.04192916 32.5398 < 0.0001* 

Spacing*Panel 5 5 0.02143691 3.3273 0.0106* 
 

Factor 1: Spacing Between Marking Panels: 30 ft vs 40 ft: 
−  As seen in Figure 10, LD performance was observed to be higher for 30 ft gap markings as 

compared to 40 ft gap markings during all times of day. This trend can be attributed to the fact 
that closer lane markings essentially mean more visual features for the LD algorithms to detect, 
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leading to higher LD performance. Table 8 lists the least square mean value of F1 scores output 
for panels with different spacing configurations. 

− Figure 11 and Figure 12 shows the 2-way interaction of panel spacing on panel material for 
LD performance during daytime and nighttime respectively. 

− Figure 24, Figure 25, and Figure 26 (Appendix 3) give a comparison of panel-wise LD 
performance for 30 ft gap vs 40 ft gap panel configurations. In Figure 24 (Appendix 3), panel 
F1 scores are compared against Qd values. In Figure 25 (Appendix 3), panel F1 scores are 
compared against RL values. Similar to the observations made on combined performance 
(pairwise) of panels, individual panels (panel wise) were observed to perform better when 
spaced 30 ft apart than when spaced 40 ft apart.  

− Table 15 (Appendix 3) contains results from the Tukey Test for two-way interaction between 
panel spacing and panel materials. In a Tukey table, the levels that are not connected by the 
same letter are significantly different from each other statistically. We can see that there exists 
a significant difference between the 30 ft gap (Level A) and the 40 ft gap (Level D) during 
daytime, as noted in our previous discussion of the results. 

Table 8: Least Square Means Table Comparing the Effect of Panel Spacing on LD Performance 

Level Least Sq Mean Std Error Mean 
30 ft – Daytime 0.72230940 0.00598273 0.722309 
40 ft – Daytime 0.65522973 0.00598273 0.655230 
30 ft – Nighttime 0.86972840 0.00406634 0.869728 
40 ft - Nighttime 0.72548716 0.00406634 0.725487 

 

 
Figure 10: Plot of least square mean F1-score capturing the effect of panel spacing on LD performance. 
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Figure 11: Plot of least square mean F1-score capturing the effect of 2-way interaction of panel spacing on 
panel material for daytime LD performance. 

 
Figure 12: Plot of least square mean F1-score capturing the effect of two-way interaction of panel spacing on 

panel material for nighttime LD performance. 

Factor 2: Time (Illumination) – Day vs Night (High Beam Headlamps vs Low Beam 
Headlamps): 
− The panels’ nighttime LD performance was observed to be overall better as compared to the 

summer daytime performance. This trend was also observed for both the combined and panel-
wise LD performance shown in Figure 26 (Appendix 3. ) and for area-based LD evaluation, as 
shown in Figure 27, Figure 28, and Figure 29 (Appendix 3. ). 

− Figure 14 captures the effect of two-way interactions of nighttime illumination on panel 
material for LD performance. Panel 08W-4 was expected to have the highest LD performance, 
whereas 01W-4 was expected to have the lowest LD performance. The results show that even 
though there is a general increasing trend for both high beam and low beam data, the 08W-4 
LMS F1 score for low beam illumination is comparatively lower. A clear conclusion could not 
be drawn for this observation. This counter-intuitive observation can be attributed to the fact 
that the calculation of LMS scores for the two-way interactions of nighttime illumination on 
panel material inherently includes other interactions, such as panel spacing (30-ft gap vs 40-ft 
gap) and evaluation-area (near FOV vs far FOV). Another explanation for this observation 
could be the fact that since 08W (highest RL) is paired with 01W (lowest RL), the panel material 
with a lower F1 score could adversely affect the performance of the panel it was paired with, 
decreasing its detection. This reduced performance is higher in far FOV measurements (refer 
Figure 27, Figure 28, and Figure 29 in Appendix 3. ), which might result in lower LD scores 
for 08W.  

– In each pair of lane markings, markings with higher RL values generally exhibited better LD 
performance (had higher F1 scores as compared to panels with lower RL values) for panel-wise 
evaluations during nighttime (08W in Set 1, 06W-6 in Set 2, 06W in Set 3; Figure 14). A 
similar trend was observed in evaluation-area based LD performance scores (Figure 27–Figure 
29 in Appendix 3. ). 

