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Abstract 
Automated Vehicles (AVs) have the potential to improve traffic safety by preventing 
crashes. The safety implications of AVs can vary across communities with different 
socioeconomic and demographic characteristics. In this study, we proposed a framework 
to quantify the potential safety implications of AVs in terms of preventable crashes and 
fatalities, accounting for some of the safety challenges of AV  operation, including AV 
technologies’ safety effectiveness, system failure risk, and the risk of disengagement from 
the automated system to manual driving. We further defined an empirical study to 
examine the proposed framework and investigate inequity in AV potential safety 
implications. The empirical analysis was conducted using 2017 crash data from the 
Dallas-Fort Worth, Texas, United States area. The results showed that AVs could 
potentially prevent up to 50%, 46%, 23%, 6%, and 5% of crashes for automation Levels 
5 to 1, respectively. Among advanced driver assistance systems, pedestrian detection, 
electronic stability control, and lane departure warning showed more significant potential 
in reducing fatal crashes. We found a U-shaped relationship between the AV-preventable 
fatalities and household median income and ethnically diverse communities. The findings 
of this study suggests that low-income and ethnically diverse communities can benefit 
from AV implementation. The policy recommendations of this research suggest that city 
and state planning and transportation agencies may consider implementing policies and 
strategies for making AVs available to low-income and ethnically diverse communities at 
a lower cost. 
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Introduction 
Although interest in the safety evaluation of automated vehicles (AVs) has increased (Boggs et al., 
2020; Cui et al., 2019; Furlan et al., 2020; Sohrabi et al., 2021), the implications of AVs for 
underserved communities have not been sufficiently explored. Low-income communities are 
located near high-capacity roadways and interstates and have poor roadway infrastructure, which 
contributes to increased crash risk (Huang et al., 2010; Noland and Laham, 2018; Barajas, 2018). 
The socioeconomic characteristics of households have also been shown to correlate with motor 
vehicle safety in that low-income communities experience higher crash frequency and severity 
(Girasek and Taylor, 2010). Higher rates of risky driving behavior and traffic violations were also 
found in minority communities, which could be due to the language barriers and inability to read 
the traffic signs (Elias et al., 2016; Romano et al., 2005). In addition to the existing traffic-related 
risks, underserved and low-income communities may be the last ones to adopt AVs due to the high 
cost of these vehicles, and therefore may not be able to experience the increased safety benefits 
(Raj et al., 2019; Cohen and Shirazi, 2017). Hence, there is increasing concern about whether or 
not AV implementation will help to offset the discrepancies in roadway safety or will continue to 
exacerbate them. 

To explore the potential inequity in AV safety, we first need to have realistic estimations. 
According to the National Highway Traffic Safety Administration (NHTSA), human error 
contributes to 94% of motor vehicle crashes (NHTSA, 2018). Since AVs have the potential to 
eliminate human error, in the most optimistic view they would be expected to prevent 94% of 
motor vehicle crashes. However, AVs are subject to system failure and associated safety risks, 
including sensor malfunctions in detecting objects, misinterpretation of data, and poorly executed 
responses (Bila et al., 2017). Although  AVs have been developed to improve driver behavior, 
their driving operation and safety effectiveness (SE) need to be measured by field operational tests 
(Wang et al., 2020). The interaction between AV and driver may cause safety issues, particularly 
when the automated driving system must disengage and manual driving must resume (Boggs et 
al., 2020).  

Given the limited field operational tests of AVs and the uncertainties associated with their 
operation and safety challenges, AV safety evaluation is not trivial. Although analyzing the target 
crash population is a practical approach for evaluating AV safety, there are certain limitations in 
target crash population studies. First, quantified benefits are considered optimistic because they do 
not explicitly account for the technical safety challenges of AV technologies―namely, system 
failure risks, the risk associated with disengagement from the ADS to manual driving, and the SE 
of advanced driver assistance systems (ADAS) and ADSs. Second, the selection of target crash 
scenarios that can be prevented by a specific AV technology is mainly arbitrary, and the literature 
lacks a structured mechanism for identifying preventable crashes. Third, despite the fact that AV 
safety implications are inconsistent at different automation levels, no comparison between the 
extent of the impacts has been made in the literature. Fourth, while previous studies quantified AV 
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safety performance in terms of the number of preventable crashes and cost of crashes, the potential 
of AVs to prevent road injuries has not been considered. 

This objective of this study is twofold: (1) develop a methodology to evaluate the SE of AVs; and 
(2) assess the SE of AVs in communities with different socioeconomic and demographic 
characteristics. We developed a methodology based on the target crash population methodology, 
which addresses the aforementioned limitations in the existing studies. We then conducted an 
empirical study using crash data from the Dallas-Fort Worth (DFW), Texas, the fourth-largest 
metropolitan area in the  United States (World Population Review, 2019). We finally stratified 
preventable crashes and their severities based on socioeconomic and demographic characteristics 
to assess the equity implications of AVs.  

Method 
Figure 1 depicts the framework developed in this study to evaluate AV safety implications.  

1. Task 1: Identify AV functionalities. 
2. Task 2: Characterize conventional vehicle crashes and define potentially 

preventable crash scenarios. 
3. Task 3: Identify target crash scenarios that are potentially preventable by the 

AV technologies found in Task 1. 
4. Task 4: Based on the literature, identify the safety challenges of AVs, 

including safety effectiveness, system failure risk, and disengagement risk. 
5. Task 5: Estimate the number of preventable crashes by each technology by 

incorporating  the findings of Task 4 and exploring the target crashes in a historical 
conventional vehicle  crash database. 
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Figure 1. Flowchart. AV safety quantification framework. 

