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Abstract 
This project was inspired by a major gap identified in the literature pertaining to work zone 
safety monitoring systems that leverage advanced technologies for tracking workers, 
identifying hazardous situations, and alerting workers of danger. Existing systems target 
safety hazards that are either external to the work zone (e.g., accidents due to vehicular 
intrusions) or workers’ internal physical/physiological states (e.g., human-factor 
ergonomics such as improper or prolonged use of vibrating hand tools). This project 
presents a holistic approach in which visual and wearable sensor data are used for safety 
monitoring and alert generation to offer a practical mitigation strategy to both external and 
internal safety risks. With a major focus on feasibility of adoption and facilitating 
maintenance, smartphones were used in this project to provide a ubiquitous platform for 
data collection and communication. A mobile application was developed to generate an 
alert when unsafe vibration levels were reached in proximity to a high vibration power tool 
such as a jackhammer. Additionally, visual data collected from surveillance cameras were 
analyzed to detect speeding vehicles approaching the work zone. In either of these 
situations, a worker with the application running on their smartphone would be alerted of 
the internal or external safety hazard.  
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Introduction 
Due to growing highway reconstruction needs, future construction work zones are likely to expand 
in number, exist over greater project durations, and be larger in terms of the amount of work 
needed. The Federal Highway Administration and the American Traffic Safety Service 
Association have raised concerns about the safety of workers in the construction industry due to 
the high rate of serious injuries and accidents in work zones (Baron, 2004; Nnaji et al., 2020). Each 
year there are more than 700 deaths and 44,000 injuries in work zones in the United States; in 
2020, the number of work zone accidents in the U.S. reached 31,000 (National Work Zone Data, 
2022). 

Work zone construction workers are exposed to both internal and external safety risks. Internal 
risks refer to potential injuries as a result of ergonomic hazards, whereas external risks concern the 
possibility of accidents with oncoming vehicles. Injuries due to improper or prolonged use of hand 
tools are examples of internal or ergonomic risks and motor vehicles speeding towards or near 
work zones illustrate possible external risks. While overexertion and awkward postures are usually 
the focus of ergonomic analysis of the fieldworkers' activities, vibration is another, less-studied, 
etiologic cause of certain injuries such as chronic nerve and tendon disorders (Armstrong et al., 
1987). 

Most of the power tools and hand equipment used by fieldworkers in industries such as 
construction produce some level of vibration. Road and infrastructure construction work zones, 
for example, often involve power tools that are required to cut or break large concrete or asphalt 
segments. Those devices help workers perform construction tasks that are too physically 
demanding to be carried out manually. However, if used frequently and continuously without 
appropriate break times, such devices can pose bodily injury threats to workers. The most common 
resulting injury in such situations is hand-arm vibration syndrome (HAVS), where the delicate 
nerve and muscle tissues of the hands and fingers are damaged by strong vibrations (Savage et al., 
1990; Ho & Yu, 1989). Work zone workers who use vibrating equipment (e.g., power drills, 
handsaws, jackhammers, pneumatic drills) more frequently as part of their job are more likely to 
damage their hand and arm nerves. Vibrations can impair blood flow to the fingers, which in turn 
can lead to loss of sensation and impaired hand functions. Numbness, pain, and blotchiness are 
some of the signs and symptoms of such injuries (Lundborg et al., 1987; Miller et al., 1994; 
Takeuchi et al., 1988). Studies have shown that 2.5 million workers in the U.S. are potentially 
exposed to HAVS (Alvarez, Bogen, & Levine, 2019).  The National Institute for Occupational 
Safety and Health has emphasized the seriousness of vibration syndrome, and recommend that 
workers, employers, and occupational health professionals implement engineering controls, 
medical surveillance, and work practices along with personal protective equipment to mitigate 
associated risks (Bernard et al., 1998). An analysis of the neurosensory components of HAVS was 
conducted over a 22-year period to determine the syndrome’s progression and prognostic factors. 
The results indicated that hand numbness and finger pain in workers with HAVS are not 
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completely reversible and continued exposure to vibration results in growing pain in fingers 
(Aarhus et al., 2019). Given the evidence presented in the previous studies, it can be concluded 
that while standards are imperative to mitigate HAVS, a practical approach towards ensuring that 
the standard are in fact adopted in the design of work shifts and breaks to limit the exposure to 
vibration is an important supplementary approach.     

In addition to safety issues concerning power tools vibrations, vehicular intrusions into work zones 
also threaten workers’ safety and lives. Speeding has been identified as one of the most important 
factors that could cause crashes on the roadways, particularly in active work zones, where there is 
a higher chance of crash occurrence since road users need to drive slower than usual and be more 
attentive around these areas. To reduce the chance of crashes, more proactive methods of safety 
assessment are required, ideally in real-time. Existing condition analysis must be made first, to 
provide the foundation of accident prevention design. Such analysis includes detecting and 
monitoring the speed of the vehicles within the investigated area. Current speed detection methods 
may use LIDAR, but not all vehicles and infrastructure are equipped with this or other related 
technologies. Existing surveillance cameras in cities, which are ubiquitous in many locations 
nowadays could potentially be used to monitor speeding events. In the last several decades, 
artificial intelligence and particularly computer vision techniques that leverage the data collected 
by these cameras, have excelled in resolving a wide range of real-world traffic applications.  

