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Abstract 
This project explored an emerging research territory, the fusion of nonmotorized traffic 
data for estimating reliable and robust exposure measures. Fusion mechanisms were 
developed to combine five bike demand data sources in Austin, Texas, and the fused 
estimate was applied in two crash analyses. The research was divided into three 
sequential stages. The first stage involved developing and applying a guideline to process 
and homogenize available data sources to estimate annual average daily bike volume at 
intersections. The second stage was focused on developing and applying the fusion 
framework—demonstrating the efficacy of multiple fusion algorithms, including two novel 
mechanisms, suited to the data characteristics and based on the availability of actual 
counts. The analysis of actual and simulated data illustrated that the fusion methods 
outperformed the individual estimates in most cases. In the third stage, the fused data 
were applied in both macro (hot-spot analysis in block group level) and micro (individual 
safety-related perception) models in Austin to ascertain the significance of incorporating 
exposure in safety analysis. While the fusion framework contributes to the research in the 
field of decision fusion, the demand and crash models provide insights to help 
stakeholders formulate policies to encourage bike activity and reduce crashes. 
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Introduction and Research Approach 
 

Background and Motivation 
Despite many efforts to promote biking and walking in the United States in order to create healthy, 
sustainable, and equitable communities, the quest to reach the envisioned nonmotorized mode 
share is still an uphill battle in many cities. More alarmingly, although contributing to a 
comparatively low percentage of total trips, 13% in 2017 [1], bike and walk traffic accounted for 
a disproportionate share (around 19% in 2019) of the total fatal and serious injury crashes [2]. 
Acknowledging the exigency of the issue, safety advocates are pursuing efforts to develop 
evidence-based, data-driven strategies to reduce nonmotorized crashes. Although the literature is 
replete with studies evaluating various aspects of nonmotorized traffic safety, the majority suffer 
from a major limitation—the absence of nonmotorized demand or exposure data [3]. The 
incorporation of robust and reliable exposure estimates is instrumental to the orchestration of an 
efficacious crash analysis for nonmotorized traffic [4, 5]. However, the existing approaches of 
estimating exposure, be it through observed counts, models, or crowdsourced data, exhibit 
limitations in terms of spatial, temporal, or population representation, or often overall reliability. 
The fact that no individual data source or model is sufficiently adequate drives the research 
question of whether combining or integrating multiple data sources, or in simple terms creating a 
data fusion, can produce a better estimate of nonmotorized demand or exposure. Researchers in 
the motorized traffic domain, recognizing that no single data source can provide sufficient 
information to develop good transport models [6], are rapidly progressing their utilization of the 
fusion method; however, the method is yet to be explored for nonmotorized traffic research. 

In light of this, this project endeavored to develop a fusion-based technique to combine multiple 
nonmotorized demand or exposure data. The objective was to explore, select, and customize fusion 
mechanisms that can accommodate the distinctive nature of the nonmotorized traffic activity data 
and/or model output, with an end goal of generating a better quality exposure estimate that can add 
value to nonmotorized safety analysis. 

Overview and Research Approach 
Overview of Fusion 
The concept of data fusion is well established, and researchers across myriad disciplines, including 
transportation, have acknowledged its advantages to obtain comprehensive and rich information 
[7–11]. Due to numerous emerging applications of fusion approaches in both research and 
commercial environments, the concept is yet to reach an equilibrium of consistent terminology 
and standard tools [12]. For instance, given its interdisciplinarity in various application domains, 
the terms sensor, multi-sensor, data, and information fusion have been used in numerous research 
articles without much discrimination [13]. A generalized explanation of fusion is as follows: “The 
overall goal of data fusion is to combine data from multiple sources into information that has 
greater benefit than what would have been derived from each of the contributing parts” [14]. 



2 

 

While the core notion is to generate improved information that cannot be achieved with a single 
source, the characterizations, framework, and applications of fusion vary and are often customized 
based on the field of application [15]. In the context of transportation planning, a fusion framework 
should be designed to facilitate automated or semi-automated decisions, rather than to be the goal 
or end result [16]. 

The key benefits of fusion include increased completeness and confidence, reduced ambiguity, and 
enhanced spatial and temporal coverage [17–19]. The process is also associated with challenges 
and limitations, both technical and institutional [20, 21]. Fusion often adds cost and complexity, 
generating the risk of actually producing a worse result than the most reliable single source, 
especially when combined with inaccurate sources [19]. 

Nonmotorized Traffic Data, Exposure, and Fusion 
While exposure can theoretically be defined as a “measure of the number of potential opportunities 
for a crash to occur,” in practice a wide array of facility-specific or areawide exposure measures 
have been used for nonmotorized safety analysis, such as bicycle or pedestrian crossing volumes, 
total number of bicyclists and pedestrians entering the intersection, and distance or time traveled 
[5]. However, data collection efforts (both household survey and sensor-based location count data) 
require resources (budget and time), and it is only feasible to collect data from limited locations 
and time periods. Bicyclists and pedestrian demand or exposure to crash risk can also be quantified 
through various modeling-based methodologies utilizing available short/continuous counts and 
household survey data, such as direct (facility) demand models, regional travel demand models, 
geographical information system (GIS)–based models that heavily use GIS tools and GIS-based 
measurements in determining activity levels, and so forth [5]. The selection of a modeling 
approach often warrants a trade-off consideration in terms of complexity or resource requirements 
(time, budget, staff, data, etc.) and accuracy or reliability of estimation [3]. 

In the last few years, researchers and transport planners have steered their attention toward 
emerging technology-based methods, such as Global Positioning System (GPS)–enabled 
smartphone apps, wearable tech, interactive websites, and bike-share systems, as a source of 
nonmotorized activity data. These crowdsourced or big data sources, characterized by their 
volume, velocity, and variety [22], offer great potential to understand the detailed spatiotemporal 
travel patterns of nonmotorized traffic at an unprecedented level of detail [23]. However, they are 
often blamed for lacking quality assurance and representativeness [24, 25] and considered 
inadequate without validation from an actual location count [26]. Therefore, rather than 
recognizing these activity data as a reliable exposure measure, researchers have sidelined the 
sources as a potential proxy solution [27] to provide complementary information regarding 
nonmotorized activity in an area. The above discussion of existing approaches of estimating 
exposure, be it the observed count, models, or crowdsourced data, underscores the promising 
potential of the fusion approach, which, when rightly adapted, can combine strengths and decrease 
uncertainties associated with individual sources in order to provide a better understanding of the 
trend and pattern of nonmotorized activity. 
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There is an abundance of research investigating numerous fusion frameworks. As discussed in 
various studies in the literature [e.g., 28–30], the selection, customization, and application of fusion 
methods for combining nonmotorized activity data sources require a thorough understanding of 
the inherent characteristics of the data sources and situations. The process also necessitates 
comprehending the characterization and application of the existing fusion mechanisms. 
Nonmotorized traffic activity data exhibit unique characteristics, in contrast to motorized traffic 
data, and the methods and steps for computing motorized traffic states cannot be directly adopted 
in nonmotorized traffic areas. The choice of fusion mechanisms for nonmotorized traffic data is 
likely to be dictated by two key factors: (a) varying temporal, spatial, and population representation 
and data structure of the sources; and (b) limited sample size. Regarding the first factor, 
nonmotorized traffic data sources are seldom at the same resolution (spatial, temporal, or 
population) and are most often generated in different data formats. This warrants processing of 
individual sources to reach a homogenized representation before any fusion effort. The processing 
steps and complexity depend on the format of the raw data and the scope of analysis. This issue, 
coupled with the second key factor (limited sample size), calls for eliciting appropriate fusion 
methods that can adapt and accommodate the characteristics of the nonmotorized traffic data 
sources considering the constraints and add value to practical application. 

Although an in-depth literature review on nonmotorized traffic data and fusion approaches was 
conducted to provide a rationale for the selection and design of the fusion mechanisms adopted for 
this project, that information is not included herein to maintain brevity. The in-depth literature 
review will be available in an upcoming manuscript entitled “Understanding Nonmotorized Data 
and Fusion Mechanisms for a Better Demand/Exposure Estimate.” 

Research Objectives and Steps 
The main objective of this research was to generate a robust exposure estimate—fusing multiple 
nonmotorized activity data sources and demonstrating the efficacy of the developed fusion 
mechanisms—to incorporate in crash analysis. The research was performed in three sequential 
stages: 

1. Process nonmotorized traffic data sources at a given scope for the study area. 
2. Develop and apply the fusion framework. 
3. Apply fused estimate for crash analysis. 

The tasks within these stages are described in detail in the following three sections of the report. 
The first section describes the design of a guideline for homogenizing multiple data sources under 
various scopes of estimation and then discusses the mechanism of processing or modeling multiple 
bike-related data to estimate demand in the study area. The second section presents the selection, 
proposition, and demonstration of the applicability and efficiency of multiple fusion algorithms 
utilizing both actual and simulated data. Two novel fusion methods accommodating the practical 
constraints of data availability and context are proposed. The third section presents the application 
of the fused estimate in both macro and micro crash analyses to the study area. 
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Process and Homogenize Nonmotorized Activity Data 
 

 

Introduction 
Because nonmotorized traffic data sources are generated in different formats and structures (as 
reported in Appendix A), it is imperative to process those data to obtain a homogeneous 
representation. In recognition of the fact that there is no clear guidance on how different data 
sources can be brought together to compute volume or exposure within a prespecified scale, a 
conceptual framework was designed to help outline the steps and aspects of processing and 
homogenizing multiple nonmotorized traffic sources of different structures. The key steps of the 
framework are: 

Step 1: Select the study area. 
Step 2: Gather available data sources and identify the data structure. 
Step 3: Determine the scope of estimation. 
Step 4: Analyze/model data sources to obtain homogenous representation. 

The steps, as well as the premise for selecting the scope/unit of estimation for the case study, are 
explained in detail in Appendix A. The following sections summarize the methods and findings. 

Methodology 
For this project, the city of Austin was selected as the study area given its recent endeavors to 
adopt a holistic approach to increase safety and mobility for pedestrians and bicyclists and the 
Vision Zero initiatives [31]. With an area of 326 square miles, Austin accommodates a population 
of over 996,369 [32]. Downtown Austin, which is located on the north bank of the Colorado River, 
is the central business district of the city. The University of Texas (UT) at Austin, accommodating 
over 50,000 students, is located north of the downtown area. Although the eastern part of the city 
is flat, the western part contains some hilly terrain. The city is also home to several natural and 
man-made lakes. By its very nature, the city is diverse in terms of age, culture, income, and built- 
environment characteristics, and it has experienced a steep rise in the degree of socioeconomic 
spatial separation over the last few decades. Despite being heavily car dependent, especially in 
suburban neighborhoods, the city has observed a significant increase in bicycle commuters in the 
last few years. The city’s strong commitment to its Vision Zero goals and long-term planning to 
improve nonmotorized infrastructure make Austin an excellent case study for this research. 
Although the data analysis and fusion framework outlined in this report are apt to accommodate 
both pedestrian and bicycle traffic, the case study concentrated on bike data only. 

From the study area, five primary data sources relevant to bike activity were gathered: (a) actual 
bicycle volume counts (permanent and short count), (b) bicycle-sharing data, (c) National 
Household Travel Survey (NHTS) add-on data, (d) Strava data, and (e) StreetLight data. The 
sociodemographic and land-use data for building models were obtained from the American 
Community Survey (ACS), Austin Transportation Department, and other public data domains. The 
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selected scope of estimation was the annual average daily bike (AADB) volume at intersections 
(however, the framework developed in this study is scalable and can be applied at other geographic 
scales such as midblock locations). The rationale behind the selection was the fact that the metric 
is a widely accepted policy-relevant unit of demand representation for both planning and safety 
analysis [33]. Moreover, a large proportion of crashes occur at intersections in the study area [34]. 
Therefore, by providing insights into the intersection-level bicycle volume, this study could 
contribute to the efforts of city officials to design focused policies and effective safety 
implementation plans. 

The five key datasets represented bike activity at various spatial, temporal, and subpopulation 
scales. Each of the raw data sources went through exhaustive processing to compute AADB at the 
intersections in the study area, which consisted of 2,518 intersections, both signalized and 
unsignalized. Actual observations from both short and continuous counts were processed to 
estimate AADB at 44 intersections, which served as the ground truth data to process and validate 
the models. Five demand models—whose outputs served as the inputs of the fusion framework— 
were developed, including (a) direct demand model (DDM), (b) four-step model, (c) bike-sharing 
model, (d) Strava model, and (e) StreetLight model. Appendix A provides details of the data 
processing and model development together with references to additional resources. 

Findings 
Because the output from the five models was to be used as the input for fusion, it was imperative 
to discern the distribution, skewness, and coverage of the AADB estimates. Overall, the AADB 
estimates from the models were found to be in the range from 0 to around 1,400. The intersections 
with high bike volume were generally concentrated in the downtown area. The estimates from the 
five demand models were consistent with the actual count data—illustrating a high concentration 
(maximum of 1,282 riders) of bike ridership in downtown Austin. As noted earlier, details of the 
model results as well as the spatial distributions of the AADB estimates from each of the five 
demand models are available in Appendix A. It is also important to note that since the locations of 
counts were identified based on the city’s bicycle route map, the counts are drawn from locations 
within the limits of the map and do not include areas farther into the suburban regions. 