Task 1: Identifying AV Functionality 
Before identifying AV functionalities, we provide a brief overview of how the different levels of 
automation are defined in terms of the dynamic driving task (DDT), object and event detection 
and response (OEDR), driver responsibilities, and operational design domain (ODD). SAE defines 
six levels of automation (Society of Automotive Engineers [SAE], 2018). Level 0 represents no 
automation. At Level 1 and 2, most of the DDT is performed by the driver, and an ADAS 
occasionally helps with some of the driving tasks (SAE, 2018) and has the potential to correct 
some driver error. At Level 3, ADS performs OEDR and is responsible for most of the DDT (SAE, 
2018). However, when the ADS is disengaged, a fallback-ready user is needed to intervene. Levels 
4 and 5 are able to perform all of the DDT with no fallback-ready user, but differ in terms of ODD; 
Level 5 has an unlimited ODD. It is expected that Level 4 and 5 ADS will eliminate most driver 
errors; however, Level 4’s impacts are limited to its ODD. 

We identified AV functionalities at different levels of automation by investigating their 
capabilities in terms of performing the DDT, OEDR, and ODD. Table 1 summarizes AV 
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technologies and their functionalities (SAE, 2018). First, we explored levels of automation and 
their functions. Then, based on this analysis, we identified the ADAS and ADS technologies by 
level of automation. Eight ADASs with the capability of performing longitudinal and lateral 
automated driving tasks, collision alert, collision mitigation, parking assistance, and driving aids 
are considered for Levels 1 and 2. For Levels 3, 4, and 5, the ADS performs the DDT, and crash 
avoidance capability is characterized based on the ADS functionalities. Based on the definitions, 
Level 5 has an unlimited ODD. Since there is no universal design for Level 3 and Level 4 ADS 
ODDs, we assume that they can only operate on well-mapped roads. 

Table 1. AV Technologies and Functionality 

Level of 
Automation 

Functionality ADS and ADAS 

Level 0 Performs no driving task NONE 

Level 1 Performs either longitudinal or lateral 
vehicle motion control but does not 
complete OEDR. 

Forward Collision Warning (FCW) 
Lane Departure Warning (LDW) 
Blind Spot Warning (BSW) 
Pedestrian Detection (PD) 
Automatic Emergency Braking (AEB) 
Electronic Stability Control (ESC) 
Adaptive Cruise Control (ACC) or Lane Keeping 
Assistance (LKA) 

Level 2 Performs both longitudinal and 
lateral vehicle motion control but not 
complete OEDR. 

Level 1 ADAS, including both ACC and LKA 

Level 3 Performs the complete DDT, but not 
DDT fallback within a limited ODD. 

Level 3 ADS 

Level 4 Performs the entire DDT and is 
capable of responding to DDT 
fallback if needed, within a limited 
ODD. 

Level 4 ADS 

Level 5 Performs the entire DDT and is 
capable of responding to DDT 
fallback if needed, with unlimited 
ODD. 

Level 5 ADS 

Task 2: Investigating Crash Characteristics and Defining Crash 
Scenarios  
In this task, we investigated conventional vehicle crashes and defined target crash scenarios using 
four criteria: contributing factors, manner of collision (MC), first harmful event (FHE), and crash 
location (CL) as depicted in Figure 2. NHTSA categorizes crash contributing factors into three 
broad groups: driver error (DE), environmental factors, and vehicle-related factors (NHTSA, 
2018). In general, crashes can be attributed to one or more contributing factors. 
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Figure 2. Diagram. Criteria for characterizing conventional vehicle crashes. 

Per the objectives of this study, we explored the contributing factors for DE-related crashes, which 
can be divided into four types: recognition error, decision error, performance error, and non-
performance error (NHTSA, 2018). We further analyzed driver errors using 11 subcategories. MC 
refers to the manner in which a crash occurred and is divided into six types of multiple-vehicle 
(MV) or single-vehicle (SV) crashes: angle (MV), rear-end (MV), backing (MV or SV), run-off-
the-road (SV), sideswipe (MV), and head-on (MV). The FHE is the first event that leads to the 
crash and represents the road users that were involved in the crash and who were at-fault for the 
crash. This  is divided into six types: pedestrian at-fault, cyclist at-fault, vehicle, animal, object, 
and pedestrian and cyclist. In this study, we did not account for crashes where the pedestrian or 
cyclist was at fault. Finally, ADAS and ADS crash avoidance capabilities are limited to certain  
locations. For example, ACC operates at high speeds and can prevent crashes on roads with higher 
speed limits. As discussed before, we assume Level 3 and 4 ADSs can only operate on well-
mapped roads and hence that they would not be able to prevent crashes on local rural roads. To 
address the limitations of AV ODDs, we categorized crash locations into five groups to define 
crash scenarios: (1) intersections; (2) parking; (3) freeways, highways, and arterials; (4) urban 
collector and local roads; and (5) rural collector and local roads. 

A crash scenario was then defined as a combination of DE, MC, FHE, and CL. Table 2 lists the 
critical crash scenario elements used in this study. There are 11 driver crash-contributing factors, 
6 MCs, 5 FHE types, and 5 location types. Consequently, the crashes studied can be investigated 
by exploring a total number of 1,650 unique crash scenarios (Equation 1): 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝐸𝐸𝐷𝐷𝐷𝐷𝐸𝐸𝐷𝐷 (11) ⨯ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐷𝐷𝐷𝐷 𝐸𝐸𝑜𝑜 𝐶𝐶𝐸𝐸𝐶𝐶𝐶𝐶𝐷𝐷𝐶𝐶𝐷𝐷𝐸𝐸𝑀𝑀 (6) ⨯ 𝐹𝐹𝐹𝐹𝐸𝐸 (5)⨯ 𝐶𝐶𝐷𝐷𝑀𝑀𝐶𝐶ℎ 𝐿𝐿𝐸𝐸𝐿𝐿𝑀𝑀𝐿𝐿𝐷𝐷𝐸𝐸𝑀𝑀 (5) = 1,650 (1) 
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Table 2. Critical Crash Scenario Elements 