Informed by the statistics of workers’ safety issues in work zones and inspired by recent 
advancements in pervasive sensing devices and computing powers, this project aimed at 
developing a holistic approach to recognize a hazard and inform workers to respond in time. The 
assumption is that a framework that can detect safety risks and warn work zone workers in real-
time could help mitigate the risk of potential injuries. Toward this goal, a smartphone application 
was developed to detect internal and external risks (as defined above) and alert exposed workers. 
This is an integrated system that captures signals from the smartphone sensors as well as cameras 
installed on the road leading to the work zone. The system then analyzes the data on a server to 
detect potential hazards and send alerts. More specifically, whenever there is a safety risk, such as 
a worker exposed to excessive vibration or to a vehicle speeding toward the work zone, the 
smartphone application informs the worker by generating alerts. This research leverages live video 
feed from an intersection in the City of Chula Vista. CA to detect and monitor vehicles’ speed and 
generate warning messages when speed goes above a certain threshold. Subsequently, the 
messages are sent to workers to increase their awareness of the impending danger. Figure 1 shows 
the schematic overview of the developed framework. 



3 
 

 

Figure 1. Schematic overview of the developed framework. 

Monitoring Workers’ Hand-Arm Vibration Levels 

Hand-Arm Vibration Safety in Industrial Applications Background 
In general, there are two main types of vibratory effects on the human body: hand-arm vibration 
(HAV) and whole-body vibration (WBV; Coggins et al., 2010). HAV refers to when the hand grips 
vibrating equipment or tools such as power drills, handsaws, jackhammers, and pneumatic drills. 
WBV, on the other hand, pertains to using a vibrating surface to support the body; for example, a 
vibration platform would allow one to exercise in a variety of static positions (Coggins et al., 
2010). 

Several previous studies have investigated HAV. Shen and House (2017) introduced HAVS as a 
negative consequence of using hand-held vibrating tools for a long time. Three components make 
up the syndrome: vascular, represented by the secondary Raynaud phenomenon (Griffin & 
Bovenzi, 2002); sensorineural; and musculoskeletal. In its more advanced stages, HAVS is 
associated with significant disability and poor quality of life (Pelmear & Leong, 2000). When 
diagnosed with HAVS, vibration exposure should be reduced, cold conditions should be avoided, 
smoking should be stopped, and medication should be administered (Shen & House, 2017). 

As for WBV, Bovenzi et al. (2017) studied three groups of professional drivers for the risks of 
occupational vibration injuries as part of a 4-year research project. These drivers operated 
equipment such as earth-moving machines, fork-lift trucks, and public utilities vehicles. The result 
showed that A(8) (i.e., the daily vibration exposure value normalized to an eight-hour reference 
period, explained in detail later) and VDV (i.e., the Vibration Dose Value) are significantly greater 
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than A(8)max and VDVmax, which are the maximum safe values as prescribed in the international 
standard ISO 2631-1, which is dedicated to the effects of WBV on health (International Standards 
Organization [ISO], 1997). Researchers have also considered this as evidence of the associations 
between low back disorders and occupational exposures to WBV (Bovenzi et al., 2017). Other 
studies, including a comprehensive review of WBV injuries in 2015 have also concluded that there 
are strong associations between WBV exposure and low back pain or sciatica (Burnström et al., 
2015). The risk of unsafe levels of WBV on construction workers has also been explored. For 
example, a group of scholars at the University of Granada implemented an assessment of WBV 
using two standards: ISO 2631-1:2008 and ISO2631-5:2018. One of the study’s main conclusions 
was that the surface roughness level is a crucial factor related to WBV in construction workers and 
especially heavy equipment drivers (Hoz Torres et al., 2019). 

Sensor-based Fieldworker Safety Monitoring Background 
The findings of the studies reviewed above have resulted in valuable standards and guidelines 
indicating that unsafe levels of vibration and repetition have serious safety and health effects on 
workers. Nevertheless, unobtrusive monitoring of such hazardous exposures in construction 
workers with the goal of preventing injuries has received very little attention in the literature. 
Construction workers' safety has been improved by developing practical and unobtrusive solutions 
that collect and classify construction activities. With wearable sensors and video cameras, 
researchers have developed data-driven simulation models with safety and productivity monitoring 
applications (Akhavian & Behzadan, 2016; Jeelani et al., 2021; Kim & Cho, 2021). For example, 
Akhavian and Behzadan (2016) used smartphone-based wearable sensors for workers’ safety 
monitoring in construction activities, although no established safety or health standard was used 
to determine the level of hazards, and in particular vibration hazards, imposed on the workers. 
Aryal et al., (2016) used heart rate monitors, infrared temperature sensors, and an EEG (i.e., 
electroencephalogram) sensor for monitoring fatigue in construction workers. However, their work 
was limited to applying a specific health standard to create a response system for laborers (Aryal, 
et al., 2017). In another study, Cheng et al. (2013) used a Physiological Status Monitoring system 
that included a wearable electrocardiograph (ECG) sensor, a respiration sensor, and a three-axial 
accelerometer to monitor physiological status during construction work (Cheng et al., 2013). 
Smartphone app-based systems that leverage embedded sensors have been also developed and 
used for tracking construction workers’ movements in an unobtrusive manner, enabling safety and 
ergonomic monitoring and tracking (Jahanbanifar & Akhavian, 2018; Yang et al., 2019). 