The DDM generated estimates for the maximum number of intersections (2,518), where the 
minimum volume was 15 and the maximum was 1,398. The bicycle-sharing model estimated bike 
activity in 793 intersections located near the bike-sharing stations in the central regions. The four- 
step model provided estimates for 2,397 intersections. Strava and StreetLight data were available 
for 2,303 and 950 intersections, respectively. 

Figure 1 presents the distribution of the estimated AADB from the five models. The figure shows 
that the volume distribution was right skewed. The majority of the estimates were found to be 
under 300 AADB. The mode of distribution for the bike-sharing model estimates was between 0 
and 100 AADB. For the other four models, the peak was at the 100 to 200 AADB bins. Only a few 
observations were reported for AADB exceeding 800. 
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Figure 1. Chart. Frequency distribution of AADB estimates from five sources/models. 

Develop and Apply Fusion Framework 
 

 

Introduction 
The application of the fusion concept in myriad areas has proliferated a wide range of 
terminologies, such as data fusion, sensor fusion, information fusion, evidence fusion, and decision 
fusion, which, although often used interchangeably due to the lack of standardized categorization 
and/or consensus, illustrate the distinct differences within the approach (e.g., theory, systems, 
frameworks, methods) [35]. Because there is no universal framework for fusion mechanisms, over 
the years researchers have proposed several generic and customized platforms accommodating the 
inherent attributes of the system. The task of designing and implementing a fusion framework is 
complex and warrants the comprehension of several aspects, including fusion architecture and 
algorithm selection, software implementation, and validation [36]. 

The literature review completed for this project (presented in detail in an upcoming manuscript 
“Understanding Nonmotorized Data and Fusion Mechanisms for a Better Demand/Exposure 
Estimate”), examined the characterization and inference process of the existing fusion practices, 
elucidating multiple aspects (e.g., data generation process, output type, sample size) that entail the 
choice and formulation of the plausible fusion mechanisms for nonmotorized demand. After 
discernment of the characteristics and dynamics of nonmotorized activity data and demand output, 
decision fusion was adopted in this project. Decision fusion is a mechanism of combining 
information wherein a decision from each source has been classified individually to obtain a 
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unified decision [37, 38]. It is a high-level fusion mechanism, often taking symbolic 
representations of events and activities, and used to obtain a more accurate decision accounting 
for the uncertainties and constraints [39]. The approach has been utilized for fusing motorized 
traffic data to estimate travel time, traffic state, origin-destination (OD) matrices, and more [10, 
40, 41]. 

Fusion Algorithms for Nonmotorized Activity Data 
The ultimate goal of any fusion is to produce estimates that are superior to the individual source 
estimates. The key operative word here is “superior,” which implies completeness, accuracy, or a 
mix of both. While the completeness can be evaluated by comparing the coverage (for example, 
spatial coverage), the superiority of the accuracy can be demonstrated by showing that the accuracy 
of the fused estimate is higher than the best individual source. The domain of decision fusion is 
vast, and the algorithms vary across strength, weakness, and application [37, 38]. While there is 
no doubt a need for developing a robust state-of-the-art statistical approach for consolidating 
knowledge from various nonmotorized traffic data sources, it is also imperative to bring attention 
to the practical constraints and limitations of nonmotorized information. Therefore, during the 
development of the decision fusion framework for nonmotorized activity, two aspects were 
deemed crucial: (a) the type of output provided by the sources/models, and (b) the use of ground 
truth data. 

Nonmotorized demand models are likely to generate knowledge or information as the abstract 
(crisp) level output, meaning ranking or confidence measures are not associated with the estimates 
[42]. Moreover, given the resource requirements of gathering on-site nonmotorized activity data, 
which should serve as ground truth or benchmark information for generating some fusion models, 
the information may not always be available. Thus, some practical scenarios may call for the option 
of fusion algorithms that do not demand ground truth information. In addition to these two issues, 
other features of nonmotorized information, such as incompleteness and conflicting cases, were 
also contemplated. 

After the aforementioned issues were ascertained, multiple decision fusion mechanisms were 
adopted, which were then categorized into two types: (1) fusion without benchmark data, and (2) 
fusion with benchmark data. In the first category, three traditional fusion algorithms, under the 
rationale of the voting method, were illustrated. Then, a novel approach was proposed that uses 
the rationale behind the traditional weighted majority approach but generates decision weights 
without using the ground truth data. In the second category, the fusion framework applies a state- 
of-the-art statistical approach—the Dempster Shafer Theory (DST) method—which requires 
benchmark data but is adequate to accommodate the often incomplete and conflicting 
nonmotorized demand output with a mechanism of handling uncertainty involving ambiguity (or 
ignorance) and conflict [43]. The DST framework utilizes belief measures to allocate degrees of 
support to one or multiple hypotheses instead of one mutually exclusive outcome, as in the 
probability theory [43]. Unlike Bayesian methods, DST can handle decisions of different 



8 

 

granularities of classification at the same time and allow the modeling of ignorance and missing 
information [13, 44]. In this research, the basic DST was reinforced, incorporating a robust belief 
assignment method based on both a precision and recall matrix [45] and a conflict discounting 
mechanism based on Jousselme distance [46, 47]. 

A novel DST with context credibility is proposed to incorporate discounting factors based on 
contextual situations (such as spatial location, temporal scale, etc.) of an object or activity. The 
incorporation of “context” can be used to improve fusion outcomes and is deemed particularly 
important for the fusion of nonmotorized traffic data, which exhibit significant variation based on 
spatial location, as discussed in Munira and Sener [26]. Dey noted that “while most people tacitly 
understand what context is, they find it hard to elucidate” [48]. Dey and Abowd defined context 
as “any information that can be used to characterize the situation of an entity. An entity is a person, 
place, or object that is considered relevant to the interaction between a user and an application, 
including the user and application themselves” [49]. The process of discerning context for 
traditional context-aware research can be based on automatically acquired information or be done 
manually. In real-world applications, context detection or sensing mostly relies on manual input 
(rather than an automated process) and requires profound understanding of the data dynamics and 
inherent situations [49]. The DST fusion with context credibility thus provides a valuable method 
for combining information in multiple data fusion application areas, as in the case of the current 
study, due to its ability to incorporate human subjectivity with mathematical probability [13]. 

Given the spatial variability of nonmotorized traffic data across the sources, the spatial feature of 
the estimates from each source was determined to serve as the context in the fusion algorithm 
developed in this study. Temporal variability is also essential in nonmotorized demand data but 
was beyond the scope of the current research due to the unavailability of relevant data to investigate 
the influence of temporal features as context. To the authors’ knowledge, this research provides a 
first study within the decision fusion domain that incorporates the situation or context of sources, 
derived from subjective judgment, to refine the fusion algorithm. The contextual discount, based 
on Grey theory [50, 51], is also expected to add value to other areas of research in addition to 
nonmotorized traffic. This is especially the case when the sample size is a constraint and the 
potential for variability in reliability of the sources exists across one or multiple contexts of an 
entity or object. 

While theoretically both the traditional and novel approaches are deemed well founded and 
promising, it is imperative to observe the performance of the approaches when they are applied to 
real data. It is also necessary to elucidate the application of the fusion framework to address the 
critical question of when or under what scenario the fusion methods are suitable for the application. 
Due to the unavailability of adequate ground truth data, the actual volume information (from 44 
locations) was used to assess the volume estimates (from the five models explained in the previous 
section) for explaining the application and interpretation of the voting algorithms. In order to 
examine the performance and efficaciousness of the DST algorithms, simulated datasets 
conforming to real data characteristics and context were generated. 
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Details on the mathematical formalism and validation of the algorithms will be available in an 
upcoming manuscript entitled “Decision Fusion for Nonmotorized Traffic Data and Dempster 
Shafer with Context Credibility: Framework and Validation.” A brief summary of the outcomes is 
presented in the following subsections. 

Fusion Without Benchmark Data 
The fusion mechanisms without benchmark data included four voting algorithms: 

 
• Unanimity voting (a decision is made when all sources agree on the decision/class label). 
• Simple majority voting (a decision is made when at least a majority of the sources agree 

on the decision/class label). 
• Plurality voting (a decision is made based on the most voted label). 
• Novel weighted voting (the proposed approach considers the pairwise interaction of the 

data sources to quantify the dissimilarity of sources from each other and assign weightage 
on each decision before fusion. This is basically the framework of weighted majority 
voting but without ground truth information. To measure the pairwise dissimilarity and 
compute the weight of each source, the concept of Euclidian distance was utilized). 

Outputs from five sources (bike demand models) were fused using the voting algorithms. Since 
the decision fusion framework was developed within the classification problem domain, the first 
task in the process was to categorize or assign class labels to the estimates. In other words, the bike 
volumes were categorized in multiple categories denoted as class labels. Four class labels, 
reflecting the distribution of the datasets (Figure 1) and ensuring adequate observation in each of 
the categories, were assigned to the model outputs: < 100 AADB, 100 to 250 AADB, 251 to 
400 AADB, and  > 400 AADB. 

Although the actual bicycle volume count data (from 44 locations) were utilized as the ground 
truth data, it would not be meaningful to consider this process as a validation exercise with 
reasonable confidence due to the limited sample size. The City of Austin was contacted in March 
2021 to confirm the unavailability (as of that time) of updated counts for nonmotorized traffic. 
Moreover, in the ideal case (when the analysts have the option to separate the validation dataset 
from the training dataset), a separate validation dataset is desirable to conduct a true evaluation. 
Thus, this process was instead used to draw insights and gain understanding of how each of the 
models and the voting algorithms were performing. Table 1 presents the deviation of the individual 
model outputs from the actual bicycle volume count data (i.e., accuracy) along with their coverage. 
The DDM exhibited the highest accuracy, while the bike-sharing model had the lowest accuracy 
for the study area. Intuitively, a fusion algorithm can be considered effective when the accuracy is 
higher than that of the DDM (best individual source). In addition to the accuracy, it is also essential 
to examine the detection rate (or coverage) of each fusion method because the goal is to obtain 
high-accuracy estimates for the maximum number of intersections. Thus, it is essential to evaluate 
both the detection accuracy and overall accuracy of the algorithms. 
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Table 1. Accuracy and Spatial Coverage of the Sources 
 

Model Number of Intersections Overall Accuracy (%)a 

DDM 2,518 59 

StreetLight Model 950 52 

Strava Model 2,303 50 

Four-Step Model 2,397 41 

Bike-Sharing Model 793 27 
a The accuracy is calculated as the percentage of correctly predicted samples in all categories. 

Figure 2 presents the detection rate and accuracy among the detected AADB volumes of each 
voting fusion approach. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Chart. Detection rate and accuracy (among detected AADB) of the voting approaches. 

The results indicated that the unanimity voting approach had the lowest detection rate (for the 
entire study area) yet the highest accuracy among the detected estimates. This finding is intuitive 
because to reach a decision for unanimity, each of the sources has to agree. The trade-off between 
detection rate and accuracy for the first four voting approaches is also made apparent in the figure. 
The novel weighted voting approach allocated AADB at all the intersections of the study area with 
a detection accuracy of 57%. Therefore, the evaluation suggests that the novel weighted approach 
exhibits decent performance considering the detection rate and the detected accuracy. However, if 
the analyst prefers accuracy over coverage, the unanimity and simple majority voting approaches 
may be regarded as potential options. 
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Based on evaluation of the overall performance of the approaches and comparison of each with 
the best individual source (as shown in Figure 3), the novel weighted voting approach exhibited 
slightly lower accuracy (57%) compared to the best individual model, the DDM (59%). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Chart. Overall accuracy of the voting fusion approaches. 

In light of the limited sample of the validation data for the current case study, although the finding 
may not be intriguing from an accuracy point of view, the value of this approach can be 
highlighted, underscoring the fact that the method can be applied when the analyst does not have 
any knowledge of the accuracy of the individual sources. The application of the novel weighted 
method, although with no significant increase in accuracy, may instill confidence in the estimate, 
which is another objective of the fusion endeavor. Also, when applied to the simulated scenarios, 
as described in the next section, the novel weighted method outperformed the individual estimates 
for the first scenario and produced similar accuracy estimates, compared to the best individual 
source, for the third scenario. 

The results of this application agree with the literature, which suggests that a fusion endeavor may 
not always outperform the individual estimates. Nevertheless, given the limited availability of the 
actual count data (or ground truth data), fusion for nonmotorized traffic data is more likely to 
depend on and align with the subjective discernment of the analyst. When an individual model or 
crowdsourced data fail to convey adequate confidence, the analyst can choose to select two or 
more sources to perform a fusion and select the estimate deemed the most reasonable. Thus, the 
main contribution of the approach is imparted from the fact that it provides the analysts an option 
to utilize their knowledge of the local community and the data to either use the individual estimates 
or opt for the fusion approach to obtain a better estimate with increased confidence. 
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Fusion with Benchmark Data 
The DST approach was validated using simulated data since the size of the ground truth data were 
not deemed adequate to evaluate its performance. The purpose was to empirically test the 
performance of the DST approaches, both traditional and novel, by applying them on a set of 
artificially generated datasets with different intrinsic characteristics. The goal was to gain an 
understanding of which strategy, under what condition, performs the best. The simulated datasets 
also allowed for creation of multiple scenarios to examine the range of outcomes and understand 
the potential factors that contribute to the performance of the algorithm. Four distinct questions 
were formulated in the evaluation process. These questions were relevant to nonmotorized activity 
data characteristics and local situations to which the simulated scenarios were expected to respond: 

1. Does the fusion algorithm always provide a better estimate? 
2. Is more (number of sources) always better (for fusion estimates)? 
3. Is the fusion estimate sensitive to the degree of context credibility discount? 
4. Is the fusion estimate sensitive to categorization or class labels? 