Crash Characteristics Criteria Critical Descriptors 

Driver Error (DE) Recognition error: 
1- Distraction and inattention (DE1) 
 2- Looked, did not see (DE2)  
Decision error: 
3- Driving too fast for conditions and road rage (DE3)  
4- False assumption of others’ actions (DE4) 
5- Misjudgment of gap and speed (DE5)  
6- Traffic violation (DE6) 
7- Unsafe maneuver and lane change (DE7)  
Performance error: 
8- Poor directional and longitudinal control, and overcompensation (DE8)  
9- Failure to drive between lanes (DE9) 
Non-performance error: 
10- Drowsiness, taking medication, and illness (DE10) 
 11- Alcohol and drug impairment (DE11) 

Environment-related Factors 1- Slick roads (ice, loose, etc.) 
 2- Glare 
3- View obstructions 
4- Adverse weather (fog, heavy rain, snow, etc.) 
 5- Sign/signals 
6- Road design 

Vehicle-related  
Factors 

1- Steering, suspension, transmission, and engine-related  
2- Defective lights 
3- Tire and wheels 
4- Brake related 

Manner of Collision (MC) 1- Angle (MV*) (MC1) 
2- Rear-end (MV) (MC2) 
3- Backing (MV or SV**) (MC3) 
 4- Off the road (SV) (MC4) 
5- Sideswipe crash (MV) (MC5) 
6- Head-on (MV) (MC6) 

First Harmful Event (FHE) 1- Pedestrian, with driver at fault (FHE1) 
 2- Cyclist, with driver at fault (FH2) 
3- Vehicle (FHE3) 
4- Animal (FHE4) 
5- Object (FHE5) 
6- Pedestrian and cyclist, with pedestrian and cyclist at fault (FHE6) 

Crash Location (CL) 1- Intersections (CL1) 
2- Parking (CL2) 
3- Freeways, highways, and arterials (CL3)  
4- Urban Collector and local roads (CL4) 
5- Rural Collector and local roads (CL5) 

* MV: Multi-vehicle 
** SV: Single-vehicle 

Task 3: Identify Target Crash Scenarios 
Based on AV technologies at different levels of automation and their functionalities, we developed 
a list of target crash scenarios that can potentially be prevented by ADAS and ADS technology. 
For example, ACC is able to control acceleration and/or braking to maintain a prescribed distance 
between the following and leading vehicles. According to these functions, we expect that ACC 
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can potentially prevent crashes caused by (1) recognition error due to distraction and inattention 
(DE1); (2) decision error attributed to the false assumption of other vehicles’ actions as well as a 
misjudgment of the gap between the leading and following vehicles and consequently speed choice 
(DE2); and (3) performance error such as poor longitudinal control of the vehicle (DE3). These 
driver errors may result in rear-end collision (MC2) of a vehicle (FHE3) on a high-speed freeway, 
highway, or arterial (CL3). The combination of these crash characteristics leads to four crash 
scenarios that can be prevented by ACC: 

1. Scenario 1: DE1 + MC2 + FHE3 + CL3 
2. Scenario 2: DE4 + MC2 + FHE3 + CL3 
3. Scenario 3: DE5 + MC2 + FHE3 + CL3 
4. Scenario 4: DE8 + MC2 + FHE3 + CL3 

Table 3 shows the target crash scenarios that each technology can prevent. 

Table 3. Number of Target Crash Scenarios 

System Functions and Capabilities DE MC FHE CL # of Target Crash 
Scenarios 

ACC Controls acceleration and/or braking to 
maintain a prescribed distance between it and 
a vehicle in front. May be able to come to a 
stop and continue. 

DE1, 
DE4, 
DE5, 

DE8 

MC2 FHE3 CL3 4 

LKA Controls steering to maintain the vehicle 
within the driving lane. May prevent the 
vehicle from departing lane or continually 
center vehicle. 

DE8, 
DE9, 
DE10 

MC1 to 
MC6 

FHE2, 
FHE3 

CL3, CL4 60 

FCW Detects impending collision while traveling 
forward and alerts driver. 

DE1, 

DE4, 
DE5 

MC1, 

MC2, 
MC6 

FHE3, 

FHE4, 
FHE5 

CL1, 

CL3, CL4 

81 

LDW Monitors vehicle’s position within driving lane 
and alerts driver as the vehicle approaches or 
crosses lane markers. 

DE8, 
DE9, 
DE10 

MC1, 
MC4, 
MC5, 

MC6 

FHE2, 
FHE5 

CL3, CL4 48 

BSW Detects vehicles to rear in adjacent lanes while 
driving and alerts the driver to their presence. 

RE2, 
RE4 

MC1, 
MC5 

FHE3 CL3, CL4 8 

PD Detects pedestrians in front of vehicle and 
alerts driver to their presence. 

DE1, 
DE2, 
DE6, 
DE8, 

DE10 

MC4 FHE1, 
FHE6 

CL1 to CL4 40 
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System Functions and Capabilities DE MC FHE CL # of Target Crash 
Scenarios 

AEB Detects potential collisions while traveling and 
automatically applies brakes to avoid or lessen 
the severity of impact. 

DE1, 
DE4, 
RE10 

MC1, 
MC2, 
MC3, 

MC6 

FHE1 to 
FHE5 

CL1 to CL4 320 

ESC Improves a vehicle’s stability by detecting and 
reducing loss of traction. 

DE5, 
DE8 

MC4, 
MC5 

FHE3, 
FHE5 

CL3 8 

L3 ADS Performs the complete DDT, but not DDT 
fallback, within a limited ODD. Eliminates 
Level 2 crashes and crashes due to driver 
recognition error and performance error. 

DE1 to 
DE9 

MC1 to 
MC6 

FHE1 to 
FHE5 

CL2, CL3 720 

L4 ADS Performs the complete DDT, and DDT 
fallback, within a limited ODD. 

DE1 to 
DE11 

MC1 to 
MC6 

FHE1 to 
FHE5 

CL1 to CL4 1,320 

L5 ADS Performs the complete DDT, and DDT 
fallback, without ODD limitation. 