While there are numerous past studies that leverage the safety standards with regards to vibration 
analysis as well as those that monitor safety using wearable sensors, these two approaches have 
never been investigated in conjunction with each other for construction workers’ safety. The 
presented study aims to fill this gap in the body of knowledge by introducing smartphone-based 
vibration data collection and threshold analysis for construction workers that considers the nature 
of the work in common road work zone operations. 
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Hand-Arm Vibration Safety Standards 
To mitigate the negative effects of prolonged exposure to HAV, safety training procedures and 
standardization content have been developed by different health organizations. For example, the 
World Health Organization suggests using the ISO 5349-1:2001 standard, which takes into account 
the measurement and evaluation of human exposure to hand-transmitted vibration (ISO, 2001). 
The Threshold Limit Values standard, presented at the American Conference of Governmental 
Industrial Hygienists, is another measure for WBV (Castleman & Ziem, 1994). Examples from 
outside the United States include work by the Japan Society for Occupational Health, which 
developed the Occupational Exposure Limits standard to deal with adverse health effects on 
workers caused by WBV, HAV, or chemical substances (Omae et al., 1999). 

Different local or international standards set limitations for the amount of vibration that workers 
can be exposed to without posing any safety and health issues (M. Griffin, 1980; Langsley et al., 
1981). ISO/DIS 5349:1986 is one of the most important standards proposed with  regards to HAV. 
Hand-transmitted vibration exposure is measured and reported according to a draft standard that 
explains how these measurements are related to limited epidemiological data (ISO, 1986). While 
this is the latest ISO standard on this subject, and serves as a valuable safety measurement 
benchmark, it is not completely practical in use since vibration is often difficult to measure and 
there is no quantitative relationship between vibration levels and health effects. The American 
National Standards Institute (ANSI) uses the same method introduced by ISO to set a threshold 
for the level of vibration (ANSI, 2006). The method is described below. 

According to ISO/DIS 5349: 1986, vibrations are described by the root-mean-square acceleration 
(rms), in meters per second squared (m/s2). Equation (1) is used to calculate rms single axis ISO 
frequency-weighted acceleration value. 

𝑎ℎ!(#$%) = #'
( ∫ 𝑎ℎ!) (𝑡)𝑑𝑡(

*          (1) 

where ahw(t) is the instantaneous single axis ISO frequency-weighted acceleration value as a 
function of time, and t is the integration time in seconds (s). 

Frequency bands (i.e., intervals in the frequency domain) are used to extract useful levels of signal 
with acceptable distortion characteristics needed for a specific application (ANSI, 2006). An 
octave band is a frequency band that spans one octave. In the one-third octave band where 
frequency ranges between 6.3 and 1,250 Hz, the single-axis acceleration values may be specified 
as one-third octave band values. Equation (2) gives the values of ahi(rms) for one-third octave 
band rms single-axis acceleration. 

𝑎ℎ+(#$%) = #'
( ∫ 𝑎ℎ+) (𝑡)𝑑𝑡

(
*          (2) 
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where ahi(t) is the instantaneous single-axis one-third octave band acceleration value as a function 
of time in the ith one-third octave frequency band, and T is the integration time in seconds (s). 

By summarizing the one-third octave band rms single-axis acceleration values from 6.3 to 1,250 
Hz, the rms single-axis ISO frequency-weighted acceleration value, ahw(rms), can be developed 
using Equation 3. 

𝑎ℎ!(#$%) = #∑ (𝑊ℎ+𝑎ℎ+(#$%)))+         (3) 

where Whi is the ISO frequency-weighting factor for the ith one-third octave frequency band. The 
table of the Whi is represented in Appendix A. For vibration measurements using a smartphone 
accelerometer, the coordinate system should be defined in reference to the smartphone coordinate 
system (see Figure 2). The orientation of the coordinate system used for measurement must be 
reported with respect to distances and angles from the coordinate system. 

 

Figure 2. The coordinate system for the smartphone. 
For a single operation that involves hand-transmitted vibration exposure, the vibration total value, 
ahv(rms), is determined by the root-sum-squares of the measured rms ISO frequency-weighted 
acceleration values in the x, y, and z directions, as shown in Figure 2. For the vibration total value, 
ahv(rms), the variable is a characteristic of the hand-arm system according to ISO 5349. It is 
calculated by Equation 4. 

𝑎ℎ,(#$%) = #𝑎ℎ!-(#$%)) + 𝑎ℎ!.(#$%)) + 𝑎ℎ!/(#$%))       (4) 

An acceleration magnitude in the x, y, and z directions is measured as a function of ISO frequency-
weighted acceleration magnitudes ahwx(rms), ahwy(rms), and ahwz(rms), respectively. 
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Assuming that the vibration total value, ahv(rms), associated with the hand-transmitted vibration 
exposure of a worker is composed of several operations, each with a different vibration magnitude, 
then the vibration total value should be calculated using Equation (5). 