To address these questions, three main scenarios, each containing two sub-scenarios, were created. 
Each scenario was developed with three simulated datasets of varying accuracy and missing case 
situations. As discussed earlier, the context credibility proposed in this study depends on the 
subjective discernment of the analyst. During creation of the datasets, careful attention was given 
to instill contextual accuracy differences in the sources—with context captured through the spatial 
variability introduced by the location of the intersections. The reliability of the actual model 
estimates was reviewed with respect to their accuracy in and outside the downtown area, which 
showed notable variations based on the locations and an improvement in the downtown area across 
all sources. In an effort to replicate the actual data-based models, each of the simulated datasets 
was then divided into two sets, context 1 and 2, where the accuracy varied. 

The three key scenarios were: 
 

• Scenario 1: No missing observations, fairly similar accuracy across the sources 
• Scenario 2: No missing observations, a varying level of accuracy across the sources 
• Scenario 3: Each source has missing observations, a varying level of accuracy across the 

sources 

For each sub-scenario, models were built for two categorizations or class labels, mainly to examine 
if the algorithms were sensitive to categorization type. Four class labels were assigned to the first 
category: < 100, 100–250, 251–400, and > 400. Twelve class labels were assigned to the second 
category: < 50, 50–100, 101–200, 201–300, 301–400, 401–500, 501–600, 601–800, 801–1,000, 
1,001–1,200, 1,201–1,400,  and > 1,400. 

 
To evaluate and compare the performance of the DST algorithms, this research adopted a five- 
fold cross-validation method, maintaining a balanced trade-off between bias and variance while 
minimizing computation effort. For comparison, the partitioning was kept the same across all 
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individual sources and the fusion estimates. The final accuracy was computed by averaging the 
estimated accuracy of each fold. The scenario also assessed the sensitivity of the DST fusion- 
based context credibility, β, where β is the degree of discount due to context credibility estimated 
using Grey theory. Three values of β (0, 0.5, and 1) were tested, where the optimal value of β > 0 
indicates that the proposed discount due to context credibility is effective and superior to the 
basic DST. Figure 4 presents the result of the scenario analysis using the DST method, reporting 
the accuracy gain/loss for optimal values of β. 

 

 
Figure 4. Chart. Accuracy gain or loss for three scenarios and two categorizations. 

To examine if more is always better, the six scenarios were evaluated again after removing the 
lowest accuracy sources. The results showed that for Scenario 2, removal of the source that had 
considerably lower accuracy than the other two sources improved the accuracy of the fusion, 
meaning two-source fusion is better than both individual estimates and three-source fusion. 

β= 1 
Overall, the scenario analysis results suggest the following key takeaways: 

 
• Fusion accuracy is sensitive to categorization type, meaning for a dataset, the fusion 

effort may yield an accuracy gain for one label but not for the others. 
• The accuracy gain varies with the degree of conflict (λ) and context credibility (β). 
• Even for the same dataset, the optimal values of λ and β may vary with the categorization 

label. 
• Adding more sources may not necessarily yield improvements in the fusion. However, if 

there are missing values in the individual sources, even a comparatively lower accuracy 
source may add value to the fusion process. 

Summary 
The main objective of the research described in this section was to demonstrate the effectiveness 
of the fusion framework formulated for consolidating nonmotorized activity data. The novel 
weighted voting fusion algorithm proved to be an effective method of fusion, especially when the 
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analyst has no prior knowledge about the reliability of individual sources. In the scenario where 
local agencies do not have adequate actual count data but have access to various model outputs 
and crowdsourced datasets with enhanced coverage, voting approaches, both traditional and novel 
weighted, may be advantageous to obtain better coverage, thus instilling higher confidence in the 
estimates. This section also demonstrated the application of the DST mechanisms on the simulated 
data that conformed to real-world nonmotorized activity data characteristics. The most important 
finding is that in the majority of cases, the use of fusion methods outperforms the maximum 
individual source performance. The optimal value of β > 0 asserts the superiority of incorporating 
a contextual discount in the DST, as proposed by the study. In addition to nonmotorized fusion, 
the concept of context credibility can be used in other areas of fusion when deemed necessary. 

Overall, the results of this numerical experiment lead to the conclusion that the performance of 
fusion firmly depends on the fusion method coupled with the data and situation characteristics. 
The findings presented in this section address the critical question of which fusion method, under 
what condition, can outperform individual estimates. There is no optimal categorization or β value 
that can accommodate all data situations. The future application of the fusion approach requires a 
deep understanding of the data, situation, and sensitivity of the fusion models for varying β to 
obtain the optimal combination for a given categorization. Thus, the findings of this research are 
expected to help analysts derive the best course of action regarding nonmotorized activity data 
fusion based on the available knowledge and local context. 

Apply Fused Estimate for Crash Analysis 
 

 

Introduction 
This section presents the application of the fused exposure estimate (through a novel weighted 
voting approach) via the development of two separate crash models. The macro-level model 
aggregated the intersection AADB volumes into block groups to compute average zonal exposure 
with a goal of facilitating crash hot-spot analysis in the study area. The micro-level model 
examined individual safety perceptions of deterrents to biking and relating it to intersection bike 
activity (exposure) in the immediate neighborhoods. 

Macro Crash Model 
Background 
Area- or macro-level safety analysis is pivotal to recognizing safety problems in a larger area to 
facilitate long-term policy planning to reduce crashes [52]. This research concentrated on 
examining traffic crash patterns at the block group level in Austin, recognizing statistically 
significant hot spots or high-risk locations for bicycle crashes. Among various crash evaluation 
measures [53–55], this research adopted the weighted crash rate by injury severity metric for two 
reasons. First, the metric complies with the crash score measure proposed by the City of Austin 
for identifying and prioritizing locations warranting safety treatments for pedestrians [56]. Second, 
it allows incorporating exposure related to bike volume. Although a handful of studies have 
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conducted hot-spot analysis for nonmotorized traffic [e.g., 57, 58], most have relied on associated 
vehicular volume or population measures, noting the unavailability of nonmotorized volume- 
related exposure data (see [55] for an example study incorporating crowdsourced Strava data as 
an exposure measure in a macro-level examination of nonmotorized crashes). 

Data and Methodology 
The traffic crash data for this study were taken from the Texas Department of Transportation’s 
(TxDOT) Crash Records Information System (CRIS) [59] and included the disaggregated crash 
data, with coordinates, for all modes within the study area. CRIS also reports the severity of crashes 
(not injured, possible injury, non-incapacitating injury, incapacitating injury or suspected serious 
injury, and killed). For this study, the crashes involving bicycle traffic for an analysis period of 5 
years (2014–2018) for each severity type were identified and aggregated into the block groups of 
Austin. 

The weighted crash rate by injury severity (WCRIS) measure [60], as denoted in Equation 1, for 
each block group was estimated, allocating higher weight to serious injury and fatal crashes. The 
weights used in the WCRIS measure were adapted from the crash score measure proposed by the 
City of Austin Pedestrian Safety Action Plan [56]. The zonal (block group level) exposure was 
estimated by averaging the fused AADB for all intersections within the block group. To do so, the 
mid-value of each AADB category was taken and divided by the number of intersections in the 
zone. 

 

𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖∗1+𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑁𝑁𝑁𝑁 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖∗1.5+𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝𝑆𝑆𝑆𝑆 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖𝑝𝑝𝑝𝑝 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖∗1.75+𝐹𝐹𝐹𝐹𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖∗2 
Zonal Exposure 

(1) 
 

The WCRISs in the block group were then fed into the optimized hot-spot analysis algorithm in 
ArcGIS, a spatial tool that uses the Getis-Ord Gi* algorithm [61] to identify statistically significant 
clusters of hot spots (high-concentration sites surrounded by other high-concentration sites) and 
cold spots (low-concentration sites near other low-concentration sites). 

Findings 
The analysis reported the hot spots and cold spots that were significant at the 99%, 95%, and 90% 
confidence levels. Appendix B exhibits where the high or low crash-risk locations were spatially 
clustered. The findings confirmed that hot spots generally appeared in the central downtown region 
of the city. There were also pockets of block group cold spots in the relatively outer area at the 
northern region (Cedar Park and Wells Branch) and southwest region (Barton Creek). Notably, 
much of the Austin region outside the downtown area lacked any statistically significant hot or 
cold spots. 

Conclusions 
Hot-spot analysis, albeit a simple and well-established practice, is still considered crucial given 
the fact that accurate identification of high-risk areas is essential for formulating engineering 
improvements to reduce crashes. Errors in hot-spot identification may lead to false negatives, 
meaning truly hazardous areas incorrectly designated as safe, as well as false positives, meaning 
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safe sites incorrectly designated as hazardous [54, 62]. The bicycle crash hot-spot identification 
method in this study, considering the local practice of allocating severity weightage and 
incorporating bicycle exposure measures, is expected to facilitate efficient resource management 
strategies to attain Austin’s Vision Zero goals through long-term planning. 

Micro Crash Model 
Background 
While the conventional approach to nonmotorized safety planning emphasizes the analysis of 
crashes at intersections or zonal areas, planners and policy makers are increasingly acknowledging 
the importance of proactively recognizing the factors affecting an individual’s safety-related 
perceptions regarding biking and walking. Previous studies have already indicated that people’s 
choice to walk or bike is likely influenced by both objective and perceived built-environment and 
traffic-safety-related aspects of the neighborhood [63–65], although perception often does not 
coincide with objective quantity [66, 67]. Perception is also likely to be affected by a number of 
personal attributes, such as income, gender, culture, norms, and experiences [68, 69]. An 
understanding of personal and environmental attributes influencing people’s perceptions is crucial 
for formulating need-based intervention for long-term impact. 

To investigate people’s perceptions regarding safety-related impedances to biking, this research 
took advantage of the 2017 NHTS survey, which sought to obtain information about issues that 
influence the frequency of walking and biking [70]. The individual issues were associated with the 
built-environment features of the neighborhoods around individuals’ home locations in addition to 
their demographic characteristics. Furthermore, the study specifically focused on the effects of 
bicycle exposure in terms of maximum AADB at a buffer zone around the household location. The 
rationale of the study stemmed from the hypothesis that an individual’s subjective perception of 
the safety-related deterrent of biking may be formulated by the biking activity or exposure of their 
neighborhood. 

Data and Methodology 
The primary data source for this research was derived from the 2017 NHTS TxDOT add-on data. 
In the 2017 NHTS data, respondents who had at least one bike trip in the past week were asked 
which of the following keeps them from biking more: (a) No nearby paths or trails, (b) No nearby 
parks, (c) No sidewalks or sidewalks are in poor condition, (d) Street crossings are unsafe, (e) 
Heavy traffic with too many cars, (f) Not enough lighting at night, (g) None of the above, (h) I 
don’t know, and (i) I prefer not to answer [71]. Among these, four issues (c, d, e, and f) were 
identified as safety-related reasons for not biking more and constituted the focus of the models. 

To achieve the objective of the study, binary logistic regression models were developed, where the 
response of the individual (if a particular issue was the reason for not biking more) served as the 
dependent variable. To ensure adequate sample size, the four issues were aggregated into two 
groups for developing models: (1) street crossings unsafe, or heavy traffic with too many cars; and 
(2) no sidewalks or sidewalks in poor condition, or not enough lighting at night. In the Austin area, 
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a total of 1,095 households (2,185 persons) participated in this survey, among which 225 
respondents (of age greater than 16) had at least one bike trip in the past week of the survey. While 
95 of these respondents identified the first group of issues keeping them from biking more, 45 
indicated not biking more because of the second group of issues. 

In addition to various individual, household, and trip-related variables, the NHTS add-on also 
offers data with respondents’ geocoded home address, which was used to generate buffer areas 
around each respondent’s home location. The explanatory variables were developed from the built- 
environment characteristics for three buffer zones (0.1, 0.5, and 1 mi) around the household 
location and sociodemographic characteristics of each respondent. The exposure variable was 
generated from the fused AADB, indicating the maximum bike volume around the buffer scale of 
each individual’s home location. The AADB was divided into three categories: low (less than 250), 
medium (251 to 400), and high (above 400). 

Findings 
Appendix C presents the results of the two binary logistic regression models. The results of both 
models indicate the importance of incorporating the bike exposure variables from both statistical 
and practical interpretation perspectives. The likelihood ratio test values for comparing the final 
models with the corresponding intercept-only models were much higher than the critical chi- 
squared value with 7 degrees of freedom at any reasonable level of significance. Also note that the 
log-likelihood value at convergence of the models using the DDM estimates as the bike exposure 
measures was lower than the log-likelihood value at convergence of the final models with the fused 
estimate. The log-likelihood ratio test values for comparing these latter models also indicate the 
superiority in fitness of the final models with the fused estimate. 

