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Abstract 
SAE Level 5 autonomy requires the autonomous vehicle to be able to accurately sense 
the environment and detect obstacles in all weather and visibility conditions. This sensing 
problem becomes significantly challenging in weather conditions that include such events 
as sudden change in lighting, smoke, fog, snow, and rain. There is no standalone sensor 
currently on the market that can provide reliable perception data in all conditions. We 
demonstrate that a combination of Long Wave Infrared (LWIR) cameras with radar 
provide a viable sensing system that is robust to adverse visibility conditions. We have 
validated this prototype system both in simulation as well as in real-world traffic using a 
2017 Lincoln MKZ operating in College Station, TX. 
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Introduction 
It is well known that over 90% of traffic accidents on roads are caused by human errors [1] [2]. 
For human-driven vehicles, 22% of all crashes in the United States occur during adverse weather 
conditions and during poor visibility. The primary goal of fully autonomous driving is to 
eliminate such accidents by removing the driver from the equation. For such vehicles to operate 
safely, they need to be able to perceive other road users (cars, bikes, pedestrians, etc.) just as well 
as, if not better than, a human driver. Currently, no single sensor exists on the market that can 
perform this task reliably. Instead, autonomous driving systems utilize a combination of sensors 
for environmental perception. 

A fully autonomous vehicle, as defined by SAE, must be able to perform all driving functions 
(including perception) under all conditions [3]. In order to achieve Level 5 autonomy, we need to 
design systems that work reliably even in adverse weather and visibility conditions, without the 
need for human intervention. Radars, lidars and RGB cameras have different operating 
characteristics in different situations. A summary of the relevant performance aspects obtained 
from a study by [4] is provided in Table 1.  

Table 1: Performance of Typical Sensors Used 

Aspect of Performance Humans Radar Lidar RGB 
Camera 

Object Detection Good Good Good Fair 

Object Classification Good Poor Fair Good 

Visibility Range Good Good Fair Fair 

Dark/Low Light Poor Good Good Poor 

 

It has been demonstrated that lidar sensors perform poorly in heavy rain or fog due to reflections 
from the water droplets [4, 5]. RGB cameras yield limited information at night due to low 
lighting. They can only sense the area covered by the headlights and are further hindered by 
headlight bloom from oncoming vehicles. Moreover, they are severely disrupted by direct glare 
while driving directly in the direction of sunrise or sunset, as shown in Figure 1. 
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Figure 1: Glare from sun severely affecting visibility as seen from an RGB camera while driving. 

Loss of visibility under intense sunlight can be fatal, as demonstrated by the failure of Tesla's 
AutoPilot system to detect the side of a trailer in 2016 [6]. Recently, [7] presented an approach 
for improving visibility in direct sunlight by using a High Dynamic Range (HDR) camera that 
captures multiple frames at different exposure settings to create a composite image. The same 
approach is not guaranteed to work for night-time autonomous driving, especially with a moving 
camera.  

Thermal cameras, especially those operating over the Long Wavelength Infrared (LWIR) 
spectrum (8,000 to 14,000 nanometers) are inherently resilient to direct sunlight, as demonstrated 
in Figure 2, which presents the same scene as in Figure 1, but as seen from a thermal camera. 
Moreover, a study by [8] demonstrated the superior performance of LWIR cameras over lidars 
and RGB cameras in foggy conditions for identifying pedestrians. Thermal perception systems 
for autonomous driving have not received the same amount of attention in published research as 
RBG cameras; one of the goals of this study is to bridge this gap. 

 
Figure 2: Thermal cameras are resilient to direct sunlight. 

Since a radar sensor is also resilient to poor visibility conditions, in this project, we combine 
information from thermal cameras with that from radar to create an accurate map of the vehicle’s 
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surroundings. We explore common data association and tracking approaches to determine the 
best approach for this application. We also validate our approach using simulations and 
experimental data. 