DE1 to 
DE11 

MC1 to 
MC6 

FHE1 to 
FHE5 

CL1 to CL5 1,650 

Task 4: AV Safety Challenges 
The three important safety concerns of AVs are (1) SE , (2) system failure risk; and (3) 
disengagement risk. In general, SE can be defined in terms of the number of AV-preventable 
crashes compared to conventional vehicles (Equation 2). Since driving simulator and traffic 
simulation studies use surrogate safety measures (SSMs) to evaluate AV safety impacts, in this 
study, the SE of AVs is estimated using SSMs. Equations 3 and 4 are examples of using two 
SSMs―time to collision (TTC) and traffic conflicts (TC)―to estimate the SE of ADASs and 
ADSs: 

𝑺𝑺𝑺𝑺 = 𝟏𝟏 − 𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 𝑨𝑨𝑨𝑨𝒓𝒓𝒓𝒓
𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝒓𝒓𝑪𝑪𝒓𝒓𝑪𝑪𝑪𝑪𝑪𝑪𝑨𝑨𝑪𝑪 𝑪𝑪𝒓𝒓𝑨𝑨𝑪𝑪𝑨𝑨𝑪𝑪𝒓𝒓 𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 𝑨𝑨𝑨𝑨𝒓𝒓𝒓𝒓

 (2) 

𝑺𝑺𝑺𝑺𝑻𝑻𝑻𝑻𝑪𝑪 = 𝟏𝟏 − 𝑨𝑨𝑨𝑨 𝒓𝒓𝑪𝑪𝒕𝒕𝒓𝒓 𝒓𝒓𝑪𝑪 𝑨𝑨𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑨𝑨𝑪𝑪𝑪𝑪𝑪𝑪<𝒓𝒓𝑨𝑨𝒓𝒓𝑨𝑨𝑨𝑨𝑪𝑪𝑪𝑪𝒆𝒆
𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝒓𝒓𝑪𝑪𝒓𝒓𝑪𝑪𝑪𝑪𝑪𝑪𝑨𝑨𝑪𝑪 𝑪𝑪𝒓𝒓𝑨𝑨𝑪𝑪𝑨𝑨𝑪𝑪𝒓𝒓 𝒓𝒓𝑪𝑪𝒕𝒕𝒓𝒓 𝒓𝒓𝑪𝑪 𝑨𝑨𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑨𝑨𝑪𝑪𝑪𝑪𝑪𝑪<𝒓𝒓𝑨𝑨𝒓𝒓𝑨𝑨𝑨𝑨𝑪𝑪𝑪𝑪𝒆𝒆

 (3) 

𝑺𝑺𝑺𝑺𝑻𝑻𝑪𝑪 = 𝟏𝟏 − 𝑨𝑨𝑨𝑨 𝒇𝒇𝑨𝑨𝒓𝒓𝒇𝒇𝒇𝒇𝒓𝒓𝑪𝑪𝑨𝑨𝒇𝒇 𝑪𝑪𝒇𝒇 𝒓𝒓𝑨𝑨𝑨𝑨𝒇𝒇𝒇𝒇𝑪𝑪𝑨𝑨 𝑨𝑨𝑪𝑪𝑪𝑪𝒇𝒇𝑪𝑪𝑪𝑪𝑨𝑨𝒓𝒓𝑨𝑨
𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝒓𝒓𝑪𝑪𝒓𝒓𝑪𝑪𝑪𝑪𝑪𝑪𝑨𝑨𝑪𝑪 𝑪𝑪𝒓𝒓𝑨𝑨𝑪𝑪𝑨𝑨𝑪𝑪𝒓𝒓 𝒇𝒇𝑨𝑨𝒓𝒓𝒇𝒇𝒇𝒇𝒓𝒓𝑪𝑪𝑨𝑨𝒇𝒇 𝑪𝑪𝒇𝒇 𝒓𝒓𝑨𝑨𝑨𝑨𝒇𝒇𝒇𝒇𝑪𝑪𝑨𝑨 𝑨𝑨𝑪𝑪𝑪𝑪𝒇𝒇𝑪𝑪𝑪𝑪𝑨𝑨𝒓𝒓𝑨𝑨

 (4) 

Wang et al. (2020) synthesized the results of previous traffic simulations and field experiments 
that estimated the SE of AVs. Conducting a meta-analysis on 89 studies, the authors estimated the 
SE of seven ADASs in descending order: PD, LDW, FCW, ESC, BSW, AEB, ACC. Given the 
limited number of studies on the LKA impacts, we assumed that the effectiveness of LKA would 
be similar to that of the ACC. ADS SE was found to be different for intersections and road 
segments. We sourced the ADS effectiveness at intersections from Morando et al. (2018), which 
evaluated the safety impacts of AVs in terms of changes in the conflicts between vehicles after 



9 
 

AV implementation using traffic microsimulations. Using Equation 4, we then converted changes 
in the number of conflicts to the SE of AVs. The effectiveness of ADS in road segments was 
extracted from Kockelman et al. (2016), which used traffic microsimulations to evaluate AV safety 
impacts under various operational conditions and measured the safety impacts in terms of the 
number of conflicts between vehicles. 

Another challenge with AV operation and safety is system failure, which can happen due to 
malfunctioning sensors, misinterpretation of data, and poorly executed responses that can 
jeopardize the reliability of AVs and cause serious safety concerns in an automated environment 
(Bila et al., 2017). The failure rate of each AV component was synthesized by Bhavsar et al. 
(2017). To this end, ADAS and ADS components were examined individually, and the failure rate 
was determined based on the evidence from the existing literature. Bhavsar et al. (2017) developed 
a hierarchical model to synthesize the AV failure rates associated with the vehicle. According to     
this study, the failure risks of the hardware system (sensor and integration platform) and software 
system are 4.2% and 1.0%, respectively. 