The first model results suggest that people living in an area with high traffic volume and mixed 
land use were more likely to choose unsafe streets as the reason for not biking more. For the 
demographic variable, individuals who biked frequently (three times or more in a week) and used 
public transport (at least once in a month) identified the deterrent of unsafe streets significantly 
more than the other options. Also, the findings indicated the higher tendency of women toward not 
biking more due to unsafe street crossings and heavy traffic with too many cars. Interestingly, 
individuals living in lower bike traffic neighborhoods had significantly more complaints about 
unsafe streets than others. The second model had both similarities and differences with the first 
model, emphasizing the importance of better understanding individuals’ perceptions in bicycling 
decisions. Regarding sidewalk and lighting conditions, reluctance to bike more was associated 
with a lower number of streetlights and higher occurrence of bike crashes. Individuals who walked 
for exercise more frequently or who used public transport (at least once in a month) were more 
likely to identify the issues related to neighborhood infrastructure as a reason for not biking more. 
Higher-income individuals ($100,000 and above) had significantly fewer complaints about 
sidewalk and lighting conditions as a deterrent for biking more frequently than others. Finally, the 
bike exposure variable highlighted significantly more complaints among individuals living in high 
bike traffic neighborhoods than individuals in medium- and low-traffic neighborhoods. 
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Conclusions 
Overall, the best model was obtained with variables of different buffer levels. Both models suggest 
the significant influence of sociodemographic and built-environment characteristics on people’s 
reasons for not biking more. Individuals who bike more frequently or who are more physically 
active are more likely to acknowledge the impedances to nonmotorized activity. Interestingly, 
respondents’ subjective perceptions were consistent with the objective characteristics of their 
home neighborhoods, probably because the responses only included individuals who biked more 
or less frequently and had a better understanding of their surroundings. The notable conclusion of 
the model is that individuals’ perceptions are associated with the location where they live. The 
direction of influence of the bike exposure variables provided important insights. The finding from 
the first model can be associated with the theory of safety in numbers [72, 73], suggesting that 
individuals feel safer when they are exposed to greater numbers of other bicyclists on the road in 
their neighborhoods. The finding from the second model can be related to individuals’ increased 
sensitivity and demand toward infrastructure—in terms of better sidewalk conditions and adequate 
lightning—with increased level of cycling in the area. 

While we have demonstrated example applications of crash models at the micro and macro levels, 
several other applications are also possible, such as development of micro-level crash models to 
identify risk factors at intersections [e.g., 74, 75]. 

Summary and Conclusions 
 

The study presented in this report contributes to both research and professional practice by tapping 
the emerging research territory of fusion for nonmotorized traffic. A fastidious approach was 
undertaken to seek a generalizable fusion solution for nonmotorized demand computation. A major 
effort in this project was expended to understand the intrinsic characteristics of nonmotorized 
activity data and models and explore relevant and accommodative fusion mechanisms to facilitate 
safety-focused decision-making and infrastructure planning. 

Because there was no clear guidance of how different data sources—including both traditional and 
crowdsourced—can be processed and brought together to compute nonmotorized exposure within 
a facility or area, a conceptual framework was developed for analysis. The bike demand models 
developed for this project not only illustrated the use of different datasets of varying forms and 
resolutions to bring into a homogeneous estimate at the micro level (intersection), they also shed 
light on the characteristics and aspects of bicycle activity. For example, the DDM developed for 
this research took the traditional approach to the next level by incorporating a “bikeability” index 
that can facilitate the modeling approach even when only limited count data are available. The 
model itself was reported as a reliable source of volume estimate for the entire study area, 
exhibiting high performance in terms of accuracy and goodness of fit. Moreover, some of the 
variables provided unique insights into bike travel behavior within the city, such as the significant 
and positive influence of the presence of bike signals and bike-accessible bridges. Additionally, 
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Strava and StreetLight data were examined, providing insights into the potential use of 
crowdsourced data in transportation studies, especially when resources are limited. In summary, 
the findings benefit stakeholders by explaining the determinants of bicycle activity within the 
region, thus providing guidance to formulate effective strategies, training, and educational 
programs geared toward creating a friendlier environment for bicyclists. 

From a theoretical perspective, the DST fusion approach with credibility context, as proposed by 
this study, offers a unique way to incorporate the subjective judgment of experts in mathematical 
fusion formulation. The experiment on the simulated data, where the proposed approach 
outperformed the traditional approach in many scenarios, underscores the merit of the mechanism, 
not only for nonmotorized activity data analysis but also for application in other areas where an 
analyst’s subjective judgment calls for considering context for belief refinement in the DST 
algorithm. The novel weighted approach is also expected to add value in fusion endeavors when 
no ground truth data are available. Nevertheless, the proposed fusion framework promotes data- 
driven safety analysis and informed planning while enhancing the strategic use of available 
information. Future research may explore other fusion algorithms, such as ensemble learning- 
based fusion, when more crowdsourced data are available. Also, this study considered the location 
of the intersections as context; based on a subjective judgment of local conditions, incorporation 
of additional context in the fusion, such as at the temporal scale, would be beneficial to investigate 
in future studies. Finally, the research demonstrated the applicability of a fused AADB estimate, 
both as a categorical variable and as a numeric estimate, taking the mid-value of each label. While 
the macro model set the stage for expanded analysis within the identified high-risk regions, the 
micro model provided insights into potential strategies to raise awareness through education and 
encouragement and to implement engineering measures to ascertain whether all residents feel safe 
and confident to bike more frequently. 

Additional Products 
 

The Education and Workforce Development and Technology Transfer products created as part of 
this project have been or will be located on the project page of the Safe-D website: Here. 

The available datasets resulted from the final project have been or will be located in the Safe-D 
Collection of the VTTI Dataverse. 

 

Education and Workforce Development Products 
This project provided support to three students. 

 
• Silvy Sirajum Munira served as the student researcher of the project, which constituted the 

core of her dissertation, entitled Fusion with Context Credibility: Exploring and Fusing 
Nonmotorized Traffic Data. Silvy graduated from the Civil & Environmental Engineering 
Department of Texas A&M University (TAMU) in summer 2021. 

https://safed.vtti.vt.edu/projects/data-fusion-for-non-motorized-safety-analysis/
https://dataverse.vtti.vt.edu/dataverse/safed
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• Kyuhyun Lee is a former student researcher/research associate at the Texas A&M 
Transportation Institute (TTI). As part of the project, she examined the use and application 
of crowdsourced data. Kyuhyun has been accepted to a Ph.D. degree in the Department of 
Urban and Regional Planning at the University of Illinois at Urbana-Champaign. She is 
expected to start in fall 2021. 

• Atom Arce is a former student intern at TTI and attended a five-week summer internship 
program designed/implemented in summer 2018 as part of this project. The main goal of 
the internship program was to provide an undergraduate student with expanded 
opportunities for guided learning. A detailed report was developed to describe the 
internship of Atom— (as of that time, i.e., summer 2018) a recent high school graduate 
(High School for Math, Science and Engineering at the City College of New York—Class 
of 2018) and newly admitted first-year undergraduate student (Fall 2018) at the University 
of Toronto. 

The outputs of this research are expected to be helpful to researchers, academicians, and 
practitioners who are looking for a methodology to bring their data together and develop 
analysis/models using more reliable exposure estimates. In a similar vein, through the project’s 
case study findings, the team expects to continue its activities to support the City of Austin in its 
efforts to improve nonmotorized safety and encourage safe walking and bicycling in Austin. 

Technology Transfer Products 
Four journal papers and two conference presentations resulted from this project. The research team 
is in the process of developing additional manuscripts to be submitted to peer-reviewed journals. 
A full list is available in Appendix D. In addition, the research team developed a slide deck (as a 
PowerPoint presentation) to incorporate materials and knowledge gained from this project into 
graduate courses/seminars, such as the graduate courses taught at TAMU, including Traffic 
Engineering, Engineering and Urban Transportation Systems, and Seminar. The team also 
developed a two-page project brief summarizing the project and presenting the key outcomes. The 
slide deck and the project brief will be available on the project page of the SAFE-D website. 

Data Products 
Appendix E provides relevant information on the data products of this project. The dataset can be 
found here DOI: 10.15787/VTT1/ZSJK4Z 

https://dataverse.vtti.vt.edu/dataset.xhtml?persistentId=doi:10.15787/VTT1/ZSJK4Z
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Appendix A 
 

 

Framework for Processing Nonmotorized Traffic Data 
Nonmotorized traffic data, both traditional and crowdsourced, are generated in different structures 
and formats. See Lee and Sener [76] for an overview of data for pedestrian and bicycle monitoring, 
with a focus on sources and applications of emerging data. 

Table 2 tabulates the key characteristics of the commonly available nonmotorized traffic data 
sources, including short-duration and permanent counts, travel surveys including ACS and NHTS, 
and crowdsourced data. The breakdown of the characterization of the individual source is vital in 
interpreting and further processing the data to extract volume-related information. Table 2 depicts 
that none of the nonmotorized traffic data sources can furnish activity data for full spatial, 
temporal, or population-level resolution. For example, permanent sensor data can provide data for 
all hours and seasons across the year, but only for the location for which they have been installed. 
Data sources from wearable tech only provide data for the people using the apps. Therefore, to 
compute activity-related information, each of the datasets has to be adjusted, scaled, or modeled. 
The application of the data sources, either as direct input of demand models or as parameters or 
aids of the model-building process, also varies widely. Moreover, while some of the sources can 
be processed to estimate activity, some, such as Web 2.0 tech, are not meant for demand 
representation. In addition, some of the data sources need minimal processing, while others have 
to go through an array of steps to compute demand given the scope of estimation. 

Nonetheless, there is no clear guidance on how different data sources can be processed and brought 
together to compute nonmotorized volume or exposure within a facility or area. Motivated by the 
ardent need for a comprehensive guideline, this research developed a conceptual framework that 
outlines the steps and aspects of processing and homogenizing different sources. The framework, 
which consists of processing data and applying fusion mechanisms, can be applied to all 
nonmotorized traffic data, such as bicycle and pedestrian data. However, for demonstration 
purposes, as a case study, only bicycle-related data were collected and processed. 

The key steps for gathering and processing nonmotorized traffic data are: 

Step 1: Select the study area. 
Step 2: Gather available data sources and identify the data structure. 
Step 3: Determine the scope of estimation. 
Step 4: Analyze/model data sources to obtain homogenized representation. 
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Table 2. Characterization of Nonmotorized Traffic Data Sources* 
 

Data Sources Temporal 
Coverage or 
Frequency of 

Data Collection 

Spatial 
Coverage 

Population 
Resolution 

Data Output Role in 
Demand 
Estimation 

Short-Duration 
Count (i.e., 
manual, video 
image, etc.) 

15 minutes to 
24 hours for 
multiple days or 
week 

Selected 
locations 
(intersection or 
mid-block) 

Total population Aggregated 
volume in a 
road segment or 
intersection for 
a specific time 
period 

• Estimating 
flow patterns 
and annual 
average or 
peak/off-peak 
hour volume 

• Computing 
adjustment 
factor for 
scaling short- 
duration count 

• Developing 
DDM 

Permanent 
Count (i.e., 
inductance loop, 
magnetometer, 
etc.) 

Constant count 
for at least 
1 year 

A few locations 
(intersection, 
trail, or mid- 
block) 

Total population Aggregated 
volume in a 
road segment or 
intersection 

American 
Community 
Survey 

 
https://www.cen 
sus.gov/program 
s-surveys/acs 

1-year, 3-year, 
and 5-year 
estimates 

Area-level 
estimate for all 
geographies 
down to the 
block group 
level 

Total population Commute, 
social, 
economic, 
demographic, 
and housing 
characteristics 
of the U.S. 
population 

• Estimating 
parameters for 
demand 
models 

• Developing 
mode choice 
model 

National 
Household 
Travel Survey 

 
https://nhts.ornl. 
gov/ 

Every 5 to 7 
years 

Down to core- 
based statistical 
area level in the 
United States 

Total population Individual travel 
data for all trips, 
modes, 
purposes, trip 
lengths, etc. 

NHTS Add-On 
Data 

 
https://nhts.ornl. 
gov/addOn.shtm 
l 

Every 5 to 7 
years for add-on 
partners 

Smaller and 
more precise 
level of 
geography 
compared to 
NHTS data 

Total population Additional data 
include origin 
and destination 
geocoordinates 
of each trip 

Fitness App 
Data 

 
(e.g., Strava: 
https://metro.str 
ava.com/) 

Continuous data 
collection 

Entire United 
States (based on 
users) 

Only Strava 
users 

Origin- 
destination and 
node/street-level 
volume 

• Estimating 
system user 
volume 

• Estimating 
total volume 

Bike-Sharing 
Data 

Continuous data 
collection 

Depends on the 
coverage of the 
stations 

Only system 
users 

Origin- 
destination of 
the trips 

StreetLight Data 
 

https://www.stre 
etlightdata.com/ 

Continuous data 
collection 

Entire United 
States (based on 
users) 

A sample of the 
total trips 

Node/street- 
level volume 

* See also Appendix E for additional information about the data sources as well as their resources as relevant to this 
research study. 
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The following sections explain the steps in detail and present a case study as an example of the 
application. 