Background 
A variety of papers have been published in the field of perception and sensor fusion for 
autonomous driving. Many of these focus on some combination of RGB camera, lidar and radar, 
as this combination is commonly used. Recently, the self-driving industry has been making 
progress towards higher levels of autonomy (SAE Level 4/5), resulting in a rise in studies that 
explore the utilization of thermal camera information. Azam et al [9] utilized a thermal camera in 
combination with a lidar for object detection and tracking. As mentioned earlier, lidar sensors are 
not always reliable in foggy conditions. Moreover, the prohibitive cost of high-resolution lidar 
poses a challenge to large-scale adoption. Consequently, we do not use lidar information for 
sensor fusion in this project and instead use it only for validation. 

Approaches for data association for multiple target tracking have been published in literature 
dating back to the late 1970s [10-12]. Many of the conventional approaches can be broadly 
separated into two classes: Single-Frame vs Multi-Frame data association, depending on whether 
the measurement-to-track association is made on a frame-by-frame basis, or if a history of "likely 
assignments” are stored for a complete decision to be made later [13]. 

The simplest of the single-frame methods is the Nearest Neighbor association, where the sensor 
measurement closest to the track is associated with the track and the rest are discarded as clutter. 
An optimal version of this algorithm, referred to as the Global Nearest Neighbor association, 
uses the Kuhn-Munkres/Hungarian algorithm [14]. Alternatively, Joint Probabilistic Data 
Association (JPDA) first proposed by [15], uses a Bayesian approach to data association, 
effectively utilizing a weighted sum of all measurements in the neighborhood of a track. Multiple 
Hypothesis Tracking (MHT) is an example of the multi-frame association [16] and newer 
approaches also exist based on Random Set theory and Particle Hypothesis Density [17]. A 
review of data fusion strategies is also available in [18]. 

In this project, we have primarily focused on JPDA and MHT approaches with the goal of 
evaluating each to determine the best fit for this application. 

Methodology 

Sensors 
Five Automotive Development Kit (ADK) thermal cameras were acquired from FLIR, with a 
field of view (FOV) of 50° each. For the radar, a 77 GHz Delphi ESR module was used, 
mounted to the front bumper of the car. For data collection, a 2017 Lincoln MKZ owned by the 
Mechanical Engineering Department at Texas A&M University was utilized as the driving 
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platform. An Xsens IMU mounted in the trunk of the vehicle was used for collecting acceleration 
and orientation information. An RGB camera from PointGrey was also mounted to the inside 
windshield of the car to serve as a reference. The data from the RGB camera was not used in the 
sensor fusion algorithm. 

An intel NUC 8th Gen (NUC8i7HVK) with 4 cores and 32 GB RAM was used to interface all the 
sensors, including the vehicle’s drive-by-wire system. All data was recorded on board and sensor 
fusion was done offline for convenience using an Nvidia RTX 2070 graphics card. An Ubuntu 
18.04 install of Robot Operating System (ROS) was used as the primary middleware. 

Thermal System Mount 
After multiple iterations through rapid prototyping (3D printing), a final design was created such 
that the thermal camera system provided an output with a 190° total FOV. This was to 
demonstrate the ability of such systems to perceive a large portion of the scene, similar to a lidar. 
It is possible to develop a 360° FOV system with more cameras or different models of the ADK. 

 
Figure 3: Final design of thermal camera system. 

Figure 3 shows the key dimensions (in millimeters) of the designed mount, as well as a 
SolidWorks render. This design was machined in Aluminum and mounted to the vehicle rooftop. 
Figure 4 shows the thermal system after machining and assembly as well as the mounting 
location on the car. 
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Figure 4: Machined product and mounting location. 

Thermal Panorama 
Since the relative angle between the optical axes of the cameras are fixed (and known), a script 
was written to stitch the video feeds from all the cameras to create a panoramic video.  