𝑎ℎ,(#$%) = # '
(!
∑ (𝑎ℎ,(#$%)+) 𝑇+)0
+1'         (5) 

The vibration total value ahv(rms)i is the vibration total value associated with the ith operation, Ti is 
the time duration in hours associated with the ith operation, n is the total number of operations, and 
Tv is the total amount of time associated with the n operations. 

From Equation (6), the vibration exposure value, A(8), can be obtained and is standardized to an 
8-hour reference period: 

𝐴(8) = 𝑎ℎ,(#$%)#
(!
("

          (6) 

T0 is the reference duration of 8 hours. The vibration exposure A(8) represents a worker's daily 
exposure to vibration. 

According to the ANSI standard, the Daily Exposure Action Value (DEAV) is 2.5 m/s2 (ANSI, 
2006). This value can be used to determine the health risk threshold for hand-transmitted vibration. 
As defined in this standard, the health risk threshold is the level of hand-transmitted vibration 
exposure that is sufficient to cause abnormal signs, symptoms, and laboratory findings in the 
vascular, bone or joint, neurological, or muscular systems of the hands and arms in some exposed 
individuals (Reynolds, 2006). ANSI also prescribes the Daily Exposure Limit Value (DELV) of 
5.0 m/s2 (ANSI, 2006). Vibrations transmitted by the hand at or above this level are expected to 
pose a high health risk to workers. The difference between DEAV and DELV is on the intensity 
level acceptable for a given task. While DEAV should be avoided, DELV is the ultimate level that 
must not be reached under any circumstances considering the health effects. Therefore, DEAV is 
used in this research as a threshold for the purpose of alerting workers at risk. 

Considering a case where Tv is not the standard 8-hour exposure time, the vibration total value, 
ahv(rms), can be represented as follows: 

𝑎ℎ,(#$%) = # 2
(!
. 𝐴(8)          (7) 

For an exposure time other than 8 hours that has a vibration total, ahv(DEAV), these values are 
calculated as follows: 
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𝑎ℎ,(3456) = 2.5# 2
(!

          (8) 

Thus, the Tv, the duration that the worker can perform a task at a constant level without a potential 
safety risk, is calculated using Equation 9. 

𝑇, =
7*

8ℎ!($%&')
)           (9) 

Method 
The developed framework consists of a smartphone (i.e., embedded sensors, an application with a 
graphical user interface [GUI], and data transmission), software codes responsible for managing 
the process and calculating the results and a server to make a connection between them. The 
smartphone accelerometer sensors measure 3D acceleration of the body part where it is located 
and use the GUI to communicate the collected data and alarm values, when A(8) exceeds the 
threshold. The smartphone application was developed using Flutter framework and the Dart 
programming language in the front-end, and the software codes were programmed in Python 
language on the back-end. The back-end is responsible for collecting data, signal processing, 
calculation, and determining if the threshold has exceeded. The front-end is the interface of the 
application and shows the vibration exposure timer and acceleration speed of oncoming vehicles. 
Flask, a web development framework in Python programming language (Grinberg, 2018), was 
used to establish the connection between the system’s back-end and front-end (Wijethunga & 
Ilmini, 2020). Figure 3 shows the framework of the system.  

  

Figure 3. Data management and analysis framework. 

Vibration Data Collection 
In order to ensure high-fidelity data collection, the process of collecting data was conducted in an 
uncontrolled environment in which the workers were engaged in their everyday routines without 
interruption from researchers. A built-in smartphone accelerometer was used to collect the 
vibration data from a worker who was operating a jackhammer. A phone was attached to both of 
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the worker’s arms to ensure redundancy in data collection. The accelerometer data in the form of 
ahix(rms), ahiy(rms), and ahiz(rms), was stored in the server. The sampling frequency was set at 500 Hz. 
Figure 4 shows the worker with smartphones attached to both arms. The developed application is 
installed on both smartphones and data is collected using both. An initial screening of the data 
collected showed a consistently similar timeseries data in the datasets generated by both data 
collection nodes and one of them (i.e., the one installed on the right hand arm) was used as the 
data source.   

 
Figure 4. Smartphones worn by the worker on both arms. 

The worker who wore the smartphones used two power tools: a Hilti TE 1000 AVR and a Makita 
HM1203C. Figure 5 illustrates the equipment used and Table 1 shows the tool specifications, 
including the model, weight, impact energy and blows per minute. At the time of data collection, 
a research team member was monitoring the data collection on the server and another team member 
was video recording the entire data collection for later cross-check and analysis (Figure 6). There 
were a total of three workers on the job site. One of them was using a jackhammer for floor 
demolition and the other two were helping with watering the area and cleaning the surface (Error! 
Reference source not found.). 
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Figure 5. Two different jackhammer types were used by the worker. 