Select Study Area 
The first step of the framework is to select a study area for gathering, processing, and analyzing 
nonmotorized traffic data. The study area can be a city, county, multiple census tracts, or traffic 
analysis zones (TAZs), etc. The selection of a study area depends on the ultimate objectives of the 
researchers (such as to analyze pedestrian crashes in a city or design bike lanes in an urbanized 
area), data availability, and so forth. The size of the study area should also be a consideration since 
some nonmotorized models (such as the DDM) exhibit scalability and transferability issues [77]. 
For example, while building a bike DDM for Austin, Munira et al. [77] noted that the model 
prediction was drawn for locations within the limits of the city’s bicycle route map and did not 
include areas farther into the suburban regions. 

For this study, the city of Austin was selected as a study area. Austin makes an excellent case study 
for this research for multiple reasons. Austin ranked 27th among U.S. cities in terms of high 
bicycling and walking levels in 2012 [78]. The same report indicated that Austin stood 15th and 
37th for bicycle and walk commute share, respectively, compared to other U.S. cities. As a bike 
friendly city, Austin is endeavoring to adopt a holistic approach to increase safety and mobility for 
pedestrians and bicyclists of all ages. The Austin City Council adopted the 2014 Austin Bicycle 
Master Plan to develop a connected and protected walking and biking network. The city 
accommodates a total of 267.5 miles of bicycle facilities, including protected and buffered bicycle 
lanes and urban trails [79]. Approximately 36% of the region’s arterial streets have traditional 
painted bicycle lanes [31]. The planning and implementation of various projects since 2009 has 
resulted in a significant increase in bicycle commuters in the city. The citywide mode share of 
bicycles doubled in 2011 (around 2%) compared to 2009 [31]. This was particularly the case in 
some census tracts in central Austin, which had seen a considerably higher mode share than the 
suburban regions [30]. On the other hand, according to the 2019 ACS data, the bike mode share 
across the counties located within the city varied from 0.2% to 0.9% [80]. 

The city also adopted the Vision Zero initiative to reduce traffic-related deaths and injuries to zero 
by the year 2025. To promote safe walking and biking among the residents, the city has focused 
on various programs and activities, including nonmotorized friendly street design and pedestrian 
safety action plans. Given the strong commitment to its Vision Zero goals and long-term planning 
to improve nonmotorized infrastructure, Austin needs reliable and robust nonmotorized activity 
data and tools to facilitate strategic data-informed decisions. Therefore, a comprehensive data 
fusion framework for reliable nonmotorized demand/exposure estimation, as applied in this study, 
would be of great value to policy makers and practitioners, along with scholars. 

Gather Available Data Sources and Identify Data Structure 
The second step is to identify available data sources relevant to nonmotorized volume estimates in 
the region. Table 3 depicts the characterization of the nonmotorized traffic data sources. It is 
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important to gather all available data sources and recognize the attributes associated with each 
source, such as frequency of data collection; geographic unit; and spatial, temporal, and 
population-level resolution. 

For Austin, five primary data sources relevant to bike activity were gathered: 
 

• Actual bicycle volume counts (permanent and short counts) 
• Bicycle-sharing data 
• NHTS add-on data 
• Strava data 
• StreetLight data 

The ACS and other land-use-related data were also extracted for the study area and served as 
auxiliary data sources for modeling purposes. 

The five key datasets represented bike activity at various spatial, temporal, and subpopulation 
scales. Table 3 presents the structure of the datasets. Table 3 confirms that the data sources exhibit 
heterogeneous structures. In order to obtain a homogeneous estimate that is meaningful and 
relevant to policy planning, each of the data sources needs to be cleaned, processed, and modeled 
within the scope of estimation, as explained in the next section. 
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Table 3. Structure of the Bicycle Data Sources in Austin 
 

 
Data Sources 

Temporal Coverage 
or Year of Data 

Collection 

 
Spatial Coverage Population 

Resolution 

 
Source 

Video-Based 
Short Count 

 
24-hour count in 2017 

 
44 intersections 

 
Yes 

City of Austin 
Transportation 

Department 
Inductive Loop- 

Based Permanent 
Count 

Continuous count 
from 2012 to 2017 

 
11 locations 

 
Yes 

Eco-Counter 
(through City of 

Austin) 
NHTS Add-On 

Survey Gathered in 2017 1,095 households 
in Austin Yes TxDOT 

 
Strava Metro Data 

 
Trips in 2017 2,303 intersections 

in Austin 

 
No 

TxDOT (through an 
internal agreement 

with Strava) 
Bike-Sharing 

Data Trips in 2017 63 stations in 
Downtown Austin No Public website 

 
StreetLight Data 

 
Trips in 2018 

950 zones for 
intersections in 

Austin 

 
No 

 
StreetLight Inc. 

 

ACS Data 

 

2017 
Census tract or 

block group level 
in Austin 

 

N/A 

 

Public website 

 
Land-Use-Related 

Data 

 
2014 to 2017 

Point or area- 
based data in 

Austin 

 
N/A 

Internal 
communication with 

the City of Austin 
and public website 

 
 

Determine Scope of Estimation 
The processing of individual data sources inevitably entails determining the scope for demand 
analysis, which can be temporal scope, spatial scope, and population-level scope. The following 
section explains the premise and reasoning behind the selection of scope/unit of estimation for the 
case study. 

Temporal Unit of Volume/Demand Estimation 
It is imperative to select a temporal unit of analysis for representing nonmotorized traffic demand 
from all sources. Intuitively, estimates at a finer unit (such as hourly volume) require data at a finer 
temporal resolution compared to estimates at a larger unit (such as annual average volume). 
However, data at a finer resolution may not be available from all sources. For example, the four- 
step demand modeling approach generally estimates traffic as annual average daily traffic (AADT) 
volume. Transforming estimations at a finer unit requires the involvement of multiple assumptions 
and an understanding of the local conditions. 

The temporal unit of analysis for this study was selected as AADB volume. The selection was also 
motivated by the fact that the particular metric is a widely accepted policy-relevant unit of demand 
representation for policy planning and safety analysis. 
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Spatial Unit of Volume/Demand Estimation 
The task of estimating nonmotorized demand requires the analyst to select a geographic or spatial 
unit for which the volume will be estimated. The plausible spatial units are facility level (such as 
intersection or mid-block) or zone level (such as TAZ or block) [3]. 

For this research, intersections were selected as the spatial unit of volume analysis. The selection 
stemmed from the fact that a large proportion of crashes occur at intersections in the Texas region 
[34]. A microscopic level (intersection) analysis was expected to facilitate focused policy efforts 
and effective safety implementation plans. Moreover, the actual count data for the study area were 
available at the intersection level and were expected to serve as the ground truth and benchmark 
data for models. 

To identify the intersections for the study area, a bicycle network developed and managed by the 
City of Austin Transportation Department was obtained. The bike route network is generally 
different from the regular street maps because it identifies various bicycle-related facility segments 
(off-street and on-street bicycle facilities, special facilities, etc.) in addition to regular roadways 
that allow bicyclists. The process of extracting intersections from the bike network is explained in 
an upcoming section. 

Population Scale 
Since some of the data sources represent a different subpopulation of the actual bike activity, it is 
logical to expand or scale such activity from individual sources to the total population level. While 
the analyst may not have to choose a particular population scale for homogenization, it is 
imperative to understand the representativeness and skewness of the sources. 

Analyze/Model Data Sources to Obtain Homogenized Representation 
Given the selected scope of bike activity estimation, AADB at intersections, the data sources of 
different structures had to go through multiple steps of analysis. Using the data sources tabulated 
in Table 3, the researchers developed five models: 

• DDM 
• Four-step model 
• Bike-sharing model 
• Strava model 
• StreetLight model 

A tabulated summary of the key features of the modeling steps is presented in Table 4, followed by 
an in-depth discussion of individual processes. 
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Table 4. Key Steps of Volume Estimation Models 
 

 
Model 

 
Main Input 

Use of 
Explanatory 

Variables 

 
Model Type or Steps 

Adjust 
Population 

Scale? 

 
DDM 

Short and 
permanent count 

data 

 
Yes 

 
Regression 

 
No 

 
Four-Step Model 

Demographics and 
employment data 

 
Yes 

Trip generation, 
distribution, mode 
choice, assignment 

 
No 

Bike-Sharing 
Model 

Bike-sharing 
volume 

No Trip assignment Yes 

Strava Model 
Node/road-level 

app volume 
Yes Regression Yes 

StreetLight 
Model 

Zone-level volume Yes Regression Yes 

 
 

The description of the modeling process is divided into two parts. Because each of the data sources 
had to undergo some processing and modeling tasks, the common steps that were utilized multiple 
times, such as gathering auxiliary data, regression model building, traffic assignment, and actual 
volume processing, are explained in the first part. Then, the models developed from the induvial 
sources are described. 

Common Modeling Steps 
In this section, some of the steps that were relevant to multiple or all models developed in this 
study are explained to avoid repetition when later discussing the individual models. The discussion 
includes the processing of bike network data to obtain intersections for the study area and the 
processing of explanatory variables for models. The section also explains the generalized variable 
and model building process and the traffic assignment task required for the bike-sharing and four- 
step models. 

Processing Bike Network 
The bike network of the study area is one of the crucial inputs required for activity or demand 
estimation of nonmotorized traffic. It is required to locate the intersections or street segment 
locations for which the demand has to be computed. The network map is also necessary for route 
choice analysis in the traffic assignment task. A bike or pedestrian route network is generally 
different from regular street maps because it identifies various bicycle or pedestrian-specific 
facilities and excludes the access-controlled routes on which nonmotorized activities are not 
allowed. 
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For the study area, a bicycle network map developed and managed by the City of Austin 
Transportation Department was obtained. The map included information on both bicycle facility 
type (on-street/off-street, etc.) and bicycle comfort level for each segment. The comfort level was 
computed based on a study by Geller [81] that considered several factors, including traffic speeds 
and volumes, roadway widths, bicycle facility type, and other readily available metrics, to 
determine how comfortable a segment is for people of all ages and abilities. The comfort level was 
categorized into four types: high comfort sections, medium comfort sections, low comfort sections, 
and extremely low comfort sections. The bike network excluded road segments that were without 
any bike facility or of low comfort but with an alternative route option. 

The residents of Austin are allowed to suggest new routes or update the comfort levels of the 
existing routes. Therefore, the mapping follows a robust process that takes continuous advantage 
of public feedback to avoid the routes where bicyclists never or very seldom ride. The network 
was thus expected to provide a good representation of the actual route choices by the bicyclists of 
the study area. 

Because the network was processed to be used in intersection identification and route choice 
analysis, it was imperative to perform a comprehensive quality check to examine its completeness 
and accuracy. As expected, the route map did not include access-controlled roads (i.e., interstate 
highways) where bicyclists are not allowed. Moreover, acknowledging the fact that even the most 
carefully developed networks are bound to have errors, the researchers checked the obtained 
network file for two common digitizing errors: overshoots and undershoots. Overshoot and 
undershoot errors happen when a line is not connected with the neighboring line with which it 
should intersect [82]. Following an exhaustive manual investigation of the network, the researchers 
performed a network correction task (in ArcGIS) to avoid error in the traffic assignment process. 

The final task was to identify intersections from the route network. Both three- and four-legged 
intersections were identified in the process. The study area consisted of 2,518 intersections. 

Processing Explanatory Variables 
In an effort to assemble explanatory variables for the study, prior studies were reviewed with a 
focus on DDMs and bike determinants [83–87]. This study sought to build a rich set of explanatory 
variables using insights from the earlier studies as well as the data available for the study area. To 
develop the explanatory variables for the model, first researchers performed a comprehensive 
search to see which data were publicly available. Data were gathered from the City of Austin data 
portal, 2017 ACS, City of Austin Planning and Development Review Department, Texas 
Education Agency, Austin Transportation Department Arterial Management Division, Capital 
Metro, and BCycle (Austin bike-sharing agency) data portal. After identifying the gap between the 
required and available datasets, the researchers contacted relevant authorities and asked them to 
provide additional data for research purposes. Additionally, a review of factors included in past 
studies identified a need to explore new variables related to the features that have the potential to 
drive the bicycle demand at an intersection. Therefore, the researchers examined some additional 
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variables—including the presence of bike-sharing stations or bike signals around an intersection, 
bike-accessible bridges, and so forth—anticipating their possible impacts on bicycle volume in the 
area. 

Since all of the raw datasets obtained from different sources were at different spatial scales, the 
datasets were cleaned and processed to bring them to homogenous spatial scales (buffer level). 
Over 400 variables for three buffer zones—0.1 mi, 0.5 mi, and 1 mi—were created. The variables 
were categorized into seven groups following the categorization suggested by Munira and Sener 
[87]: demographics, socioeconomics, network/interaction with vehicle traffic, pedestrian- or 
bicycle-specific infrastructure, transit facilities, major generators, and land use. 