For this purpose, OpenCV tools were used to transform all cameras—1 through 5—to the image 
frame of the center camera (camera #3 in Figure 4). Then, overlapping portions of the images 
were cropped out to create a complete 190° FOV panorama. A screenshot of the stitched video is 
presented in Figure 5, showing a portion of the dataset collected on University Drive in College 
Station, TX. ROS device drivers for the FLIR ADK were supplied by the manufacturer but were 
designed for use with only one camera at a time. Consequently, the driver package was modified 
to accommodate simultaneously collecting video streams from multiple cameras. The video was 
collected at 20 frames per second. The ROS package that was developed will be made available 
on GitHub at the completion of this project. 

 
Figure 5: Stitched thermal video panorama. 

Each of the five thermal cameras performed their own Automatic Gain Control as set by the 
manufacturer. This caused the “banding” effect as seen in Figure 5, in spite of an attempt to 
mitigate this issue by using a simple gradient-based smoothening at the edges. More advanced 
image blending methods exist in published literature (for example, in [19]). Nevertheless, this 
issue did not adversely affect object detection performance, so no further action was taken.  
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Object Detection Through Machine Learning 
From the generated panoramic video, objects on the road need to be identified—specifically, 
vehicles, pedestrians, and bicycles. For this project, the YOLOv4 (You Only Look Once) 
algorithm  [20] was used. While pre-trained weights are available for images from regular 
cameras (RGB), they do not work well for thermal (grayscale) images. Moreover, the YOLO 
algorithm works well on images with an aspect ratio ≈ 1:1. Given that the stitched image from 
the five FLIR cameras has an aspect ratio ≈ 1:5, there was a need to retrain an image detector for 
this project.  

FLIR offers an annotated thermal dataset1 for image recognition training. It contains over 8,000 
images taken at 512x640 resolution (aspect ratio ≈1:1). Since the training input images should 
have a similar aspect ratio to that of the panorama, each image in the dataset was edited by 
padding zeros (equivalent to black pixels in grayscale) on either side of the image to achieve the 
required aspect ratio. The annotations for each image were also transformed accordingly. Figure 
6 and Figure 7 show an example of the original image from the dataset and the padded image. 
The size of the padding on either side was randomized to improve robustness of the image 
detector. 

 
Figure 6: A sample image from the FLIR dataset with a 1:1 aspect ratio. 

 

 
Figure 7: Random padding added to images from dataset for training, to impart 1:5 aspect ratio. 

Once the object detector was trained, it was run offline on the previously collected data. The 
algorithm provides a list of the positions and types (cars/people/bicycles) of objects detected for 
each frame. Figure 8 shows a sample frame of the panorama with the detections overlaid at the 

 
1 https://www.flir.com/oem/adas/adas-dataset-form 

https://www.flir.com/oem/adas/adas-dataset-form


7 
 

intersection of College Ave. and University Dr. in College Station, TX. The dataset will be made 
publicly available through the SAFE-D Dataverse2. 

 
Figure 8: A sample output of the trained image detection algorithm. 

Sensor Fusion Algorithm 
Data Association and Tracking Using MHT 
MHT is one of the widely used algorithms for multiple target tracking. The key idea behind MHT 
is to delay the data association process until more information is obtained. To achieve this, separate 
tracks are maintained for each possible data association. At every time step, predicted track 
position from a Kalman Filter is used to establish the gating area for each track. For any new 
observations that lie inside the gating area of a track, a new track is generated. A track is also kept 
to represent a missed detection case. A hypothesis is the collection of tracks which do not share 
observations at any time step.  