– The difference in LD performances between panels (of different materials) in each Set was 
observed to be greater during daytime than nighttime (Figure 26, Figure 27–Figure 29 in 
Appendix 3. ). A possible explanation for this trend is that LD performance is more sensitive 
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to the reflectivity of the panel during daytime (Qd values) than during nighttime (RL values). 
This observation can also be corroborated from the LD scores in Figure 14, which do not vary 
significantly and lie in the small band even though retroreflectivity values are observed to vary 
significantly.  

− Table 9 shows the least square means table comparing the effect of nighttime illumination on 
LD performance. Table 17 and Table 18  in Appendix 3.  list the least-square mean differences 
Tukey HSD test results (α = 0.050) for two-way interaction between panel spacing and 
nighttime-illumination, and between nighttime illumination and panel material, respectively. 

Table 9: Least Square Means Table Comparing the Effect of Nighttime Illumination on LD Performance 

Level F1 Score 
(LS Mean) Std Error Mean 

High Beam (HB) 0.79488186 0.00390474 0.794882 
Low Beam (LB) 0.80033371 0.00390474 0.800334 

 

 
Figure 13: Plot of least square mean F1-score capturing the effect of nighttime illumination on LD 

performance. 

 
Figure 14: Plot of least square mean F1-score capturing the effect of two-way interaction of nighttime 

illumination on panel material for LD performance. 
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Factor 3: Driving Direction:  Northbound (NB) vs Southbound (SB)  
− The LD performance of markings was observed to be generally higher when driving 

southwards as compared to driving northwards during the daytime, as seen in Figure 21 (in 
Appendix 3. ).  

− The driving direction did not impact the nighttime data collection for the 30 ft spacing, but 
there was some impact for the 40 ft spacing. We generally would not expect an impact at night 
because illumination is relatively consistent from the vehicle headlamps. 

− Table 10 is the least square means table comparing the effect of driving direction on LD 
performance. Table 16 (in Appendix 3. ) lists the Tukey HSD test (α = 0.050) of LSMean 
differences for two-way interaction between panel spacing and driving direction during 
daytime (Left) and nighttime (Right). 

Table 10: Least Square Means Table Comparing the Effect of Driving Direction on LD Performance 

Level Least Sq Mean Std Error Mean 
Northbound (NB) – Day 0.66599319 0.00598273 0.665993 
Southbound (SB) – Day 0.71154594 0.00598273 0.711546 
Northbound (NB) – Night 0.80976059 0.00390474 0.809761 
Southbound (SB) – Night 0.78545497 0.00390474 0.785455 

 

 
Figure 15: Plot of least square mean F1-score capturing the effect of 2-way interaction of panel spacing and 

driving direction on LD performance. 

Factor 4: Evaluation Area [Full Length vs Near FOV vs Far FOV] 
− LD performance for near FOV was observed to be generally higher than that of far FOV 

(Figure 27, Figure 28, and Figure 29 in Appendix 3. ). This trend was consistently observed 
across all times of day for all driving directions. Due to the perspective transformation of the 
image captured by the camera, it is expected that the objects near the camera appear with 
greater detail than the objects that are farther away. Thus, the LD algorithms have more image 
features available to detect lane markings in near FOV images as compared to far FOV images. 

− As observed in Figure 27, Figure 28, and Figure 29 (Appendix 3. ), the panels LD performance 
was better in the 30 ft gap configuration as compared to 40ft gap in both Near FOV and Far 
FOV evaluations. 
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− LD performance for Near FOV was observed to be generally higher than Combined LD 
performance whereas LD performance for Far FOV was observed to be generally lower (Figure 
27, Figure 28, and Figure 29 in Appendix 3. ) across all times of the day. Since the combined 
LD scores were obtained from an image that combines the features from Near FOV and Far 
FOV images, it is expected to have an F1 score somewhere in-between. 

− In each pair of lane markings, panel materials with higher RL values generally exhibited better 
LD performance (had higher F1 scores as compared to panels with lower RL values) for panel-
wise evaluations during Night-time for both Near FOV and Far FOV (08W in Set1, 06W-6 in 
Set 2, 06W in Set 3). 