The demographic and socioeconomic variables included age, gender, education, race, household 
size and occupancy status, income, and commute mode and time of the surrounding population. 
The network and bicycle-specific infrastructure-related variables included different types of 
bicycle infrastructure developed by the City of Austin [88] based on the conditions and comfort 
level, as well as bike signal, intersection density, and bike-sharing stations. Various transit-facility- 
related variables were compiled, including frequency of transit stops, transit route length, and 
distance from hub locations. Major generators and land-use variables, such as the number of 
schools, offices, industries, open areas, mixed-use developments, water areas, and bicycle- 
accessible bridges, were also gathered based on available data. 

Creating a Bikeability Index 
A bikeability index, a composite measure to quantify the bike friendliness of the network, was 
created to develop a DDM addressing the issue of small sample size (limited actual count data) 
from the study area. The five attributes of the bikeability index were bicycle route length, high 
comfort bicycle route length, connectivity of bicycle-friendly streets, destination density, and 
transit coverage. Details of the procedure can be found in Munira et al. [77]. 

Variable Selection and Model Building 
The variable selection was completed through an extensive three-stage procedure. First, a simple 
ordinary least squares model was developed to analyze the relative strengths of relationships 
between each of the explanatory variables and the dependent variable. This included identification 
of the variables that had significant association at a 90% confidence level with the dependent 
variable. Second, Pearson’s correlation coefficients were examined for each pair of explanatory 
variables to investigate the correlation between variables. This process yielded a large number of 
significantly correlated variables, from which highly correlated (at 0.7) variable pairs were 
recognized. Finally, by iterating several combinations of variables that are not highly correlated, 
the researchers selected a final model based on its predictive accuracy, such as mean absolute error 
(MAE), root mean square error (RMSE), misclassification error, and fitness (adjusted R2). The 
statistical significance of individual variables and intuitive interpretation, based on insights from 
the literature, were also considered while selecting the variables for the best model. 
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The performance of the models was evaluated using cross-validation, which is a resampling 
technique that helps identify a parameter value, ensuring a proper balance between bias and 
variance [89]. For cross-validation, a subset of the data, known as the training set, was used to 
train the model, and the remaining data points served as a test set or validation set. The model on 
the training set seeks a minimum mean squared error. A 10-fold, cross-validation method was used 
to evaluate and compare the performance of the developed models. This method split the feature 
vector sets into 10 approximately equal-sized distinct partitions. While one set was used for testing, 
the other set was used for training. Then, the procedure was repeated 10 times, and all accuracy 
rates over these 10 runs were averaged to provide a more reliable estimate. The performance 
evaluation criterion was the average accuracy. 

The process of variable selection could have also been performed by utilizing various state-of-the- 
art machine learning approaches, including Lasso or Random Forest. However, this study opted 
for the manual approach over those machine learning processes because they are often referred to 
as black box approaches with limited interpretability [90]. The approach followed in this study 
promotes a deep understanding of the influence of individual variables and the dynamics of their 
relationship, given the local condition, in order to make informed decisions. 

Traffic Assignment 
A traffic assignment task is needed to allocate traffic to the facilities of a transport network. This 
is the last step in the four-step modeling process. The step is also required in bike-sharing traffic 
allocation because the raw data generally come in a zone-to-zone (station-to-station) trip format. 

For conducting the traffic assignment task, several software packages are available, such as PTV 
VISUM from PTV Group, EMME by INRO, CUBE Voyager by Citilabs, and TransCAD by 
Caliper, all of which require a commercial license. In this study, open-source software was 
preferred. Tranus is open-source software that can be used in developing land-use and 
transportation models at an urban or regional scale. First developed in 1982 by Modelistica, the 
software has gone through several versions, incorporating theoretical developments and practical 
requirements [91]. This project used Tranus version 12.10.1. 

Tranus has been utilized in a large number of studies and for regions of varying socioeconomic 
and cultural contexts, such as Latin America, Europe, the United States, and Japan. The Oregon 
Department of Transportation used Tranus to develop an integrated land-use and transport model 
at the statewide level [91]. A research project promoted by the French National Research Agency 
utilized Tranus to develop an integrated land-use and transport model for the urban region of 
Grenoble, France, and the researchers reported that they were able to achieve their goal of building 
a meaningful and policy-relevant model using the Tranus system [92]. Wegener [93] reviewed 20 
contemporary urban land-use transport models and noted that Tranus stands out as a particularly 
advanced and well-documented demand modeling platform with an attractive user interface. The 
Center for International Intelligent Transportation Research of the Texas A&M Transportation 
Institute (TTI) and Modelistica developed a binational travel demand model for El Paso, Texas, 
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and Ciudad Juarez, Mexico, using Tranus to help transportation agencies of both regions anticipate 
traffic flow and needs [94]. 

In this study, the traffic assignment task in the Tranus platform went through an exhaustive process 
utilizing an array of assumptions and hypotheses. The models were customized based on the 
characteristics and requirements of the study area. 

Processing Actual Bicycle Volume Counts 
Two types of bicycle count data were obtained for the study area. The short-count (24-hour) data 
were obtained from the City of Austin Transportation Department, and continuous-count data were 
obtained from Eco-Counter, which is a company that assists with continuous data collection for 
pedestrians and bicyclists in specific locations across cities around the world [95]. The continuous- 
count data were needed to calculate adjustment factors that could be incorporated with the short 
count to estimate the AADB volume for the specific locations [33]. 

The 24-hour bicycle count data were available for 44 locations. According to city officials, the 
sites were selected using the City of Austin bicycle route map [88] and based on the professional 
judgment of local planners. Following standard procedures, the data were collected by the city 
using a video recorder in each of the intersections on typical weekdays distributed over 5 months 
(April, May, June, August, and October) in 2017. The permanent location counts were obtained 
from Eco-Counter for 11 locations in the Austin area; the company provided continuous counts 
for the locations since 2012. The count data from the permanent counters were used to estimate 
the daily and monthly factors, which were then applied to calculate the AADB volume for each 
location where the short-count data were available. 

Figure 5 shows the location of the 44 intersections with short-count data and presents the estimated 
AADB for each location. The intersections exhibited notable variation in terms of AADB volume, 
with a minimum of 43 and a maximum of 1,282 riders. 
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Figure 5. Map. Actual AADB volume in Austin. 

Model Building from Individual Sources 
This section describes the demand models developed utilizing multiple sources. The characteristics 
and features of different datasets are explained briefly. The steps mentioned in the previous section 
are referred to when necessary. 

Direct Demand Model 
Among several approaches to estimate and predict the demand of pedestrian and bicycle travel, 
the direct (facility) demand model is the most frequently used modeling approach in the area of 
pedestrian/bicyclist safety [3]. This research utilized the actual AADB estimate, bikeability index, 
and explanatory variables (as discussed in the previous section) to develop a DDM (Table 5) that 
can estimate AADB for all intersections of the study area. More details on the procedure are 
available in Munira and Sener [77]. 
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Table 5. Negative Binomial Regression Model of Bicycle Travel 
 

Variable (buffer width) Estimates T-Stat 

(Intercept) 4.96 8.82 

Bikeability index (1 mi) 0.02 1.65 

Black or African American population (1 mi) (in 100 s) −0.02 −3.23 

Population with no or some academic degree (0.1 mi) 0.03 2.98 

Total population of age under 14 (0.5 mi) (in 100 s) −0.12 −2.99 

Bike signal (0.1 mi) 0.30 2.46 

Presence of bicycle-accessible bridge (0.1 mi) 0.54 2.25 

Model Statistics: 

N (sample size): 44 

Adjusted R2: 0.7 

RMSE: 171 

MAE: 132 

 
 

The adjusted R2 for the prediction model was 0.7, and RMSE was 171. The model also provided 
an estimate of AADB for all intersections of the study area, where the predicted AADB varied 
from a minimum of 15 (mainly at the areas away from the downtown core) to a maximum of 1,398 
(at the downtown core). 

Figure 6 presents the spatial distribution of the AADB estimates resulting from the DDM. 
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Figure 6. Map. AADB estimates from the DDM. 
 
 

Bicycle-Sharing Model 
Bicycle-sharing data were obtained from the data portal of the BCycle-Austin bike-sharing agency. 
The bike-sharing system in Austin mainly covers the downtown region, with only 63 stations as 
of 2018 [96]. The research extracted bicycle trip data from all stations for 2017, when a total of 
193,492 trips were logged. The dataset contained limited information regarding each trip, 
including trip start and end time and station. 

Initial investigation on the temporal distribution of the trips revealed that the highest numbers of 
trips were observed during March through April, followed by September. This distribution might 
be attributed to the pleasant and mild weather during these months. The Texan summer, when 
temperatures climb into the mid to high 90s with high humidity, might be the reason for low bike- 
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sharing trip activity from June through August. Intuitively, Friday, Saturday, and Sunday observed 
a higher number of trips compared to other days of the week. Moreover, the majority of the trips 
were made by users with a 24-hour pass (compared to annual pass, monthly pass, and 3-day pass 
users). This finding explains the high number of plausible recreational purpose trips that started 
and ended at the same station. Despite having a wide temporal coverage, the spatial coverage of 
the data was limited because the sharing stations mainly cover the downtown region. Trip starting 
and ending volumes were concentrated near the Lady Bird Lake (downtown) area. Moreover, the 
bike-sharing activity only accounted for a proportion of the total bike activity in that area, and thus 
needed population-level scaling. 

The process of estimating annual average bicycle volume from this specific data went through 
three key stages: (a) examination and cleaning to obtain data in a meaningful format, (b) trip 
assignment, and (c) population-level scaling. In the first step, the distribution of the data, in terms 
of spatial unit, temporal unit, membership level, etc., was investigated. The step also included data 
cleaning; for example, trips starting and ending at the same station were removed because they 
would not add value to the assignment process (i.e., no trips would be assigned to the routes). 
Then, an OD matrix was developed using the station-level data. For this purpose, trips for the 
months April, May, and June, which represented the typical months of bike-sharing activity, were 
extracted. Then an OD table was built using the average trips for each station (OD) pair for the 
above-mentioned three months. For example, if there were six trips in three days (during the three 
months) for an OD pair, the average trip for that particular OD pair was taken as 2. Trips were 
rounded up for the decimal numbers. In the second step, a trip assignment process was conducted 
(as explained previously) to assign the trips at the intersection level. The output of this step was 
intersection-level bike-sharing volume. Finally, the estimate was scaled to population level using 
actual AADB and utilizing a negative binomial model. 

Figure 7 presents the spatial distribution of the AADB estimates resulting from the bike-sharing 
model. 
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Figure 7. Map. AADB estimates from the bike-sharing model. 
 
 

Four-Step Model 
This study developed a four-step demand model to estimate intersection-level bicycle volume in 
the Austin area. The general steps of the model were trip generation, trip distribution, modal split, 
and trip assignment. 

The first two steps, trip generation and trip distribution at the TAZ level, were performed using 
the traffic forecasting model tools from the local transportation planning agency, known as the 
Capital Area Metropolitan Planning Organization (CAMPO). The trip generation step computed 
the number of trip ends (daily) produced in and/or attracted to each TAZ of the study area, based 
on sociodemographic and land-use information, for multiple trip purposes (i.e., home-based work, 
non-home-based work, and non-home-based other). The step utilized TripCAL6 in TexPACK v3.0 
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beta version, which was created by TTI travel forecasting program staff (https://travel- 
forecasting.tti.tamu.edu/) for the demographic preparation and trip generation process. For the trip 
distribution step, the outputs from TripCAL6 in TexPACK v3.0 were converted to conform to the 
format of the CAMPO 2010 model. The CAMPO model uses a standard gravity model equation 
and applies friction factors to represent the effects of impedance (i.e., travel time, spatial separation) 
between zones. The output of the trip distribution step is an OD matrix that, for each trip purpose, 
indicates the travel flow between each pair of TAZs. 

As the trip distribution output for multiple trip purposes, including all modes of transportation, it 
is necessary to develop a mode choice model to obtain an OD matrix for bicycle traffic. To do so, 
the general framework of the nonmotorized demand model proposed by the National Cooperative 
Highway Research Program [97] was followed. The main dataset utilized for this analysis was 
2017 NHTS add-on data for the Austin region. To facilitate the model-building process, TAZ-level 
socioeconomic and land-use variables were also used. 

For the study area, 27,950 trips were extracted, of which 353 were bicycle trips. Given that the 
bicycle trips only occurred for a limited number of purposes (i.e., no bike trips for pick-up/drop- 
off purposes), only trips of purpose that had at least one bike trip were selected. Then, the TAZ 
location of each trip’s origin and destination (based on coordinates) was identified. As the final 
step of data generation for the model building process, the land-use variables for each TAZ were 
matched to each trip’s origin and destination TAZ. Thus, one trip was associated with two features 
of each land-use variable, denoted as origin land use and destination land use. 