In an earlier approach of MHT known as Hypothesis-Oriented MHT, all the hypotheses were 
propagated to the next time step. In this case, a single track can produce multiple tracks based on 
the number of observations inside the gating area, which in turn will produce even more possible 
hypotheses. Soon, the total number of possible hypotheses can blow up in size and it becomes very 
computationally expensive to handle them. To solve this problem, we used Track-Oriented MHT, 
where only the tracks to future time steps are passed on. Now we need a track scoring system 
which can be used to obtain the best possible hypotheses and remove unlikely tracks. Following 
the work by Sitlller [21], we used the log likelihood ratio between the target hypothesis and the 
null hypothesis as the track score. The target hypothesis assumes that the sequence of observations 
comes from the same target, and the null hypothesis assumes that the sequence of observations 
comes from the background. 

After getting the score for each track, we wanted to determine the most likely hypothesis and then 
eliminate unlikely tracks by using N-scan pruning. The score of a hypothesis is the sum of the 
scores of all the tracks in the hypothesis. In order to find the most likely hypothesis, we generated 
a graph where each node represents a track with weight equal to the track score. An edge was 

 
2 Can be downloaded from dataverse.vtti.vt.edu/dataverse/safed. Please see the ‘Additional Products’ section of this 
report for the project URL. 

https://dataverse.vtti.vt.edu/dataverse/safed/
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added between two nodes if they shared an observation at any time step. Next, we calculated the 
Maximum Weighted Independent Set (MWIS) to find the most likely hypothesis. 

N-scan pruning is an important step in MHT due to the exponential increase in the number of track 
hypotheses over time. First, we identified all the tracks which are the most likely hypothesis (“best 
tracks”). Let k be our current frame, then we keep all the tracks which are branching out from these 
best tracks after k-N frames and delete all others. In other words, we consolidate the data 
association decisions for old observations up to frame k−(N −1). Now we pass on the remaining 
tracks to the next frame. 

Other practical issues have also been addressed, such as track initiation and keeping the number 
of tracks in check. As the MWIS is a computationally expensive problem to solve, keeping the 
number of tracks under control is essential for live tracking. Our implementation of MHT is 
divided into two stages. First, we will show the results based on radar data alone and next we will 
use information from the thermal image as well. There are two fundamental ways in which we can 
combine the information from radar sensor and thermal cameras: 

1. Sensor fusion before tracking where we initiate and update tracks based on combined 
information from both sensors. 

2. Sensor fusion after tracking where we initiate and update tracks for both sensors 
independently and then combine tracks using suitable weights for thermal and radar tracks. 

We opted to start with implementing sensor fusion before tracking. As a prerequisite for this 
algorithm, we obtained bounding boxes for vehicles in the thermal image using a YOLO object 
detection algorithm. We then used this information along with radar information to improve tracks. 
One of the major contributions of bounding box data is that we can get one measurement for each 
vehicle. This is not feasible with radar data alone, as radar can give multiple measurements for the 
same vehicle. 

Another practical issue we encountered is that the radar only provides horizontal distance and 
angle to the object in front of it. It is a two-dimensional data where we lose the detected object’s 
height information. This becomes especially important when there is some elevation or depression 
in the road ahead. In such cases, projected track position on the thermal image may not accurately 
represent the observed car. We used the bounding box data to largely eliminate this shortcoming; 
however, the problem still can show up in certain situations when we were not able to detect the 
vehicle on thermal image. 

Data Association and Tracking using JPDA 
While the nearest neighbor approach (simply selecting the nearest sensor return at the next time 
step) works well for single object tracking, it performs poorly when clusters of objects are 
present in the scene. Moreover, it was observed that the Delphi ESR radar installed on the car 
often returns multiple measurements for the same object. For example, a single vehicle in front 
could return two or three “blips” on the radar. This violates the one-to-one correspondence 
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assumption of the nearest neighbor tracker. The Multiple Detection Joint Probability Data 
Association (MD-JPDA) tracker presents a Bayesian approach to tracking, which takes into 
account the possibility of many-to-one measurement to target correspondence [22]. For the 
JPDA approach, we assumed that the cluster size was small (less than four measurements per 
cluster), which allowed us to use the fast version of the algorithm proposed by Zhou and Bose 
[23]. Indeed, from the dataset we collected for tracking vehicles, this assumption held well, 
though it may need to be revisited for tracking pedestrians. An overview of the JPDA approach 
is as follows: 

First, tracks need to be initiated. For this, we compared data from two consecutive frames for 
each sensor. If any measurement in the second frame fell within a small neighborhood (5 pixels 
for the camera and 30 cm for the radar) of the measurement in the first frame, then we initiated a 
track. These bounds on the neighborhoods are reasonable since the sensors collect data at 20 Hz, 
with only 50 milliseconds between two consecutive measurement frames.  