– The difference in performance between Near vs Far FOV evaluations was generally higher in 
the 30ft gap configuration as compared to 40 ft gap configuration (Figure 27, Figure 28, and 
Figure 29 in Appendix 3. ). Since the near FOV evaluation area for LD was 40 ft from where 
the camera saw the road, it was expected that a few image frames for the 40 ft gap configuration 
would not contain any lane markings. Conversely, the 30 ft near FOV videos always contained 
some lane marking characteristics, which aided LD, thus reducing the difference in LD scores 
between near vs far FOV evaluations as compared to the 40 ft gap. 

− Another limitation in the right vs left evaluation is that the LD algorithm also predicts the 
adjacent lane markings, which affects the LD performance scores. 

 

Table 11: Least Square Means Table Comparing the Effect of Evaluation Area on LD Performance 

Level Least Sq Mean Std Error Mean 
Day – Far FOV 0.63541809 0.00732731 0.635418 
Day – Full Length 0.68706855 0.00732731 0.687069 
Day – Near FOV 0.74382205 0.00732731 0.743822 
Night – Far FOV 0.77465624 0.00478231 0.774656 
Night – Full Length 0.79956223 0.00478231 0.799562 
Night – Near FOV 0.81860487 0.00478231 0.818605 

 

 
Figure 16: Plot of Least square mean F1-score capturing the effect of evaluation area on LD performance. 
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Factor 5: Panel Material [01W, 02W, 06W, 08W]  
− Lane markings with higher RL values generally exhibited better LD performance during the 

nighttime (higher F1 scores). Panels 01W, 02W, 06W, and 08W had RL values that increased 
in the order listed here (Table 4), and this trend can be observed in Figure 17, where nighttime 
F1 scores appear to be increasing with increasing retroreflectivity (RL) values from 01W to 
08W. (Figure 17). During the daytime, all 4-inch-wide panels had similar F1 scores.  

− This trend can be correlated to the fact that the Qd value, which is an important property that 
affects LD performance during the daytime, is also similar (Qd ~ 170 to 200 as seen in Table 
4) for these panels. A limitation of this evaluation is that the Qd values of the samples chosen 
do not vary much between samples. However, the existing pavement markings on the closed 
section had a wide range of values. As seen in Figure 23 (Appendix 3. ), LD performance had 
an increasing trend for Qd values. 

− Set 1 contains 08W material panels, which have the highest RL value (~1200) and 01W material 
panels, which have the lowest RL value (~80). However, the LD performance of 08W was 
observed to be just 4% better than that of 01W (see Table 12). There could be several factors 
that may have influenced this behavior.   

o The increase in RL values may not necessarily convert to improved LD performance by 
similar magnitudes. 

o F1 scores for individual performances of 01W and 08W were extracted by processing 
an image that included both 01W and 08W (Set 1). There may exist some co-operative 
interactions between 01W and 08W that improved the individual F1 score of 01W 
panel, or conversely, 08W’s performance may have been reduced due to 01W, leading 
to the two panels having similar F1 scores. Further investigations are required to better 
understand this observation.  

− LD performance of the 6-inch-wide panels was observed to be generally lower than that of the 
4-inch-wide panels during daytime (Figure 17). It was expected that the performance of the 
LD algorithms would be higher with the wider 6-inch panels since the algorithm has more 
features to detect lanes. However, this trend was not observed in this study. 

Table 12: Least Square Means Table Comparing the Effect of Panel Material and Width on LD Performance 

Level 
(Day) 

F1 Score 
(LS Mean) Std Error Mean 

01W-4 0.70177019 0.01036239 0.701770 
02W-4 0.70216415 0.01036239 0.702164 
02W-6 0.65900532 0.01036239 0.659005 
06W-4 0.70877024 0.01036239 0.708770 
06W-6 0.65349822 0.01036239 0.653498 
08W-4 0.70740926 0.01036239 0.707409 

 

Level 
(Night) 

F1-Score 
(LS Mean) Std Error Mean 

01W-4 0.78559844 0.00676321 0.785598 
02W-4 0.78762791 0.00676321 0.787628 
02W-6 0.78408181 0.00676321 0.784082 
06W-4 0.79870553 0.00676321 0.798706 
06W-6 0.80590180 0.00676321 0.805902 
08W-4 0.82373120 0.00676321 0.823731 
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Figure 17: Plot of least square mean F1-score capturing the effect of panel material for LD performance. 