Table 1. Jackhammer Specifications 

Jackhammer Model Weight (lbs.) 
Impact Energy (ft-

lbs.) 
Blows Per Minute 
(variable speed) 

1 TE 1000 AVR 27.7 19.2 1950 

2 HM1203C 20.3 18.8 950-1900 

 

 

 

 

 

 

 

 

 

 

 Figure 6. A) The worker using the TE 100 AVR, B) The worker using the HM1203C, C) The data collection 
scene with research team members. 
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Signal Processing for Safety Standard Evaluations 
Imported data was processed according to the standards then important features were extracted. 
By dissecting the signal into different frequency ranges and measuring the rms acceleration value 
for each of those ranges, a Fourier spectrum analyzer can determine the frequency spectrum of 
acceleration. First ahwx(rms), ahwy(rms), and ahwz(rms) were calculated according to the analysis, provided 
an rms acceleration value for each 1/3-octave center band frequency from 6.3 to 1250 Hz, for each 
of the three axes using Equation 3.  Then ahv(rms) was obtained by the root-sum-squares of the 
measured rms (Equation 4) Rather than taking into account the time intervals between 
measurements, this was the average exposure for the events measured from the worker. 

Smartphone Application GUI 
Figure 7 illustrates the application’s GUI. The interface shows the value of acceleration in each 
direction at each point in time. The Timer that expresses the remaining duration of time at the 
current level of vibration to adhere to safety standards. The risk level indicates if the current 
situation is unsafe (i.e., past the DEAV) or not. If the level rises past the DEAV, the Risk Level 
changes to STOP WORK, indicating that the worker should stop the work for the day. Buttons are 
also available to Start, Stop, or Restart the process. The Check Cars button starts the process of 
monitoring approaching cars automatically. When the user presses the start button, the timer starts 
working. The user can stop the timer or restart it if a new worker wants to continue the job. By 
pressing the Check Cars button, the application starts listening to the server for any signal which 
received indicating that a speeding vehicle is approaching the work zone.  

To calculate the remaining time for the worker to continue the work using the vibratory tool at a 
safe level, the application essentially calculates ahv(rms) in the signal processing component. The 
remaining allowed duration of work is calculated by Equation 9 and presented here. The 
application is dynamic in calculating this duration. More specifically, it considers the fact that the 
worker may not work non-stop on the given task that involves the high vibratory power tool and 
may engage in other tasks or take a break. As such, the timer is updated as the program stores the 
ahv(rms) cumulatively and re-computes the Tv every minute. If the worker does not stop working and 
continues the task without a break or switches to another task with a level of vibration, the timer 
eventually shows zero, which is when an alarm is triggered and warns the worker to stop. In other 
words, when the alarm goes off, it means that the cumulative DEAV has reached 2.5 m/s2.  The 
warning is a combination of an auditory and vibratory alarm.  
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Figure 7. GUI of the developed application. 

Hazardous Vibration Detection Results and Discussion 
Table 2 provides the 𝑎9,(#$%)  values of each event based on the tasks that the worker performed. 
The worker started with breaking a concrete slab for 1 hour using the TE 1000 AVR equipment 
(shown in Error! Reference source not found.). After a 15-minute break, the worker continued 
the same task for 25 minutes. Then the worker switched to using the HM1203C jackhammer (see 
Error! Reference source not found.) and worked on the same task for another 18 minutes before 
the alarm on the developed application went off.  

Table 2. Event Logs  

Activity Tool Duration (minutes) 𝒂𝒉𝒗(𝒓𝒎𝒔) (m/s2) 

Break Concrete Slab TE 1000 AVR 58 5.99 

Rest - 15 0 

Break Concrete Slab TE 1000 AVR 25 5.99 

Switching Tool - 1 0 

Break Concrete Slab HM1203C 18 0.98 
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For each event, weighted acceleration (𝑎9,(#$%) ) values were calculated using Equation (4). 
𝑎9,(#$%)values were calculated for each axis and the largest 𝑎9,(#$%)  of the three axes was chosen 
as the 𝑎9,(#$%)for the event and represented in the last column. Time-remaining (Tv) in each 
moment was calculated using Equation (9). To estimate the worker’s exposure levels throughout 
a full shift, the tool operation time should be divided by the total duration of work, including 
periods between measurements, and the value multiplied by 8 hours. Then the vibration total value 
can be obtained using Equation (5): 

𝑎ℎ,(#$%) = 2 1
101 (5.99

) × 58 + 5.99) × 25 + 0.98) × 18) = 5.45 

where 101 is the total time in minutes associated with the operation of the equipment. Finally, A(8) 
can be calculated for this worker using Equation (6). Assuming a work shift was 8 hours (i.e., 
equal to 480 minutes): 

𝐴(8) = 5.452
101
480 = 2.5 

The A(8) of 2.5 m/s2 indicates that the alarm went off at the correct point in time where the 
threshold of DEAV was reached. As such, the research team asked the worker to stop and take a 
break. 