The third safety concern of AVs is disengagement risk, which refers to an AV being involved in a 
crash as a result of the transition from automated driving mode to manual driving. For Levels 3 
and 4, drivers need to take over control of the vehicle in case of technology failure or unsafe driving 
conditions. The disengagement from ADS  to manual driving was studied using driving simulators 
and was shown to impose crash risks (Desmond et al., 1998; Happee et al., 2017). In Happee et al. 
(2017), the effects of automation in take-over scenarios were investigated in a high-end, moving-
base driving simulator. Drivers encountered a blocked lane in highway driving, and their 
performance while executing evasive maneuvers in manual driving was compared to their 
performance in the automated driving environment with a disengagement to manual driving using 
TTC measures. Using Equation 3 and assuming a 4-second threshold for TTC (Sultan and 
McDonald, 2003), the disengagement risks were estimated to be 49%. We assumed a similar 
disengagement risk for both Level 3 and 4 automation due to the limitations in the literature on 
this topic. It is also assumed that AVs would disengage from the ADS before encountering a crash 
scenario, and so the driver is not able to respond to 49% of crash scenarios appropriately. Table 4 
summarizes the AV safety challenges considered in this study. 

Table 4. Safety Challenges of AVs 

System SE Confidence 
Interval 

Source 

ACC 9.3%    [5.0, 0.14] Wang et al., 2020  
AEB 25.7%  [2.0, 31.0] Wang et al., 2020 
BSW 15.0%   [10.0, 20.0] Wang et al., 2020 
ESC 43.2%  [38.0, 48.0] Wang et al., 2020 
FCW 21.1%  [17.0, 25.0] Wang et al., 2020 
LDW 21.0%  [10.0, 33.0] Wang et al., 2020 
PD 38.9% [36.0, 42.0] Wang et al., 2020 

https://www.sciencedirect.com/topics/engineering/driving-simulator
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System SE Confidence 
Interval 

Source 

LKA 9.3% Not reported Speculated, no 
source available 

L3 ADS 
(Intersection) 

64.0%  Not reported Morando et al., 
2018 

L3 ADS 
(Highway 

87.0%  Not reported Kockelman et al., 
2016 

L4 ADS 
(Intersection) 

64.0%  Not reported Morando et al., 
2018 

L4 ADS 
(Highway) 

87.0%  Not reported Kockelman et al., 
2016 

L5 ADS 
(Intersection) 

64.0%  Not reported Morando et al., 
2018 

L5 ADS 
(Highway) 

87.0%  Not reported Kockelman et al., 
2016 

 

Task 5: Estimate Preventable Crashes 
Incorporating the findings from Task 4 and exploring AV target crashes in the conventional vehicle 
crash database, the total number of preventable crashes can be estimated using Equation 5: 

𝑷𝑷𝑪𝑪𝒓𝒓 = 𝑻𝑻𝑪𝑪𝒓𝒓 ⨯ 𝑺𝑺𝑺𝑺𝒓𝒓 ⨯ (𝟏𝟏 − 𝑭𝑭𝑭𝑭) ⨯ (𝟏𝟏 − 𝑫𝑫𝑭𝑭) (5) 

where 𝑃𝑃𝐶𝐶𝐿𝐿 is the number of preventable crashes by technology 𝐿𝐿, 𝑇𝑇𝐶𝐶𝐿𝐿 is the number of target 
crashes by technology 𝐿𝐿, 𝑆𝑆𝐸𝐸𝐿𝐿 is the safety effectiveness of AV technologies, 𝐹𝐹𝐹𝐹 is the AV’s 
software and hardware failure risk, and 𝐷𝐷𝐹𝐹 is the disengagement risk for Levels 3, 4, and 5. 

Empirical Study 
We designed an empirical analysis to examine the proposed AV safety quantification framework 
and to assess the equity implications of AVs. The proposed framework quantifies AV safety 
implications in  terms of the number of preventable crashes. We further investigated the quantified 
preventable crashes to explore (1) the role of levels of automation, and the technologies behind 
them, in preventing different levels of crash severity; and (2) the relationship between preventable 
road fatalities and communities’ socioeconomic and demographic characteristics to assess the 
equity implications of AVs.  

Study Setting 
The safety implications of AVs were quantified in the DFW metropolitan area for the year 2017. 
We assumed that the percentage of vehicles equipped with ADS was at a negligible level in 2017. 
Moreover, since a few changes were made to Crash Records Information System (CRIS) crash 
data collection methods in 2016, it is preferred to use crash data after this date. Hence, in this 
study, we use 2017 as the baseline year. We first defined five counterfactual scenarios for AV 
deployment, in which the existing vehicle fleets (including passenger cars, buses, and trucks) in 
the DFW area are replaced by five levels of automation. Using the proposed framework, we 
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estimated the potentially preventable crashes for each scenario and compared them against the 
base scenario of no automation in the transportation system. The estimated numbers represent the 
potential safety implications of different levels of automation if the DFW transportation system 
were automated. We chose the DFW area as the case study since it is the fourth most populated 
metropolitan area in the United States, with more than 7.5 million residents in 2018 (US Census 
Bureau, 2019). The study area contains all road functional classes (both rural and urban roads), 
including interstate, freeway and highway, principal and minor arterials, major and minor 
collectors, and local roads.   

Equity Assessment 
AV safety implications were investigated based on the socioeconomic and demographic 
characteristics of communities, assuming 100% market penetration of AVs and no financial 
restrictions to adoption. This study considers median household income and household ethnicity 
as proxies for socioeconomic and demographic status. Moreover, we explored the communities’ 
characteristics at the census tract level. Assuming that the vehicles’ occupants lived in the same 
zip code as the vehicles’ owners, we mapped the road fatalities to the zip codes where the vehicle 
owners lived, as opposed to the census tract where the crash happened. The estimated preventable 
fatalities can then be stratified based on median household income and household ethnicity at the 
census tract level. 

This approach has certain limitations in that we cannot account for the crash location, which was 
one of the factors used for developing the preventable crash scenarios. However, since the scope 
of this project was to develop a framework for safety and equity assessment, we did not explore 
how a crash happening at certain location (e.g., intersection). This particular question will be 
explored in more detail in future study.  