Once a set of tracks was initiated, the camera and radar trackers grouped the incoming sensor 
measurements into clusters. This was done using ellipsoidal validation regions, which were 
chosen to maximize the probability that the true measurement from the track was within this 
region while minimizing the volume of the region. Such clusters were created independently for 
the thermal imaging system and the radar. These tracks were maintained using a Kalman filter. 
For the radar, the state vector consist of the relative position of the target with respect to the ego 
vehicle, the target velocity, and the heading angle. For the thermal camera system, the state 
vector consists of the coordinates of the center point bounding boxes along with dimensions of 
the box (in pixels), as well as their rate of change (pixels/second). 

Finally, tracks had to be destroyed as the object being tracked moved out of the frame. This was 
achieved by maintaining a time-to-death counter for each tracked object. The counter was 
dropped by one for every time step when none of the new measurements could be associated 
with an existing track and is reset if a measurement was successfully assigned to that track in the 
future. If the counter dropped below a threshold, the track was deleted. 

Results and Discussion 
Over 200 GB of data was collected in and around College Station, TX in a variety of conditions, 
such as evening glare, nighttime, and rain. A video link showing the tracking performance for 
MHT and JPDA algorithms over a portion of the data set is available for viewing online. 

● MHT (Night Time): Video Link 
● JPDA (Sunset): Video Link 

Validation 
While we have a preliminary implementation of both the data association approaches, it is 
difficult to compare their performance based solely on visual representation of the sensor fusion 

https://drive.google.com/file/d/16xagyhJNY65FlDQJrERAFckO_kKxRfld/view?usp=sharing
https://youtu.be/J4EtQSkiTvE
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algorithms. Definitive object tracking metrics are available in the literature [24], but these 
require the ground truth trajectories of all objects in the environment. We pursued a two-pronged 
approach to solve this issue. First, we validated the algorithm using simulated data where the 
ground truth is known. Then, we used a high resolution lidar (Ouster OS1-128) and manual 
annotations to experimentally validate the algorithm. 

Validation Through Simulation 
By creating a detailed urban environment with objects of interest (cars, bicycles, pedestrians), we 
can obtain the exact location and pose information of all objects in the scene. Then by running 
each of the data association algorithms in this virtual environment, we can compare the predicted 
tracks with the known trajectories to evaluate performance. MATLAB’s automated driving 
toolbox was selected, as it allowed simulation of cameras and radars as well as integration with 
Unreal Engine for better visualization. A summary of the simulation setup is provided below. 

Sensor Simulation 
Similar to the panoramic camera system mounted to the real vehicle, a set of five cameras was 
implemented using the Simulation 3D Camera block in MATLAB. Output from each of these 
cameras was published as an ROS topic with the same characteristics as that of the real thermal 
cameras (resolution, frame rate, field of view, etc.). Consequently, we were able to generate a 
complete panorama in a similar manner as the experimental data. An example of the stitched 
panorama from the simulated camera sensors in a virtual environment is shown below in Figure 
9. The images were converted to gray scale to maintain a similarity with the output of the 
thermal cameras. 

 

 
Figure 9: A screenshot showing stitched video, as seen through simulated cameras, from the ego vehicle. 