Detection of Cars Speeding Towards Work Zones 

Computer Vision-based Speeding Monitoring Background 
Vehicle speed detection has been investigated using a variety of approaches. In order to estimate 
traffic speed using digital video recorded with a stationary camera, Rad et al. (2010) suggested a 
method that involved comparing the vehicle’s location between the current frame and the 
preceding frame. Geometric formulae were used to calibrate the camera. The system created by 
Rad et al. has the potential to be expanded into additional application areas and has a detected 
vehicle speed average inaccuracy of 7 km/h. Ferrier et al. (1994) obtained different metrics, 
including vehicle speed, using real-time tracking approaches by exploiting the motion parameters 
in the frame and information on the projection between the ground plane and the image plane. 
They also utilized scene-particular tuning of the flow for a more precise forecast of the target area 
by the tracker. Yamazaki et al. (2008) utilized digital aerial photos to extract the vehicles and 
shadows from two successive frames in order to identify vehicle speed. By connecting the 
respective cars from these photographs based on their proximity, arrangement, and size, as well as 
by using the distance between the related vehicles and time lag, the speed was determined. The 
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mapping of coordinates from the picture domain to the real-world domain was also used by Wu et 
al. (2009). For speed detection, Liu and Yamazaki (2009) employed a pair of panchromatic and 
multi-spectral QuickBird pictures. In order to estimate speeds, Gerat et al. (2017) combined optical 
flow methods with Kalman filtering. The former aids in preventing the issue of transient 
occlusions, while the latter gives more precise speed delivery. Amit Kumar et al. (2018) presented 
a cutting-edge method for estimating vehicle speed from monocular recordings. Without requiring 
3D modeling of structures or vehicles or explicit camera calibration, the suggested method may 
accurately estimate the speed. To predict vehicle speed, Hua et al. (2018) integrated deep learning 
models with a traditional computer vision technique. A multi-camera tracking framework was 
proposed by Tian et al. (2018) based on the combination of visual and semantic highlights. 
Semantic highlights, counting direction smoothness, speed alteration, and transient data were 
combined into a bottom-up clustering procedure for information affiliation in each camera view. 
To monitor the approximate vehicle speed data that are retrieved by the YOLOv3 and the Kalman 
filter, Liu et al. (2019b) developed a Gaussian filter. In many disciplines, the Kalman filter has 
shown to be a reliable method for resolving object tracking problems. When objects are 
successfully recognized, Bochinski et al (2017) demonstrated that simple trackers can be superior 
to more complicated ones. Kocur and Ftáčnik (2020) proposed a method for identifying the 3D 
bounding boxes of moving objects, followed by tracking and speed estimation. The system's 
inaccuracy, nevertheless, still ranges from 30% to 40%. Mejia et al. (2021) proposed a method 
employing homography and YOLOv4 object detectors that can estimate vehicle speed. Wang 
(2016) developed a method for detecting moving targets in the video by mapping the relationship 
between pixel distance and real distance. In this technique, characteristics from moving vehicles 
were extracted using three-frame differencing and background differences. Then, tracking and 
positioning were performed utilizing the extraction of vehicle centroid features. While speed 
detection using computer vision models is not a new research area, its application has not been 
investigated for detecting speeding events and issuing warning messages to workers at work zones 
through a smartphone app. 

Speed Detection Method 
Both parts of the application use the same GUI. Whenever a car approaches the work zone with a 
higher-than-allowed speed, the framework detects the car and warns workers to leave the area via 
a specific alarm and the message “A car is approaching the work zone.” This message would be 
shown on the application user interface and will appear on the server computer as well. 

Detecting Speeding Events 
A deep learning model was used to classify and detect objects in video frames captured with 
traffic cameras installed (see Figure 9) at an intersection (H St and Broadway) in the City of 
Chula Vista. After detecting the object's characteristics—such as bounding box geometry, 

position, and velocity—in real-time, the data was stored, and then if any object had a velocity 
higher than a threshold, a warning message was generated and sent to the workers. Figure 10 

shows the region of interest at the intersection with a hypothetical work zone considered for the 
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safety analysis of the work zone. Figure 11 also shows the perspective of the traffic camera used 

in this study.  

Figure 9. Traffic camera installed on the arm mast of the traffic light at H St and Broadway in the Chula 
Vista. 

  
Figure 10. Region of interest showing the hypothetical location of a work zone and traffic camera placement 

at H St and Broadway in the city of Chula Vista. 
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Figure 11. The perspective of H St. 

Object Detection Models 
The availability of relatively affordable computer infrastructure, developments in big data science, 
and advancements in parallel algorithms have all contributed to the rapid expansion of deep 
learning research (Shourov et al., 2021). Two tasks are typically solved by object detection models: 
the first is finding an arbitrary number of objects, and the second is categorizing and calculating 
the size of a detected object using a perimeter bounding box. All of these tasks are accomplished 
with computer vision using the OpenCV library in Python. Two types of object detection models—
two-stage models and one-stage models—can be distinguished. Examples of two-stage models 
include RCNN (Bappy et al., 2016), SPPNet (Purkait et al., 2017), Fast RCNN (Girshick. 2015), 
Faster RCNN (Ren et al., 2015), Mask R-CNN (He et al., 2017), Pyramid Networks (Lin et al., 
2017), and G-RCNN (Pramanik et al., 2022). Examples of one-stage models include YOLO 
(Redmon et al., 2016), SSD (Liu et al., 2016), RetineNet (Li et al., 2020), YOLOv3 (Redmon et 
al., 2018), YOLOv4 (Bochkovskiy et al., 2020), YOLOR (Wang et al., 2021), and YOLOX (Ge et 
al., 2021).  