Datasets 
Crash Characteristics 
The crash data was sourced from the Texas Department of Transportation’s (TxDOT) CRIS. The 
crash dataset includes the crash location, crash characteristics (Table 5), the vehicle owner’s 
residential zip code, and the crash severity. We focused on crash records from 2017, given that 
only a limited number of vehicles were equipped with ADASs before the year 2018, which would 
be in  line with our no-automation assumption for the base scenario. A total of 151,881 crashes  
were collected, of which 738 resulted in fatalities (0.5%), 34.7% resulted in injuries or possible 
injuries, and 64.8% resulted in no injury. The crashes were mostly MV crashes that included more 
than two vehicles. The rest of the crashes were distributed as follows: 15.2% fixed object, 1.7% 
vulnerable road user, and 0.5% wildlife. Table 5 provides a summary of the 2017 crash 
characteristics.  
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Table 5. Summary of DFW Crash Characteristics 

 Fatal 
(#) 

Incapacitating 
(#) 

Non-
Incapacitating 
Injury (#) 

Possible 
Injury 
(#) 

Non- 
injury 
(#) 

# of 
Crashes 

Distraction and inattention (DE1) 173 1439 6511 11696 74056 39053 
Looked, did not see (DE2) 9 95 325 569 3292 1636 
Driving too fast for conditions and 
road rage (DE3) 

144 387 947 1057 6182 4659 

False assumption of others’ actions 
(DE4) 

14 157 678 1137 6544 3902 

Misjudgment of gap and speed 
(DE5) 

31 185 1237 3222 30097 12443 

Traffic violation (DE6) 207 1229 7093 14032 65382 29955 
Unsafe maneuver and lane change 
(DE7) 

94 529 3108 6720 66676 27899 

Poor directional and longitudinal 
control, and overcompensation 
(DE8) 

105 777 4377 10099 66881 28532 

Failure to drive between lanes 
(DE9) 

54 245 800 1215 7485 5337 

Drowsiness, taking medication, 
and illness (DE10) 

17 165 467 745 2394 2168 

Alcohol and drug impairment 
(DE11) 

57 227 613 647 4626 3187 

Angle (MV*) (MC1) 196 1866 11305 24470 146361 62333 
Rear-end (MV) (MC2) 262 2193 13373 34354 231692 84268 
Backing (MV or SV**) (MC3) 9 34 150 184 5078 5253 
Off the road (SV) (MC4) 507 2135 6814 7797 46357 45671 
Sideswipe crash (MV) (MC5) 97 562 2932 6822 75560 30416 
Head-on (MV) (MC6) 220 479 1180 1498 7466 3605 
Pedestrian, with the driver at fault 
(FHE1) 

141 292 653 446 2223 1516 

Cyclist, with driver at fault (FH2) 7 77 277 204 877 628 

Vehicle (FHE3) 878 6229 35506 80433 528265 209915 

Animal (FHE4) 17 62 179 165 2463 1843 

Object (FHE5) 288 1419 5045 6621 45,090 45109 

Pedestrian and cyclist, with 
pedestrian and cyclist at fault 
(FHE6) 

6 5 11 10 90 48 

Intersections (CL1) 342 3383 19,514 42282 237524 101943 
Parking (CL2) 2 18 143 374 7847 5042 
Freeways, highways, and arterials 
(CL3) 

861 3852 17733 36229 255266 106828 

Urban collector and local roads 
(CL4) 

404 3810 21137 46869 279218 133638 

Rural collector and local roads 
(CL5) 

129 736 3600 5316 45216 20373 
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Household Income and Ethnicity 
The median household income and household ethnicities were collected from the American 
Community Survey (ACS) at the census tract level (available at https://data.census.gov/cedsci). 
The studied area comprises 1,185 census tracts. The average median household income at the 
census tract level in 2017 was $67,797, while the lowest and highest median household incomes 
at the census tract level were $13,947 and $249,219, respectively. In 2017, the ethnic composition 
of the DFW population was 47% White and 53% Black and Hispanic. Table 5 shows descriptive 
statistics of the ethnicity and median household income at the census tracts. 

Table 6. Descriptive Statistics of the Ethnicity and Median Household Income at the Census Tracts 

Socioeconomic Factors Number of Census 
Tracts 

Min Max Mean Median 

Median Household Income 
($) 

1,185 13,947 249,219 67,797 58,814 

Ethnicity, White (%) 1,185 5.6 100.0 65.6 72.3 

Ethnicity, Black (%) 1,185 0.0 93.4 16.1 9.7 

Ethnicity, Hispanic (%) 1,185 0.0 95.9 30.24 22.30 

Results 

Preventable Crashes by AV Technologies 
Implementing the proposed AV safety quantification framework for DFW crashes, we estimated   
the number of preventable crashes for the five levels of automation. Table 7 presents the estimation  
results. As expected, the total number of preventable crashes was higher for higher levels of 
automation; overall, it is estimated that Level 1 AVs can potentially prevent 8,172 crashes, while 
Level 5 AVs can prevent 70,464 crashes. Table 8 compares the specific AV technologies. Among 
the ADAS technologies, FCW showed superior safety performance. A higher level of uncertainty 
resulted in Level 3 and 4 AVs due to the potential impacts of disengagement risk, which have not 
been estimated. 

Table 7. Estimated Number of Preventable Crashes by Automation Level 

Level of Automation Preventable Crashes 
Level 1 8,172 
Level 2 8,797 
Level 3 32,485 
Level 4 65,157 
Level 5 70,464 

https://data.census.gov/cedsci
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Table 8. SE, Failure Risk, and Disengagement Risk by Technology 

AV Technology SE Failure Risk Disengagement 
Risk 

ACC 9.3% 5.2% NA 
FCW 21.1% 5.2% NA 
LDW 21.0% 5.2% NA 
BSW 15.0% 5.2% NA 
PD 38.9% 5.2% NA 
AEB 25.7% 5.2% NA 
ESC 43.2% 5.2% NA 
Level 1 ADASs - - NA 
LKA 9.3% 5.2% NA 
Level 3 ADS 
(Intersection) 

64.0% 5.2% 49.0% 

Level 3 ADS 
(Highway) 

87.0% 5.2% 49.0% 

Level 4 ADS 
(Intersection) 