Factor 6: Material Property a) Qd for Daytime Data, b) RL for Nighttime Data 
− In each pair of lane markings, markings with higher RL values generally contributed more 

towards better LD performance (had higher F1 scores) during nighttime (both low beam and 
high beam conditions) for panel-wise evaluations.  

− In each pair of lane markings, markings with higher Qd values generally contributed more 
towards better LD performance (had higher F1 scores) during daytime for panel-wise 
evaluations (Figure 26 in Appendix 3). Similar trends were observed in evaluation area-based 
LD performance (Figure 27 , Figure 28, and Figure 29 in Appendix 3). 

Conclusions and Recommendations 
Future Work: 

− Effect of parameters like road surface roughness, road surface cracks, ghost markings and 
speed of vehicle influences the performance of LD algorithms. This study did not 
quantitatively account for these effects in both on-road and closed course analysis.  

− In the closed course evaluations of 3M panels, the ANOVA Model for LD Performance 
(F1-Scores) did not list the panel width (4in vs 6in) as statistically significant.  This 
observation is puzzling since presumably more pixels are associated with the wider 
markings for similar distances and fields of view. Hence it is expected that the 6in panel 
must perform better than a 4in panel of the same material. As observed in Figure 26, 6in 
panels perform marginally better than 4in panels during nighttime, however the trend 
appeared to be reversed during daytime. A further study is needed to investigate this aspect 
better. 

− Cross-interaction was observed in LD performance of Set 1 which contained 08W material 
panels (having high RL value ~1200) and 01W material panels (having low RL value ~80). 
The LD performance of 08W was observed to be just 4% better than that of 01W, Further 
study is proposed to study the cross interactions observed by pairing lane markings of 
varied Qd/RL values.  
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Conclusion: 
The broad objective of this project was to carry out an in-depth study into the different factors 
affecting the performance of state-of-the-art LD algorithms by incorporating pavement marking 
material characteristics into the evaluation framework. We studied the effect of environmental 
factors (daytime vs nighttime, driving direction), lane marking material inherent characteristics 
(reflective properties like Qd/RL, marking quality), lane making layouts (30 ft gap vs 40 ft gap, 4-
inch-wide vs 6-inch wide) and LD algorithm characteristics (type of algorithm, near FOV vs far 
FOV). Observations were made on how these different factors interact with each other. We noted 
that, at some level, each of these factors had an impact on the performance of machine-vision LD. 
Different annotated image datasets were also generated: 1) College Station Dataset, 2) 3M panel 
dataset, and 3) US 290 Dataset. Researchers can use these datasets as a reference/benchmark 
system to evaluate their LD algorithms and determine how their performance relates to the 
different material characteristics of the lane markings in these datasets. We hope this work will 
lead to cooperative infrastructure development of pavement markings, making them better suited 
for modern ADAS and automated vehicles. 
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Additional Products 
The Education and Workforce Development (EWD) and Technology Transfer (T2) products 
created as part of this project can be downloaded from the Safe-D website here.  The final project 
dataset is available Safe-D Dataverse.  

Education and Workforce Development Products 
Graduate student Abhishek Nayak’s Ph.D. dissertation work on “Planning and vision-based 
systems for Autonomous vehicles” was funded by this Safe-D project. The following students also 
worked part-time or for a short span conducting annotations for the datasets in this project: Jay 
Shah, Andrew Lewis, and Ruicong Xie. 

Technology Transfer Products 
The following paper was published by graduate student Abhishek Nayak as part of his Ph.D. work. 
His Ph.D. work was partly supported by this project. 

Nayak, A., Rathinam, S., Pike, A., & Gopalswamy, S. (2020). Reference Test System for Machine 
Vision Used for ADAS Functions (No. 2020-01-0096). SAE Technical Paper. 

The PI, Dr. S. Rathinam, presented a summary of the work performed in this project and 
participated in a panel session at the Autonomous cars conference, Brookings Institution, 
Washington D.C. on July 25, 2019. 