Since the characteristics of the Delphi ESR radar have been experimentally measured by other 
researchers [25], we were able to readily use this information for tuning the parameters of the 
“Simulation 3D Probabilistic Radar” block in MATLAB to simulate the forward-facing radar. 
Again, the simulation was set up to publish ROS topics in the same format as that of the real 
radar on the car.  

Driving Scenario Designer 
A custom traffic scenario was designed using the Driving Scenario Designer tool in MATLAB. 
The scenario involved two vehicles in front of the ego vehicle as well as two vehicles traveling 
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in the opposite direction. Non-ego vehicles were set to perform lane change maneuvers so that 
we could test the performance of the sensor fusion algorithms in tracking vehicles that cross each 
other as well as those that are occluded. A video of the raw driving scenario designed is available 
here: (https://drive.google.com/file/d/1KdB9S-PPvEmavxYHTVpVgC2dPJF-
vaPF/view?usp=sharing). 

The final step for validation through simulation was to calculate the object tracking score. Since 
we knew the exact (ground truth) positions of the simulated vehicles in the scene, we were then 
able to compare this with the output from the fusion algorithms. The output is given in the 
camera coordinates. The output of the sensor fusion algorithm and the ground truth can be 
written into file where each line is in the following format: 

<frame ID> <Track ID> <X> <Y> <Width> <Height> 
 
This encapsulates the X-Y coordinates of each bounding box in the camera frame (in pixels) as 
well their width and height. In this way, the validation was done frame-by-frame. In each frame, 
both the number of objects detected and their position accuracy were validated. In order to 
standardize this validation, we used an open-source library3 (py-motmetrics). 

A comparison of the JPDA and MHT using the simulated sensor data is presented below. 

 

Table 2: Comparison of MOT metrics for JPDA and MHT for Simulated Data 

 Identification Precision (IDP) Identification Recall (IDR) 
JPDA 44.7% 38.2% 
MHT 68% 49% 

 

In this phase, for virtual validation, it appears that the MHT algorithm outperforms the JPDA 
algorithm by a notable margin. As a point of reference, open-source benchmark results3 show an 
Identification Precision of 73% and an Identification Recall of 45.1%, so our results are 
comparable with those in published literature 

Validation Through Experiments 
For the validation of our developed tracking systems, we collected datasets with both a lidar and 
a thermal camera system. The Ouster OS1-128 lidar was also mounted on the roof of the vehicle, 
15 cm vertically below the thermal camera assembly. This distance was small enough to assume 
that the camera and lidar had the same origin. Ground plane was segmented out from the lidar 
data and removed. Using the remaining lidar points, vehicles of interest were manually annotated 

 
3 https://github.com/cheind/py-motmetrics 

https://drive.google.com/file/d/1KdB9S-PPvEmavxYHTVpVgC2dPJF-vaPF/view?usp=sharing
https://drive.google.com/file/d/1KdB9S-PPvEmavxYHTVpVgC2dPJF-vaPF/view?usp=sharing
https://github.com/cheind/py-motmetrics
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using an open-source package4. A screenshot showing the annotations after ground plane 
removal is shown in Figure 10. 

 
Figure 10: Manual lidar annotations after removal of ground plane. 

As with the simulated validation, a text file was generated using the annotated data as the ground 
truth and was compared with the output of the sensor fusion algorithm. 

Table 3: Comparison of MOT metrics for JPDA and MHT for Simulated Data 

 Identification Precision (IDP) Identification Recall (IDR) 
JPDA 24.6% 22.2% 
MHT 23.3% 27.4% 

 

We observed that the scores were significantly lower for the experimental validation using lidar. 
There are two possible reasons for this. 

First is the quality of the annotations themselves. Since the precision score is decided at a pixel 
level, the positioning of bounding boxes in the annotations significantly affects the result. In our 
case, the annotations were semi-automatically generated. The annotation process consisted of 
manually drawing bounding boxes for key frames and interpolating between these frames. We 
are currently working on fine tuning the annotations, which is a labor-intensive task. 