64.0% 5.2% NA 

Level 4 ADS 
(Highway) 

87.0% 5.2% NA 

Level 5 ADS 
(Intersection) 

64.0% 5.2% NA 

Level 5 ADS 
(Highway) 

87.0% 5.2% NA 

Preventable Crash Severities by AV Technologies 
We further analyzed AVs’ potential to prevent  crashes with different levels of severity. To this 
end, the ratio of preventable crashes (number of preventable crashes/total crashes) and preventable 
injuries (e.g., number of preventable incapacitating/total number of incapacitating) were 
estimated. Figure 3 shows the ratio of preventable crashes and injuries for different levels of 
automation. Levels 1 and 2 can prevent 5% and 6% of crashes, respectively. Upgrading to Level 
3 would result in preventing up to 23% of crashes. While Level 4 can prevent 46% of crashes, 
switching to fully automated vehicles (Level 5) could maximize the safety benefits of AVs by 
preventing 50% of crashes. At this level of automation, we can potentially observe up to a 30% 
reduction in fatal, suspected serious injury, and non-incapacitating injuries. In general, AVs are 
more effective at preventing non-injury crashes. 
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Figure 3. Chart. Safety implications of automation levels in terms of crash severity. 

Figure 4 depicts the ratios of preventable crashes for ADAS technologies. LDW had the most 
significant impact on preventing severe crashes: about 1.6% of fatal crashes and 1.3% of suspected 
serious injury crashes. Although ESC and PD could prevent a lower percentage of crashes (1.2% 
and 0.2%, respectively), they are more effective in terms of preventing fatal crashes (1.3% and 
1.0%, respectively). This is in line with the fact that ESC and PD target crashes involving 
vulnerable road users and run-off-the-road crashes with higher severity rates. Most of the ADAS 
technologies are more effective at preventing non-injury crashes compared to injury crashes. 

 

 

Figure 4. Chart. ADAS estimated preventable crashes by severity. 
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♦FCW: Forward Collision Warning 
♦LDW: Lane Departure Warning 
♦ BSW: Blind Spot Warning 
♦PD: Pedestrian Detection 
♦AEB: Automatic Emergency Braking 
♦ESC: Electronic Stability Control 
♦LKA: Lane Keeping Assistance 
♦ACC: Adaptive Cruise Control 
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Fatalities by Community Characteristics (Equity Assessment) 
We stratified AV preventable fatalities by communities’ socioeconomic and demographic  
characteristics at the census tract level. The results of analyzing preventable fatalities by median 
household income are shown in Figure 5(a). Based on this analysis, AVs are expected to have the 
most profound positive impacts on communities with median household income less than $35,000, 
where a higher rate of preventable fatalities was observed. AVs’ role in preventing fatalities is the 
lowest among medium-income communities ($35,000 to $75,000). More fatalities can be 
prevented  in high-income communities as well. 

We also explored the relationship between ethnic diversity and AV-preventable fatal crashes by 
stratifying the fatal crashes. The results show AVs having a greater safety contribution in 
communities with a higher Black and Hispanic population percentage (Figure 5(b)). Ethnically 
diverse communities are expected to benefit more from AV implementation, particularly at higher 
levels of automation. 

 
(a) Median household income 
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(b) Ethnicity 

Figure 5. Chart. Percentage of AV-preventable traffic crash fatalities in different communities. 

Discussion 

Key Findings and Implications 
The results of implementing the proposed AV safety quantification framework on DFW crashes 
showed that Level 5 automation has the potential to prevent 50% of crashes and 31% of fatalities. 
This figure is significantly lower than speculations that eliminating all driver errors will 
consequently prevent 94% of crashes. The results showed that Level 1 automation has the potential 
to prevent 5% of crashes, and upgrading to Level 4 can prevent 46% of crashes. Eliminating Level 
4 ODD limitations―by upgrading to Level 5―could result in a 4% increase in the number of 
preventable crashes. Most of the ADAS technologies are more effective at preventing non-injury 
crashes compared to injury crashes. LDW, ESC, and PD, on the other hand, showed a more 
significant contribution to injury crashes, perhaps because these systems target crashes that include 
vulnerable road users and higher speeds. A similar observation was found for ADSs, which were 
more effective in preventing non-injury crashes. 

A U-shape relationship between AV safety impact and median household income was observed. 
AVs are expected to have a greater contribution to lowering road fatalities in communities with 
low and high income, as well as those with a higher percentage of Black and Hispanic residents, 
whereas the impact is expected to be lower for median income communities and those with a 
higher percentage of White residents. This could be because of the fact that road fatalities are 
higher among communities with lower income levels (Marshall and Ferenchak, 2017). Other 
contributing factors mentioned in the literature are the ownership of older and less maintained 
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vehicles (Girasek and Taylor, 2010) and riskier driving behavior (Elias et al., 2016) in these 
population groups, which could be prevented by AV deployment. This may also be explained by 
the poor transportation infrastructure in low-income communities, assuming most of the crashes 
occur in the same zip code where the vehicle owner lives. The greater impacts of AVs on high-
income communities, on the other hand, can be because of more miles driven in these communities 
(mainly because of living in suburban areas and owning more vehicles). 

Our findings have important policy implications. The initial assessment conducted in this study 
indicates that low-income and ethnically diverse communities will benefit more from the 
implementation of AV technologies more than middle-income communities; hence, the cost-
benefit ratio of AV deployment will be much higher for low-income and ethnically diverse 
communities. However, due to the high cost of the technology, low-income communities will be 
the last ones to adopt the technology, and therefore they may not enjoy the safety benefits of AVs. 
City and state planning and transportation agencies may want to consider policies and strategies 
for making these technologies available to low-income and ethnically diverse communities at a 
lower cost. Potential policies could also target facilitating automated transit and/or shared AVs in 
low-income communities. 