Dr. S. Rathinam presented an invited talk on this project titled “Reference Machine Vision for 
Advanced Driver Assist Systems (ADAS)” in the breakout session on Reading the Road Ahead: 
Preparing Highway Infrastructure for ADAS and High Automation,", Automated Vehicles 
Symposium, July 16, 2019. He also participated in a panel discussion in this breakout session. 

Dr. S. Rathinam participated in a panel and presented an invited talk on this project titled 
“Understanding the Correlation between the Quality of Markings and Lane Detection/Following 
Systems” at the IEEE-ITSS and ITE joint effort on Development of Needs and Scope for 
Cooperative Infrastructure-Vehicle Detection and Localization for Automated Vehicles, 3rd IEEE-
ITS symposium, Sept 21, 2020. 

Abhishek Nayak volunteered as a judge in the 2021 Virtual Edition of the Virginia State Science 
and Engineering Fair (VSSEF) conducted on April 10, 2021 and participated in knowledge sharing 
discussions. 

Data Products 
The data sets used for testing the lane detection performance of lane marking materials on different 
LD algorithms have been uploaded to the Safe-D Dataverse DOI: 10.15787/VTTI/AT0RHF.  

https://safed.vtti.vt.edu/projects/reference-machine-vision-for-adas-functions/
https://dataverse.vtti.vt.edu/dataset.xhtml?persistentId=doi:10.15787/VTT1/AKKZ6V
https://dataverse.vtti.vt.edu/dataset.xhtml?persistentId=doi:10.15787/VTT1/5FGGKD
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Appendices 
 

Appendix 1. US-290 Dataset 
US-290 consists of several pavement marking types which could provide some key insights 
towards developing a reference vision system. To add more variables into consideration the video 
data were collected early morning driving eastwards and around noon driving westwards. Driving 
east during the morning hours resulted in the sun being directly over the horizon adding glare on 
the camera sensor. This glare effect is absent during noon when the road is illuminated from 
overhead. Evaluation of these conditions is expected to give some key insights into the effect of 
glare on the lane detection (LD) performance in addition to the effects of the different pavement 
marking patterns.  

Some of the unique pavement marking patterns encountered on US290 include: 

1. White pavement marking followed by black (WB) [Figure 18, Figure 19] 
2. White pavement markings with a black border (BWB) [Figure 20, Figure 21] 
3. Combination of 4-inch and 6-inch wide white markings (White) [Figure 22] 

Experimental Conditions: 

Date of data collection: 2020/04/16 

Time of day: 8:30 am to 12:30 pm 

Camera Configuration used: 

Sensor: BFS-U3-51S5C-C (Sony IMX250 CMOS - 5MP – USB3.1 camera) 

Lens: Kowa LM8HC Manual Iris C-Mount Lens f=8mm/F1.4 

Combined video clip length:  

Driving Eastwards: 15min 45sec  

Driving Westwards: 14min 24sec 

We collected the data on these roads and present it as an annotated dataset for researchers to study 
the LD characteristics of these unique roads. The dataset was evaluated for LD performance on 
SCNN [9] lane detection algorithm and the results are presented in Table 13. 
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Figure 18: Image of a road segment with white pavement marking followed by black (driving westwards). 

 

 
Figure 19: Image of a road segment with white pavement marking followed by black (driving eastwards). 

 

 
Figure 20: Image of a road segment with white pavement markings with a black border (driving eastwards). 
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Figure 21: Image of a road segment with white pavement markings with a black border (driving westwards). 

 
Figure 22: Image of a road segment with white pavement markings, and significant sun glare (driving 

eastwards). 