Three mode choice models were developed: home-based non-work trip model, home-based work 
trip model, and non-home-based work trip model. For all three trip purposes, the binary logit model 
was used to estimate an OD score (based on utility) based on the variables of distance between 
origin and destination (skim), origin land use, and destination land use. The main rationale was 
that the decision to bike depends on the characteristics of both origin and destination. Table 6 
presents the mode choice model results for the three trip purposes. 

https://travel-forecasting.tti.tamu.edu/
https://travel-forecasting.tti.tamu.edu/
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Table 6. Binary Logit Model for Three Trip Purposes 
 

 

Variable 

Home-Based Non-Work 
Model 

Non-Home-Based Work 
Model 

Home-Based Work 
Model 

Estimate T-Stat Estimate T-Stat Estimate T-Stat 

(Intercept) 0.77 1.90 2.11 2.53 2.08 4.03 

Skim (distance) −0.30 −4.76 −0.18 −1.58 −0.19 −3.35 

Origin—Frequency of transit 
stop 0.06 1.28 — — — — 

Origin—Mixed land use 0.31 1.44 — — −1.65 −1.38 

Destination—Frequency of 
transit stop 0.06 1.34 — — — — 

Destination—Mixed land use 0.50 1.51 — — — — 

Destination—High comfort 
bike facility 0.0003 1.47 0.0004 1.18   

Origin—Low comfort bike 
facility — — −0.0005 −1.28 −0.0002 −1.81 

Destination—Low comfort 
bike facility — — — — −0.0001 −1.04 

Origin—Commercial land use — — −0.06 −0.93 — — 

Destination—Commercial 
land use — — −0.09 −1.66 — — 

Misclassification error 0.24 0.19 0.25 

Receiver operating 
characteristic (ROC) 0.76 0.82 0.74 

 
 

The final model variables were then used to calculate the OD score for each TAZ pair and for each 
trip purpose. The computed OD score was categorized into several bins to estimate the rates of 
mode split for each bin by trip purpose, as outlined by Kuzmyak et al. [97]. The graph and equation 
developed from this step exhibited a clear pattern of higher rates of bike mode share for TAZ pairs 
of higher OD scores. The OD score and mode split relationship were then used to estimate bicycle 
trips for the study area. The output of the process was a trip distribution table, at the TAZ level, 
for bicycle traffic. Since bike trips are generally short, TAZs that were more than 20 car minutes 
away from each other were removed from the trip distribution table. 

Finally, Tranus was used for the trip assignment step to allocate the trips at the intersections of the 
study area. The model outcome was found to underestimate intersection-level volume when 
compared with the actual AADB. This underestimation was probably due to the model being 
developed using the demographic and trip characteristics of the 2010 CAMPO model. Thus, to 
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scale the volume to 2017, actual AADB was used in a negative binomial model to estimate AADB 
from the four-step model. 

Figure 8 presents the spatial distribution of the AADB estimates resulting from the four-step 
model. 

 

Figure 8. Map. AADB estimates from the four-step model. 
 
 

Strava Model 
Strava Metro is a data service that produces anonymized and aggregated activity data from users 
of the Strava app, which allows cyclists and runners to track their activities (such as rides, runs, 
and walks) on a smartphone or other GPS device. Strava allows transportation agencies, city 
governments, and corporations to access the data in a subscription-based format. Lee and Sener 
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[98] provide an extensive review of Strava Metro data for bicycling monitoring. For this study, 
bike activity data were obtained from Strava Metro through TxDOT. 

The obtained dataset contains three subsets in three formats: streets, origin-destination, and nodes. 
Because the spatial unit for this study was the intersection, node-level data (street intersections) 
were extracted. The researchers processed the total bicycle volume count for all nodes for the year 
2017 to obtain the daily average estimate. In order to overlay the Strava nodes with the street 
intersections, the bicycle street network for the study area was used. The process extracted the 
Strava activity count for 2,303 intersections. Although Strava provides a large sample size with 
enhanced temporal and spatial resolution, it only represents a subpopulation. In order to scale the 
volume to the population level, the relationship between the actual AADB and Strava volume was 
built utilizing a negative binomial model, with the intersection density as an explanatory variable. 
Given that the intention here was to conduct a population-level scaling for Strava data, the Strava 
model was intentionally kept simple with one explanatory (or independent) variable based on its 
significance (at the 95% confidence level) as well as the performance of the model. 

Figure 9 presents the spatial distribution of the AADB estimates resulting from the Strava model. 
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Figure 9. Map. AADB estimates from the Strava model. 

StreetLight Model 
StreetLight generates data representing walking and biking activity metrics that are derived from 
three main sources: general location-based services data, mode-tagged location-based services 
data, and validated bicycle and pedestrian counts [99]. Additional sources, such as GPS-enabled 
travel diaries and traditional surveys about active mode behavior, are also used during the 
algorithmic development of the metrics. 

The raw datasets go through a series of data processing steps to measure the active mode trips for 
an area. The platform utilizes a probabilistic approach for mode inference (car, bike, walk) based 
on machine learning models and using multiple trip-related features. StreetLight [99] has noted 
that due to the relatively low sample, pedestrian and bike activity are not adjusted for population 
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biases. To represent activity metrics, StreetLight generates index values that reflect a sample of 
bicycle trips starting in, passing through, or ending in defined zones. 

This research gathered StreetLight Index data for bike traffic in terms of annual average daily 
volume in 2018 for 950 intersections of the study area. In order to scale the volume to the 
population level, the relationship between the actual AADB and StreetLight Index was built 
utilizing a negative binomial model with the population under age 14 (within a 1-mi buffer) as an 
explanatory variable. Given that the intention here was to conduct a population-level scaling for 
StreetLight data, the StreetLight model was intentionally kept simple with one explanatory (or 
independent) variable based on its significance at the 95% confidence level as well as the 
performance of the model. 

Figure 10 presents the spatial distribution of the AADB estimates resulting from the StreetLight 
Model. 
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Figure 10. Map. AADB estimates from the StreetLight model. 
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Appendix B 
 

Appendix B provides the spatial clustering of the high or low crash risk locations in Austin— using 
the fused AADB estimate obtained from the proposed fusion algorithm and based on the macro 
crash analysis (i.e., block group level hot-spot analysis of bicycle crashes) conducted in this study. 

 

Figure 11. Map. Hotspot analysis. 
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Appendix C 
 

Appendix C provides the results of the micro analysis crash models (i.e., binary logit models of 
the reasons for not biking more) developed in this study for the Austin case study. 

 
 
 
 

Variable 

 
 
 

Buffer 

(Model 1) 
Street Crossings 
Unsafe, or Heavy 
Traffic with Too 

Many Cars 

(Model 2) 
No or Poor Condition 
of Sidewalks, or Not 
Enough Lighting at 

Night 

Estimate T-Stat Estimate T-Stat 

(Intercept) None −3.25 −1.89 0.04 0.04 

 
Max AADB Category 
[ref = high (above 400)] 

Low 
(less than 250) 1.0 mi 1.05 1.97 −1.51 −2.02 

Medium 
(251 to 400) 1.0 mi 1.60 2.93 −1.51 −2.03 

Log of Zonal AADT 1.0 mi 0.20 1.18 - - 

Mixed Land Use 0.5 mi 0.22 2.39 - - 

Number of Street Lights 1.0 mi - - −0.001 −2.47 

Count of Bike Crashes 0.1 mi - - 0.32 1.79 

Count of Walk Trips for Exercise in Past 7 
days None - - 0.10 2.24 

Count of Bike Trips in 
Past 7 Days 
[ref = “less than three 
times”] 

 
Three or More 

 
None 

 
0.78 

 
2.61 

 
- 

 
- 

Count of Public Transit 
Usage in Past 30 Days 
[ref = “never”] 

 
At Least Once 

 
None 

 
0.82 

 
2.49 

 
0.57 

 
1.31 

Gender (ref = male) Female None 0.37 1.22 - - 

Household Income 
Category 
[ref = “less than 100k”] 

100k and 
above 

 
None 

 
- 

 
- 

 
−1.58 

 
−3.65 

Sample Size 223 203 

Log-likelihood at constant −151.81 −97.87 

Log-likelihood of the final model −138.70 −81.66 

Log-likelihood ratio test χ2(7) =26.22, p<0.0005 χ2(7) =32.42, p<0.0005 
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Appendix D 
 

Appendix D provides the full list of publications and presentations that have been (or will be) a 
result of this project. 

Peer-Reviewed Journal Articles 
• Munira, S., Sener, I. N., & Zhang, Y. (2021). Estimating bicycle demand in the Austin, 

Texas Area: Role of a bikeability index. Journal of Urban Planning and Development, 
147(3), 04021036. 

• Munira, S., & Sener, I. N. (2020). A geographically weighted regression model to 
examine the spatial variation of the socioeconomic and land-use factors associated with 
Strava bike activity in Austin, Texas. Journal of Transport Geography, 88, 102865. 

• Lee, K., & Sener, I. N. (2021). Strava Metro data for bicycle monitoring: A literature 
review. Transport Reviews, 41(1), 27–47. 

The following paper was produced as a collaborative effort from this project and another SAFE-D 
project, entitled Data Mining to Improve Planning for Pedestrian and Bicyclists Safety. 

• Lee, K., & Sener, I. N. (2020). Emerging data for pedestrian and bicycle monitoring: 
Sources and applications. Transportation Research Interdisciplinary Perspectives, 4, 
100095. 

Conference Presentations 
• Munira, S., & Sener, I. N. Examining the spatial variation of the socioeconomic and land- 

use factors associated with bike activity: A case study using crowdsourced Strava data in 
Austin, Texas. Presented at the International Conference on Transport & Health, Virtual 
Conference, June 14–30, 2021. 

• Lee, K., & Sener, I. N. Emerging data for pedestrian and bicycle monitoring: Sources and 
applications. Presented at the 15th World Conference on Transport Research, Mumbai, 
India, May 26–31, 2019. 

Manuscripts in Preparation 
• The role of crowdsourced data in understanding nonmotorized demand: A case study for 

the City of Austin based on Strava and StreetLight data 
• Direct demand modeling in estimating nonmotorized activity: A literature review 
• Understanding nonmotorized traffic data and fusion mechanisms for a better 

demand/exposure estimate 
• Decision fusion for nonmotorized traffic data and Dempster Shafer with context 

credibility: Framework and validation 
• Where they live matters: Exploring walk and bike perception to support policy regarding 

neighborhood infrastructures 
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Ta
 

le 7. Data Source s Used in the SAF E-D Fusion Project 

Appendix E 
 

Appendix E describes the characteristics of the data used in this research study. 
 

Link to datasets: here on the Safe-D Dataverse Site 

Project Description 
This project explored an emerging research territory, the fusion of nonmotorized traffic data for 
estimating reliable and robust exposure measures. The researchers developed fusion mechanisms 
to combine five bike demand data sources in Austin and demonstrated the applicability of the 
fused estimate in two crash analyses. The data used in this study were gathered from five 
primary data sources: (a) actual bicycle volume counts, (b) bicycle-sharing data, (c) NHTS add-
on data, (d) Strava data, and (e) StreetLight data. In addition, the sociodemographic and land-use 
data for building models were obtained from the American Community Survey, Austin 
Transportation Department, and other public data domains. 

Data Scope 
Table 7 provides a generic description of the datasets used in this project. 

 
  

Data Sources 

Temporal 
Coverage or 
Year of Data 

Collection 

 
Spatial 

Coverage 

 
Source 

 
Data Access 

 
 
 
 
 
 
 

Primary 
bicycle 

data 
sources 

Video-Based 
Short Count 

24-hour count 
in 2017 

44 
intersections 

City of Austin 
Transportation Department 

 
Requested 

Inductive 
Loop-Based 
Permanent 

Count 

Continuous 
count from 
2012 to 2017 

 
11 locations 

 
Eco-Counter 

 
Requested 

NHTS Add-On 
Survey 

Gathered in 
2017 

1,095 
households in 

Austin 

 
TxDOT 

 
Requested 

Strava Metro 
Data 

 
Trips in 2017 

2,303 
intersections in 

Austin 

TxDOT (through an 
internal agreement with 

Strava) 

 
Requested 

 
Bike-Sharing 

Data 

 
Trips in 2017 

63 stations in 
Downtown 

Austin 

https://data.austintexas.gov/ 
Transportation-and- 

Mobility/Austin- 
MetroBike-Trips/tyfh-5r8s 

 
Public Website 

StreetLight 
Data 

 
Trips in 2018 

950 Zones for 
intersections in 

Austin 

 
StreetLight Inc. 