One-stage object detectors are a model type that integrates the two tasks into one phase in order to 
increase performance. In two-stage models, before deep features are used for classification and 
determining the bounding box, the estimated location of the object regions is proposed using these 
features. Two-stage detectors are typically more accurate but often require higher computation 
resources. One-stage detectors take less computing time and are better suited for real-time 
applications since they forecast the position and dimension of bounding boxes without the region 
proposal step. In this study, our goal was to issue warning messages in real-time, which directed 
us to choose a model that performed in real-time.  
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The YOLO series continually seeks the ideal speed and accuracy trade-off for real-time 
applications as object detection progresses. The most recent series of YOLO is YOLOX, which is 
what we used in this study. In comparison to its competitors, YOLOX achieves a superior balance 
between speed and accuracy across all model sizes. It is noteworthy that YOLOX has improved 
the YOLOv3 architecture to 47.3% average precision on COCO, beating the industry standard by 
3.0% average precision. COCO is a large dataset with 328,000 photos of people and common items 
which can be used to train machine learning models to label, detect, and describe objects. A wide 
variety of realistic pictures from the COCO dataset are available, including disorganized scenes 
with different backgrounds and overlapping objects. A detailed explanation of the YOLOX can be 
found in Ge et al. (2021). 

Speed Detection 
In order to determine the speed of the vehicles within the affected intersection, object detection 
and object tracking are expressed using YOLOX, OpenCV, and Python. A starting line of detection 
was placed, as shown in Figure 11 (right) where the vehicles exit the intersection.  Once vehicles 
traveling westbound cross this line, their speed is estimated and compared to a threshold. This 
estimation comprises the following components:  storing the first and second center points of a 
bounding box object, distance in pixels estimation, distance in meters conversion, frames per 
second to time conversion, and meters per second to mile per hour conversion. 

As a vehicle travels through the intersection, a bounding box and its centroid are instantiated and 
tracked continuously across each frame. Using the camera’s pixelated viewing dimensions as a 
reference coordinate plane, the first frame of vehicle detection stores the horizontal and vertical 
locations of the vehicle's first centroid. The next frame stores the second horizontal and vertical 
locations of the vehicle’s second centroid. Applying the Pythagorean Theorem, the Euclidean pixel 
distance that the vehicle traveled is calculated based on the first and second centroid coordinates.  
This distance in pixels is then converted to meters by measuring the real distance traveled by one 
base vehicle. The amount of pixels traveled by the vehicle is divided by the real distance traveled, 
equating to the pixels per meter constant. It is important to note that the pixels per meter value 
must be dynamically calibrated further to compensate for the viewing angle of the camera with 
respect to the plane on which the vehicles travel. Distance in meters is found by the division of the 
pixel distance by the pixels per meter value. A frames per second variable value of 30 is assigned 
based on the specifications of the camera used, which is then inverted to find the variable value 
for time (1/30 fps). The finalized values of distance and time are respectively represented as 
numerator and denominator to estimate the speed of the vehicle in meters per second. Finally, 
meters per second are converted to mile per hour, which is the final estimated speed integer 
returned. 

Speed Detection Results 
As mentioned earlier, a vehicle’s speed is detected as soon as the vehicle crosses a hypothetical 
line (see Figure 12). The exact location of this line can be adjusted in order to allow adequate time 
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for the workers to exit their specified work zone. In that case, the conversion from pixels to meters 
must be modified. Objects closer to the camera occupy higher pixel counts than objects further 
away from the camera. In an effort to relay the alert notification to the work zone safety 
application, modifications to the program must be made to compare the current vehicle speed to 
an arbitrarily safe constant threshold speed before storing the data in a JSON file. The speed 
threshold used in this study was the speed limit of 35 mph. 

For each object, a specific ID was assigned, and after crossing the desired line, data such as time, 
center coordinates, speed, and the object's name were recorded to a JSON file in real-time. Also, 
the same data were stored in a CSV file for debugging and monitoring the program. Appendix B 
shows an example of data stored in a CSV file for a few objects. 

 

Figure 12. Vehicles’ speed detected as they exit the intersection. 

Conclusions and Recommendations 
This project focuses on two key safety concerns for workers in construction work zones: the health 
impact of using high vibration power tools such as jackhammers as well as the safety risks of 
speeding vehicles approaching work zones. Toward this goal, a smartphone application was 
developed to detect unsafe levels of vibration based on international safety standards. The 
application leverages embedded sensors in smartphones to estimate the safe amount of time the 
worker can be exposed to the level of vibration they are experiencing. This number is dynamically 
updated based on the vibration level and exposure duration. The application also receives an alarm 
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trigger from connected servers when a speeding vehicle is detected by cameras installed before the 
work zone. 