Table 13: LD Performance of Different Pavement Marking on US 290 

Marking Driving 
Direction Precision (P) Recall (R) F1 - Measure 

BWB East 0.56824 0.63833 0.601249226 
BWB West 0.59065 0.648249 0.618110551 
WB East 0.576458 0.785637 0.6649855310 
WB West 0.849475 0.917485 0.882171153 
White West 0.506709 0.521368 0.513933991 
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Appendix 2. RELLIS Closed Course Evaluation 
To check the acceptability of a closed course (Runway 35L) to conduct tests on 3M panels, lane 
marking data were collected for the existing lane markings. Runway 35L consists of 4 sets of paint-
based pavement markings and 2 sets of tape-based pavement markings. Video data were collected 
by driving northbound (NB) and southbound (SB) on a Lincoln MKZ vehicle fitted with the same 
camera equipment as discussed in the video data section. The video data were evaluated for LD 
performance on SCNN [9] and LaneNet [15] lane detection algorithm. Lane marking material 
characteristic data were collected for these pavement markings around the same time as the video 
data collection. Table 14 tabulates the lane marking material characteristic data and lane detection 
(LD) performance data in terms of the Precision (P), Recall (R), and F1 Measure (F1) on SCNN 
and LaneNet. Figure 23 shows the plot of F1 scores vs Qd values for the pavement materials on 
RELLIS 35L. There were limited interactions from the Ghost Markings, Concrete block edges, or 
faded lane markings that affected the measurement and LD performance on 35L. Therefore, the 
runway area was deemed acceptable to study LD performance of the 3M panels. 

 
Figure 23: Plot of lane detection performance of SCNN & LaneNet algorithms (measured as F1 score) vs 

continuous RL data for pavement markings on RELLIS 35L. 
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Table 14: Material Characteristics of Lane Markings on RELLIS 35 L 

Section Color 
Width 

(in) 
Qd 

(mcd/m2/lx) 
x y Y 

SCNN LaneNet 

Precision Recall F1 Score Precision Recall F1 Score 

S1 
NB 

L Yellow 4 523.89 0.32 0.34 51.954 
0.70 0.63 0.67 0.74 0.61 0.67 

R White 4 1000.76 0.40 0.38 37.845 

SB 
L White 4 913.52 0.32 0.34 51.954 

0.68 0.59 0.63 0.66 0.63 0.64 
R Yellow 4 470.37 0.40 0.38 37.845 

S2 
NB 

L Yellow 4 190.47 0.32 0.33 22.892 
0.55 0.59 0.57 0.57 0.59 0.58 

R White 6 65 0.37 0.37 30.161 

SB 
L White 6 66.72 0.32 0.33 22.892 

0.56 0.61 0.59 0.59 0.6 0.59 
R Yellow 4 202.05 0.38 0.37 30.161 

S3 
NB 

L Yellow 4 95.43 0.32 0.34 45.234 
0.56 0.58 0.57 0.55 0.51 0.53 

R White 4 133.85 0.38 0.37 35.631 

SB 
L White 4 129.67 0.32 0.34 45.234 

0.62 0.59 0.60 0.68 0.56 0.61 
R Yellow 4 102.14 0.38 0.37 35.632 

S4 
NB 

L Yellow 6 22.62 0.32 0.33 44.494 
0.48 0.53 0.50 0.52 0.51 0.51 

R White 6 54.809 0.32 0.34 10.966 

SB 
L White 6 51.714 0.32 0.33 44.493 

0.55 0.51 0.53 0.60 0.58 0.59 
R Yellow 6 21.94 0.32 0.34 10.966 

S5 
NB 

L Yellow 4 36.4 0.34 0.35 28.821 
0.52 0.58 0.55 0.51 0.52 0.51 

R White 4 28.88 0.35 0.36 26.900 

SB 
L White 4 30.12 0.34 0.35 28.821 

0.49 0.52 0.50 0.56 0.51 0.53 
R Yellow 4 33.48 0.35 0.36 26.900 

S6 
NB 

L Yellow 4 84.72 0.33 0.35 27.137 
0.58 0.6 0.59 0.58 0.59 0.58 

R White 4 66.08 0.35 0.36 29.950 

SB 
L White 4 70.12 0.33 0.35 27.137 

0.59 0.55 0.57 0.62 0.52 0.56 
R Yellow 4 67.08 0.35 0.36 29.950 

S7 
NB 

L White 4 25.12 0.36 0.36 22.222 
0.48 0.56 0.52 0.49 0.56 0.52 

R White 4 22.76 0.36 0.36 21.681 

SB 
L White 4 22.16 0.36 0.36 22.222 

0.49 0.52 0.50 0.48 0.55 0.51 
R White 4 24.96 0.36 0.36 21.681 
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Appendix 3. Additional Tables and Plots from 3M 
Panel Dataset Evaluation 

Table 15: Tukey HSD Test (α = 0.050) of LSMean Differences for Two-way Interaction Between Panel 
Spacing and Panel Material During Day (Top) and Night (Bottom). (Levels not Connected by the Same Letter 

are Significantly Different).