 
Requested 

Secondary 
data 

sources 

 
ACS Data 

 
2017 

Census tract or 
block group 

level in Austin 

https://data.census.gov/ceds 
ci/ 

 
Public Website 

https://dataverse.vtti.vt.edu/dataset.xhtml?persistentId=doi:10.15787/VTT1/ZSJK4Z
https://data.austintexas.gov/Transportation-and-Mobility/Austin-MetroBike-Trips/tyfh-5r8s
https://data.austintexas.gov/Transportation-and-Mobility/Austin-MetroBike-Trips/tyfh-5r8s
https://data.austintexas.gov/Transportation-and-Mobility/Austin-MetroBike-Trips/tyfh-5r8s
https://data.austintexas.gov/Transportation-and-Mobility/Austin-MetroBike-Trips/tyfh-5r8s
https://data.census.gov/cedsci/
https://data.census.gov/cedsci/
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Data Sources 

Temporal 
Coverage or 
Year of Data 

Collection 

 
Spatial 

Coverage 

 
Source 

 
Data Access 

 City of 
Austin’s Bike 
Network Data 

2018 City of Austin 
boundary 

City of Austin 
Transportation Department 

 
Requested 

 
 

Land-Use Data 

 
 

2016 

 
City of Austin 

boundary 

https://data.austintexas.gov/ 
Locations-and-Maps/Land- 

Database-Data-Only- 
2016/4nsn- 

uea6/data?pane=feed 

 
 

Public Website 

 
School Data 

 
2015 

 
City of Austin 

boundary 

http://schoolsdata2-tea- 
texas.opendata.arcgis.com/ 
datasets/059432fd0dcb4a20 

8974c235e837c94f_0 

 
Public Website 

 
Traffic Signal 

Data 

 
2019 

 
City of Austin 

boundary 

https://data.austintexas.gov/ 
dataset/Traffic-Signals- 

and-Pedestrian- 
Signals/p53x-x73x 

 
Public Website 

 
Transit Data 

 
2018 

 
City of Austin 

boundary 

https://data.texas.gov/Trans 
portation/CapMetro- 

Shapefiles-JUNE- 
2018/rwce-6ann 

 
Public Website 

 
 

Traffic 
Volume Data 

 
 

2017 

 
 

City of Austin 
boundary 

https://gis- 
txdot.opendata.arcgis.com/ 
datasets/4dfba4bdbd8044c5 
8e1ce1a1c5fdbcd2_0?geom 

etry=- 
141.889%2C24.544%2C- 

58.261%2C37.664 

 
 

Public Website 

 
Network 

Speed Data 

 
2020 

 
Texas 

https://data.austintexas.gov/ 
Locations-and- 
Maps/Street- 

Centerline/m5w3-uea6 

 
Public Website 

 
Crash Data 

 
2014-2018 City of Austin 

boundary 
https://cris.dot.state.tx.us/p 
ublic/Query/app/welcome 

 
Requested 

Employment 
Data 

 
2017 City of Austin 

boundary 

TxDOT (through an 
internal agreement with 

InfoGroup) 

 
Requested 

 
 

Data Specification 
Some of the datasets used in this project were obtained through the public domain, and thus are 
available for sharing. Some other datasets were requested from corresponding data providers or 
government agencies and obtained under specific data use agreements, and thus are not available 
directly from the authors. With these data access regulations in mind, following are details on the 
data specifications and/or reference information of each dataset. 

https://data.austintexas.gov/Locations-and-Maps/Land-Database-Data-Only-2016/4nsn-uea6/data?pane=feed
https://data.austintexas.gov/Locations-and-Maps/Land-Database-Data-Only-2016/4nsn-uea6/data?pane=feed
https://data.austintexas.gov/Locations-and-Maps/Land-Database-Data-Only-2016/4nsn-uea6/data?pane=feed
https://data.austintexas.gov/Locations-and-Maps/Land-Database-Data-Only-2016/4nsn-uea6/data?pane=feed
https://data.austintexas.gov/Locations-and-Maps/Land-Database-Data-Only-2016/4nsn-uea6/data?pane=feed
http://schoolsdata2-tea-texas.opendata.arcgis.com/datasets/059432fd0dcb4a208974c235e837c94f_0
http://schoolsdata2-tea-texas.opendata.arcgis.com/datasets/059432fd0dcb4a208974c235e837c94f_0
http://schoolsdata2-tea-texas.opendata.arcgis.com/datasets/059432fd0dcb4a208974c235e837c94f_0
http://schoolsdata2-tea-texas.opendata.arcgis.com/datasets/059432fd0dcb4a208974c235e837c94f_0
https://data.austintexas.gov/dataset/Traffic-Signals-and-Pedestrian-Signals/p53x-x73x
https://data.austintexas.gov/dataset/Traffic-Signals-and-Pedestrian-Signals/p53x-x73x
https://data.austintexas.gov/dataset/Traffic-Signals-and-Pedestrian-Signals/p53x-x73x
https://data.austintexas.gov/dataset/Traffic-Signals-and-Pedestrian-Signals/p53x-x73x
https://data.texas.gov/Transportation/CapMetro-Shapefiles-JUNE-2018/rwce-6ann
https://data.texas.gov/Transportation/CapMetro-Shapefiles-JUNE-2018/rwce-6ann
https://data.texas.gov/Transportation/CapMetro-Shapefiles-JUNE-2018/rwce-6ann
https://data.texas.gov/Transportation/CapMetro-Shapefiles-JUNE-2018/rwce-6ann
https://gis-txdot.opendata.arcgis.com/datasets/4dfba4bdbd8044c58e1ce1a1c5fdbcd2_0?geometry=-141.889%2C24.544%2C-58.261%2C37.664
https://gis-txdot.opendata.arcgis.com/datasets/4dfba4bdbd8044c58e1ce1a1c5fdbcd2_0?geometry=-141.889%2C24.544%2C-58.261%2C37.664
https://gis-txdot.opendata.arcgis.com/datasets/4dfba4bdbd8044c58e1ce1a1c5fdbcd2_0?geometry=-141.889%2C24.544%2C-58.261%2C37.664
https://gis-txdot.opendata.arcgis.com/datasets/4dfba4bdbd8044c58e1ce1a1c5fdbcd2_0?geometry=-141.889%2C24.544%2C-58.261%2C37.664
https://gis-txdot.opendata.arcgis.com/datasets/4dfba4bdbd8044c58e1ce1a1c5fdbcd2_0?geometry=-141.889%2C24.544%2C-58.261%2C37.664
https://gis-txdot.opendata.arcgis.com/datasets/4dfba4bdbd8044c58e1ce1a1c5fdbcd2_0?geometry=-141.889%2C24.544%2C-58.261%2C37.664
https://gis-txdot.opendata.arcgis.com/datasets/4dfba4bdbd8044c58e1ce1a1c5fdbcd2_0?geometry=-141.889%2C24.544%2C-58.261%2C37.664
https://data.austintexas.gov/Locations-and-Maps/Street-Centerline/m5w3-uea6
https://data.austintexas.gov/Locations-and-Maps/Street-Centerline/m5w3-uea6
https://data.austintexas.gov/Locations-and-Maps/Street-Centerline/m5w3-uea6
https://data.austintexas.gov/Locations-and-Maps/Street-Centerline/m5w3-uea6
https://cris.dot.state.tx.us/public/Query/app/welcome
https://cris.dot.state.tx.us/public/Query/app/welcome
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Primary Data Sources 
Short-Count Data: The bike short-count data were obtained from the City of Austin 
Transportation Department. The city holds an Open Data Inventory available at 
https://data.mobility.austin.gov/open-data/. The inventory “provides comprehensive list of public 
transportation datasets made available by the City of Austin Transportation Department. This 
inventory also identifies datasets which may be under active development, or datasets which are 
not currently available but have been identified for future development” [100]. 

• Requests related to the bicycle short-count data should be directed to the City of Austin 
Transportation Department. 

Continuous-Count Data: The bike continuous-count data were obtained from Eco-Counter, 
which is a company that assists with continuous data collection for pedestrian and bicyclists in 
specific locations across cities around the world [95]. 

• Requests related to the continuous-count data should be directed to Eco-Counter. 

NHTS TxDOT Add-On Survey: The 2017 TxDOT NHTS add-on survey data were obtained 
from TxDOT. NHTS data specifications are available online at 
https://www.txdot.gov/government/enforcement/data-access.html. 

Requests related to the continuous-count data should be directed to TxDOT. 

Strava Data: The Strava Metro data were obtained from TxDOT—through its internal agreement 
with Strava. Details on Strava Metro data can be found at https://metro.strava.com/. 

Requests related to the Strava Metro data should be directed to Strava. 

StreetLight Data: The StreetLight data were obtained from StreetLight. Details on StreetLight 
data can be found at https://www.streetlightdata.com/. 

Requests related to the StreetLight data should be directed to StreetLight. 

Bike-Sharing Data: The bike-sharing trip data were obtained from the BCycle (Austin bike- 
sharing agency) data portal, available online at https://data.austintexas.gov/Transportation-and- 
Mobility/Austin-MetroBike-Trips/tyfh-5r8s. 

 

Secondary Data Sources 
ACS Data: The ACS datasets were obtained from the ACS data inventory at 
https://data.census.gov/cedsci/. 

• The processed ACS data include sociodemographic variables at three buffer zones (0.1 
mi, 0.5 mi, 1 mi) around the intersections of the study area. 

City of Austin’s Bike Network Data: The bike network data were obtained from the City of 
Austin Transportation Department. Detailed specifications can be found at 

https://data.mobility.austin.gov/open-data/
https://www.txdot.gov/government/enforcement/data-access.html
https://metro.strava.com/
https://www.streetlightdata.com/
https://data.austintexas.gov/Transportation-and-Mobility/Austin-MetroBike-Trips/tyfh-5r8s
https://data.austintexas.gov/Transportation-and-Mobility/Austin-MetroBike-Trips/tyfh-5r8s
https://data.census.gov/cedsci/
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https://services.arcgis.com/0L95CJ0VTaxqcmED/arcgis/rest/services/TRANSPORTATION_bic 
ycle_facilities/FeatureServer. 

Requests related to the bike network data should be directed to the City of Austin 
Transportation Department. 

Land-Use Data: The land-use data were obtained from Austin’s open data portal at 
https://data.austintexas.gov/Locations-and-Maps/Land-Database-Data-Only-2016/4nsn- 
uea6/data?pane=feed. 

The processed land-use data include counts of land use across different categories at three 
buffer zones (0.1 mi, 0.5 mi, 1 mi) around the intersections of the study area. 

School Data: The school data were obtained from the Texas Education Agency’s public open 
data site, available online at http://schoolsdata2-tea- 
texas.opendata.arcgis.com/datasets/059432fd0dcb4a208974c235e837c94f_0. 

The processed school data include counts of schools across three buffer zones (0.1 mi, 
0.5 mi, 1 mi) around the intersections of the study area. 

Traffic Signal Data: The traffic signal data were obtained from Austin’s open data portal at 
https://data.austintexas.gov/dataset/Traffic-Signals-and-Pedestrian-Signals/p53x-x73x. 

The processed signal data include counts of traffic signals across three buffer zones 
(0.1 mi, 0.5 mi, 1 mi) around the intersections of the study area. 

Transit Data: The transit data were obtained from Capital Metro’s open data site at 
https://data.texas.gov/Transportation/CapMetro-Shapefiles-JUNE-2018/rwce-6ann. 

The processed transit data include counts of transit stops across three buffer zones 
(0.1 mi, 0.5 mi, 1 mi) around the intersections of the study area. 

Traffic Volume Data: The traffic volume (i.e., AADT) data were obtained from TxDOT’s open 
data portal at https://gis-txdot.opendata.arcgis.com/datasets 
/4dfba4bdbd8044c58e1ce1a1c5fdbcd2_0?geometry=-141.889%2C24.544%2C- 
58.261%2C37.664. 

The processed data include average AADT across three buffer zones (0.1 mi, 0.5 mi, 1 
mi) around the intersections of the study area. 

Network Speed Data: The network speed data were obtained from Austin’s open data portal at 
https://data.austintexas.gov/Locations-and-Maps/Street-Centerline/m5w3-uea6. 

The processed data include average network speed across three buffer zones (0.1 mi, 0.5 
mi, 1 mi) around the intersections of the study area. 

https://services.arcgis.com/0L95CJ0VTaxqcmED/arcgis/rest/services/TRANSPORTATION_bicycle_facilities/FeatureServer
https://services.arcgis.com/0L95CJ0VTaxqcmED/arcgis/rest/services/TRANSPORTATION_bicycle_facilities/FeatureServer
https://data.austintexas.gov/Locations-and-Maps/Land-Database-Data-Only-2016/4nsn-uea6/data?pane=feed
https://data.austintexas.gov/Locations-and-Maps/Land-Database-Data-Only-2016/4nsn-uea6/data?pane=feed
http://schoolsdata2-tea-texas.opendata.arcgis.com/datasets/059432fd0dcb4a208974c235e837c94f_0
http://schoolsdata2-tea-texas.opendata.arcgis.com/datasets/059432fd0dcb4a208974c235e837c94f_0
https://data.austintexas.gov/dataset/Traffic-Signals-and-Pedestrian-Signals/p53x-x73x
https://data.texas.gov/Transportation/CapMetro-Shapefiles-JUNE-2018/rwce-6ann
https://gis-txdot.opendata.arcgis.com/datasets/4dfba4bdbd8044c58e1ce1a1c5fdbcd2_0?geometry=-141.889%2C24.544%2C-58.261%2C37.664
https://gis-txdot.opendata.arcgis.com/datasets/4dfba4bdbd8044c58e1ce1a1c5fdbcd2_0?geometry=-141.889%2C24.544%2C-58.261%2C37.664
https://gis-txdot.opendata.arcgis.com/datasets/4dfba4bdbd8044c58e1ce1a1c5fdbcd2_0?geometry=-141.889%2C24.544%2C-58.261%2C37.664
https://data.austintexas.gov/Locations-and-Maps/Street-Centerline/m5w3-uea6
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Crash Data: The crash data were obtained from CRIS at 
https://cris.dot.state.tx.us/public/Query/app/welcome. 

Requests related to the crash data should be directed to CRIS. 

Employment Data: The employment data were obtained from TxDOT—through its internal 
agreement with Infogroup. 

Requests related to the employment data should be directed to TxDOT. 

Estimated Data Sources 
Fused Bike Volume Data: The fused bike volume data include fused bike volume or exposure 
estimates at the intersections of the study area. 

Citation Metadata 
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