The proposed framework can be considered as a tool for policymakers to envision AV safety 
implications for more informed decision-making regarding AV policies. Despite the fact that the 
results of the empirical analysis study stemmed from a retrospective analysis of 2017 crashes and 
the defined counterfactual scenarios may be unrealistic (at least in the near future), understanding 
the potential safety impact of AVs can inform decisions on future investments and development 
plans for AV technologies. Knowing the potential of AVs to prevent road fatalities and the 
relationship to household socioeconomic and demographic characteristics can benefit decision-
making regarding adoption strategies and incentives. We expect that the disparities in AV safety 
impacts would facilitate the involvement of the health sectors in the policymaking process. Given 
this study’s results, decision-makers can adopt policies to make AVs accessible to underserved 
communities through shared mobility services or subsidies. 

Strengths and Limitations 
The proposed framework augments existing target crash population studies and is a starting point 
for future AV safety research. Although the proposed framework accounts for some of the  
challenges, the following factors were not considered: mixed-traffic safety issues (interaction of 
AVs and conventional vehicles at different market penetration rates), the driver’s pre-crash 
reaction to a hazard, potential riskier behavior by the driver or passengers as a result of overreliance 
on the system, and changes in travel demand after AV implementation (Sohrabi et al., 2021). Given 
these limitations, the framework proposed here is expected to represent a theoretical upper bound 
(or optimistic scenario) of the potential safety benefits of AVs, not their actual benefits. 
Uncertainties are inherited in variables incorporated in this study, including the estimations of AV 
SE, system failure risk, and disengagement risk. Given that only a limited number of studies have 
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evaluated or tested AV safety, we could not account for the uncertainties in our analysis. Also, the 
accuracy of our empirical analysis depends on the reliability of the variables in the proposed safety 
quantification framework. Since the number of studies on AV is growing, future research can 
benefit from more accurate estimates of AV SE, system failure risk, and disengagement risk. The 
results of this analysis are based on exploring police-reported crashes, and, therefore, many minor 
crashes were not considered. We did not consider the risk that AVs can impose outside the crash 
scenarios—e.g., the riskier behavior of passengers not using a seatbelt. This would result in 
overestimating AVs’ safety. Moreover, we evaluated AV safety impacts of a counterfactual 
implementation scenario (100% market penetration for all levels of automation) for the sake of 
comparing the safety implications of different levels of automation. The counterfactual scenario 
was compared with a base scenario where we assumed that no vehicles were equipped with 
ADASs. More realistic AV implementation scenarios would result in a more accurate estimation. 
We assigned the crashes to census tracts based on the driver’s residential area and assumed that 
any other passengers lived in the same area as well. We also did not account for the location of 
vulnerable road users, as such information was not available. These assumptions need to be 
addressed in the future studies. The safety impacts of AVs are also not limited to preventing 
crashes and can also mitigate crashes by reducing crash severity. This study solely focused on 
preventable crashes, and the  impact of AVs on mitigating crash severity was not considered. 

Conclusions and Recommendations 
This study has tried to assess the future safety impacts of AVs in communities with various 
socioeconomic backgrounds for the first time. Although the safety impacts of AVs have been 
evaluated in numerous studies, an equity assessment of AV safety implications has never been 
quantified. Another contribution of the paper is the application of a much-improved safety 
quantification framework that accounts for some of the safety challenges of AV operation, 
including SE, system failure risk, and the potential risk of disengagement from an automated 
system to manual driving. The proposed framework uses more robust estimations of AV safety 
implications and provides insights into the potential safety impacts of AVs. The comparison 
between the safety implications of AVs and levels of automation showed the contribution of each 
technology and the variation in their impacts. The analysis of AV safety impacts on communities 
with different socioeconomic backgrounds showed that the AVs would most impact low-income 
communities and communities with a higher percentage of Black and  Hispanic population. 

Future research is required to address some of the limitations of the proposed framework, including 
accounting for AV safety evaluation challenges and conducting an equity assessment analysis. The 
empirical analysis can be improved by using a more reliable estimation of AV safety quantification 
framework variables, defining empirical studies that consider realistic scenarios regarding AV 
market penetration, and using more accurate information regarding roadway crashes. Moreover, 
future studies are required to investigate the relationship between AV safety implications and 
communities’ socioeconomic characteristics. Although the preliminary findings of this study 
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indicate that underserved and ethnically diverse communities may benefit the most from AV 
deployment, there are limitations in the approach in that the crash location and drivers’ zip codes 
(where the crash was mapped) are inconsistent. Future work is needed to identify pathways through 
which AVs can affect safety and equity and quantify the extent of their impacts. 

Additional Products 
The Education and Workforce Development (EWD) and Technology Transfer (T2) products 
created as part of this project can be downloaded from the project page on the Safe-D website. The 
final project dataset is located on the Safe-D Dataverse.  

Education and Workforce Development Products 
This project resulted in two scientific papers: 

1. Sohrabi, S., A. Khodadadi, S. M. Mousavi, B. Dadashova, and D. Lord. 
Quantifying the Automated Vehicle Safety Performance: A Scoping Review of 
the Literature, Evaluation of Methods, and Directions for Future Research. 
Accident Analysis & Prevention, Vol. 152, 2021, p. 106003. 
https://doi.org/10.1016/j.aap.2021.106003 

2. Sohrabi, S., B. Dadashova, D. Lord, H. Khreis, I. Sener, and J. Zmud. Safety 
and Equity  Impacts of Automated Vehicles: A Quantification Framework and 
Empirical Analysis. Accident Analysis & Prevention (Revise & Resubmit). 

The findings of the work presented in this report will become part of the doctoral thesis of the 
graduate student (Soheil Sohrabi). 

Data Products  
The data used in this project is the property of Texas Department of Transportation and cannot be 
made publicly available. The ACS data is publicly available at https://data.census.gov/cedsci. 

  

https://safed.vtti.vt.edu/projects/quantifying-the-benefits-and-harms-of-connected-and-automated-vehicle-technologies-to-public-health-and-equity/
https://dataverse.vtti.vt.edu/dataverse/safed
https://doi.org/10.1016/j.aap.2021.106003
https://data.census.gov/cedsci
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