Level 
(Day)      F1 Score 

(LS Mean) 
30ft, 06W-4 A     0.76244328 
30ft, 02W-4 A B    0.74676662 
30ft, 08W-4 A B C   0.71583223 
30ft, 01W-4 A B C   0.71410252 
30ft, 06W-6 A B C   0.70024279 
40ft, 08W-4 A B C   0.69898629 
30ft, 02W-6 A B C   0.69446894 
40ft, 01W-4  B C D  0.68943787 
40ft, 02W-4   C D E 0.65756167 
40ft, 06W-4   C D E 0.65509721 
40ft, 02W-6    D E 0.62354169 
40ft, 06W-6     E 0.60675365 

 

Level 
(Night)         F1 Score 

(LS Mean) 
30ft, 06W-4 A        0.90463257 
30ft, 02W-4 A B       0.89601716 
30ft, 06W-6 A B       0.88009106 
30ft, 02W-6 A B C      0.86376944 
30ft, 08W-4  B C      0.85432671 
30ft, 01W-4   C D     0.81953346 
40ft, 08W-4    D E    0.79313570 
40ft, 01W-4     E F   0.75166342 
40ft, 06W-6      F G  0.73171254 
40ft, 02W-6       G H 0.70439418 
40ft, 06W-4       G H 0.69277848 
40ft, n 02W-

4        H 0.67923865 
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Figure 24: Plot of LD performance vs diffused reflectance (Qd) for the 3M pavement panels. 

 

 
Figure 25: Plot of LD performance vs retroreflectivity (RL) for the 3M pavement panels. 
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Figure 26: Panel-wise LD performance summary for 3M panels. 
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Figure 27: LD performance summary for Set 1 of 3M panels based on evaluation area. 
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Figure 28: LD performance summary for Set 2 of 3M panels based on evaluation area. 
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Figure 29: LD performance summary for Set 3 of 3M panels based on evaluation area. 

 

Table 16: Tukey HSD Test (α = 0.050) of LSMean Differences for 2-way Interaction Between Panel Spacing 
and Driving Direction During Day (Left) and Night (Right) – Levels Not Connected by the Same Letter Are 

Significantly Different

Level (Day)     Least Sq Mean 
30ft, Southbound (SB) A   0.76921770 
30ft, Northbound (NB)   B 0.67540110 
40ft, Northbound (NB)   B 0.65658527 
40ft, Southbound (SB)   B 0.65387419 

 

Level (Night)       Least Sq Mean 
30ft, Southbound (SB) A     0.86978169 
30ft, Northbound (NB) A     0.86967511 
40ft, Northbound (NB)   B   0.74984608 
40ft, Southbound (SB)     C 0.70112824 
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Table 17: LSMeans Differences Tukey HSD test (α = 0.050) for Two-way Interaction Between Panel Spacing 
and Nighttime-Illumination – Levels Not Connected by the Same Letter Are Significantly Different 

Level     F1 Score 
(LS Mean) Std Error 

30 ft - High Beam (HB) A   0.87284047 0.00552214 
30 ft - Low Beam (LB) A   0.86661633 0.00552214 
40 ft - Low Beam (LB)   B 0.73405108 0.00552214 
40 ft - High Beam (HB)   B 0.71692324 0.00552214 

 

Table 18: Tukey HSD Test (α = 0.050) of LSMeans Differences for Two-way Interaction Between Nighttime 
Illumination and Panel Material – Levels Not Connected by the Same Letter Are Significantly Different. 

Level       Least Sq Mean 
High Beam (HB),  08W-4 A     0.84136985 
Low Beam (LB)   ,06W-6 A B   0.81599750 
Low Beam (LB),   08W-4 A B C 0.80609255 
Low Beam (LB),   06W-4 A B C 0.80411763 
Low Beam (LB),   02W-6 A B C 0.79983597 
Low Beam (LB),   02W-4   B C 0.79613115 
High Beam (HB), 06W-6   B C 0.79580610 
High Beam (HB), 06W-4   B C 0.79329342 
High Beam (HB), 01W-4   B C 0.79136946 
Low Beam (LB),   01W-4   B C 0.77982743 
High Beam (HB), 02W-4   B C 0.77912466 
High Beam (HB), 02W-6     C 0.76832765 
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