Second, the lidar sensor’s range is only up to 120 m, but the thermal camera system was able to 
detect vehicles at further distances for which no lidar points existed in the point cloud. An 
example of this is shown in Figure 11. This resulted in the lower Recall score. Nevertheless, this 
reinforces the superiority of the thermal perception system. In hindsight, we realize that a long-
range lidar would have better suited the validation task, as it is difficult to selectively validate 

 
4 https://github.com/Earthwings/annotate 

https://github.com/Earthwings/annotate
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only the objects visible with the current lidar. This is something that can be pursued in a future 
extension of this work. 

 
Figure 11: Cars that are far away are detectable by the thermal camera system but not by the lidar. 

Conclusions and Recommendations 

Conclusion 
The broad objective of this project was to explore the feasibility of relying on a thermal camera 
to overcome adverse visibility conditions that pose challenges to other commonly used sensors 
for autonomous driving. A prototype hardware mount was designed and fabricated along with 
accompanying software that allows tracking of vehicles in a 190° FOV of the ego vehicle. The 
results were validated using simulated data as well as using a state of the art lidar sensor. It was 
observed that the combination of thermal and radar sensor can be used to supplement the existing 
perception stack. In fact, we observed that using thermal cameras extended the range of 
perception system since vehicles can be detected in the thermal image even when they are 
beyond the lidar’s detectable range.  
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Future Work 
It would be worthwhile to extend the dataset using the artificial rain tunnel at the RELLIS campus 
once construction is complete and to use artificial fog machines to simulate foggy conditions. 
While portions of our existing dataset contain these scenes, they were not long enough to draw 
strong conclusions. Furthermore, the current radar FOV is only 120°, so addition of side facing 
radars to create a panoramic radar sensor (similar to the thermal system) would be a natural 
extension of this work. Likewise, real-world validation from this study can be further strengthened 
by using long-range lidar sensors. 

Additional Products 
The Education and Workforce Development (EWD) and Technology Transfer (T2) products 
created as part of this project can be downloaded from the project page on the Safe-D website. 
The final project dataset is located on the Safe-D Dataverse. 

Education and Workforce Development Products 
Graduate Students (Abhay Singh and Vamsi Vegamoor) had their PhD dissertations partially 
supported by this Safe-D project.  

Technology Transfer Products 
1. The following conference paper was published at the SAE World Congress 2020. An 

additional journal paper summarizing the project is also planned for submission 

Bhadoriya, Abhay Singh, Vamsi Krishna Vegamoor, and Sivakumar Rathinam. (2021). 
Object Detection and Tracking for Autonomous Vehicles in Adverse Weather Conditions. 
No. 2021-01-0079. SAE Technical Paper. 

2. Graduate students participated in the ENDEAVR (Envisioning the Neo-traditional 
Development by Embracing Autonomous Vehicles Realm) a non-profit event organized in 
Nolanville, TX. A prototype of the sensor fusion system was demonstrated and the public 
was educated about the capabilities of autonomous vehicles. URL: http://endeavr.city/ 

3. Abhay Singh served as a judge for  the Texas Junior Academy of Science (TJAS) in  2021, 
which involved high school students from across the state. 

Data Products  
1. ROS Package for this project with all code and drivers.  

URL: https://github.com/VegaVK/flir_adk_multi 

2. Datasets (ROS bag files) collected over the course of this project including lidar, radar, 
thermal camera and vehicle CAN bus data. To be uploaded to SAFE-D Dataverse.  

https://safed.vtti.vt.edu/projects/a-sensor-fusion-and-localization-system-for-improving-vehicle-safety-in-challenging-weather-conditions/
https://dataverse.vtti.vt.edu/dataverse/safed
http://endeavr.city/
https://github.com/VegaVK/flir_adk_multi
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URL: https://doi.org/10.15787/VTT1/B3VKEA  

 

  

https://doi.org/10.15787/VTT1/B3VKEA
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