This project is a first attempt at developing a holistic approach toward internal and external safety 
of work zone workers, and thus also has some limitations. First, the vibration estimation 
methodology was tested only on one worker. While this was a proof-of-concept experiment to see 
if the application alarm goes off at the correct moment, testing on more than one worker doing the 
exact same activity would help to evaluate the consistency of the developed system in detecting 
hazards. Second, the experiment was conducted in a single shift at one job site. It is not certain 
that the range of exposures measured is representative of all activities that cause vibration to the 
body, even though there is no reason to suspect that results from exposures to other activities not 
monitored here would be any different. Third, the data was collected by sensors embedded in a 
smartphone. While this allowed using a lower number of data collection, analysis, and 
communication gadgets, the frequency limit of 20 Hz compared to a commercial vibration sensor 
that can record data with a frequency of 4,500 Hz can be a constraint in activities with very high-
frequency levels. Fourth, it is possible that the vibration produced by the equipment and that 
transmitted to the arm (and the wearable sensor) are different due to a damping effect. The research 
team is exploring this potential effect in a series of different experiments. Fifth, the thresholds for 
vibration and speed can only be changed in the program’s main code, not in the application 
interface. Sixth, the reliance on surveillance cameras installed in road intersections limits the 
applicability of the designed speed detection method to urban environments. Finally, the developed 
framework to alert workers of potential hazards due to speeding vehicles approaching could be 
further extended to send a message to oncoming drivers to prevent or mitigate potential accidents 
with workers at work zones.  

HAV exposure poses a potential hazard to workers that can be mitigated by the proposed system, 
despite the limitations listed above. In response to the health hazards posed by HAV exposure, 
the following recommendations are made. It is important to implement a safety monitoring 
program, similar to the developed application in this project, designed to detect HAVS early. 
Breaks from work to avoid HAV exposure should be provided to employees. Rotating employees 
between jobs that require the use of power hand tools and jobs that do not require them is one 
way to provide the required break from exposure. Further, the potential hazards and standard of 
exposure to HAV should be explained to employees. Moreover, employees should be taught to 
grip vibrating tools as lightly as it is safely possible to do so, thereby minimizing vibration 
transmitted into their hands. 

Additional Products 

Education and Workforce Development Products 
This project provided partial support for three graduate students in the Department of Civil, 
Construction and Environmental Engineering as well as the Computational Science Research 
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Center at SDSU toward their MS Degrees. Graduate student Binh Pham has assisted with initial 
literature review, vibration standard explorations, and laboratory-scale data collection. Graduate 
student Farid Shahnavaz has assisted with the majority of the work after the initial phase and 
developed the smartphone application, conducted real-world data collection, and established the 
link between vibration standards and developed tools. Graduate student Sina Salehipour has 
assisted with the development of the computer vision algorithms for speed detection. All students 
helped with the writing of this report as well as associated journal and conference article drafts. 
 
This research has been presented by Farid Shahnavaz, MS student, at the SDSU Student 
Research Symposium in 2022.  
 
Furthermore, the PIs designed educational materials on technology-enabled safety in 
construction and transportation systems. More specifically, Dr. Akhavian developed course 
modules in CONE 652: Construction Operations Modeling and Technology and Dr. Jahangiri 
developed course modules in CIVE: 696 Intelligent Transportation Systems.  
 
Presentation at Explore SDSU, as proposed in the Work Plan was not possible due to the Covid-
19 outbreak. 
 

Technology Transfer Products 
This findings of this project are reported in a conference paper and a journal paper, both of which 
to be submitted in the next few months. The conference paper is entitled “A Wearable Safety Alert 
System for Fieldworkers Exposed to High-Vibration Hand Tools” and will be presented at the 
2023 European Council on Computing in Construction (EC3). The Journal paper is entitled “A 
Holistic Work Zone Safety Alert System through Automated Video and Smartphone Sensor Data 
Analysis” and will be submitted to the Transportation Research Part C: Emerging Technologies.  

The work has been also presented in a number of webinars and meetings including SDSU Research 
Foundation Board of Directors meeting, SDSU College of Engineering Dean’s Advisory Board 
Meeting, SDSU Department of Civil, Construction, and Environmental Engineering Industry 
Advisory Board Meeting, Texas A&M Department of Construction Science Graduate Seminar 
Meeting, and San Diego Lean Construction Institute (LCI) Community of Practice meeting. 

The presentation at the Caltrans Annual Statewide Innovation Expo, as proposed in the original 
Work Plan was cancelled due to the Covid-19 outbreak. 

Data Products  
Datasets generated as part of this project are available at: https://safed.vtti.vt.edu/projects/a-
holistic-work-zone-safety-alert-system-through-automated-video-and-smartphone-sensor-data-
analysis/ 
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Appendices 
 

Appendix A:  
The ISO frequency-weighting factors, Whi, for hand-transmitted vibration for converting 
magnitudes in one-third octave bands to ISO frequency-weighted magnitudes. 

Freq. Band No. (i) Band Center Freq. (Hz) Weighting Factor (Whi) 

6 4 0.375 

7 5 0.545 

8 6.3 0.727 

9 8 0.873 

10 10 0.951 

11 12.5 0.958 

12 16 0.896 

13 20 0.782 

14 25 0.647 

15 31.5 0.519 

16 40 0.411 

17 50 0.324 

18 63 0.256 

19 80 0.202 

20 100 0.160 

21 125 0.127 

22 160 0.101 

23 200 00799 

24 250 0.0634 



27 
 

Freq. Band No. (i) Band Center Freq. (Hz) Weighting Factor (Whi) 

25 315 0.503 

26 400 0.398 

27 500 0.314 

28 630 0.0245 

29 800 0.0186 

30 1000 0.0135 

31 1250 0.00894 

32 1600 0.00536 

33 2000 0.00295 
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Appendix B:  
An example of data stored in a CSV file for a few objects. 
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