

Lane Change Hazard Analysis Using Radar Traces to Identify Conflicts and Time-To-Collision Measures

Safe-D 05-082

Balachandar Guduri, Ph.D. Research Associate, VTTI

Eddy Llaneras (PI) Group Leader, Advance Product Testing, DVDSS_AAR, VTTI

SAFE-

Camera

based

ystem

Conventional mirrors

CAMERA-BASED SYSTEMS FOR LANE CHANGES

- Analysis carried out to support Federal Motor Vehicle Safety Standard 111 rulemaking efforts to investigate camera-based side view systems
- Earlier work at VTTI focused on
 - System influences on driver perceptual judgment to support lane change decisions
 - Driver acclimation to and reliance on camerabased systems
 - Impact of camera-based systems on driver eye glance behavior
 - Potential drive adaptation or unintended consequences
 - Influence of moderating factors (driver age, system experience, environmental conditions, etc.) on performance
 - Usability and driver acceptance of camera-based systems.

CAMERA-BASED SYSTEMS NATURALISTIC DRIVING STUDY: ASSESSMENT OF DRIVER PERFORMANCE AND ACCEPTANCE RELATIVE TO CONVENTIONAL MIRROR CONFIGURATIONS

Final Report (Project 459449, Codename: SONIC) Submitted to:

Submitted to The Consortium of Manufacturer

Prepared by:

Eddy Llaneras (Principal Investigator), and Jason Meyer

> Virginia Tech Transportation Institute 3500 Transportation Research Plaza Blacksburg, VA 24061 Phone: (540) 231-1524 E-mail: ellaneras@vtti.vt.edu

> > Virginia

Previous work at VTTI

December 15, 2019 (Revised 4/10/2020)

llTech

CAMERA-BASED SYSTEMS FOR LANE CHANGES

- Analysis carried out to support Federal Motor Vehicle Safety Standard 111 rulemaking efforts to investigate camera-based side view systems
- Earlier work at VTTI found that camera-based displays
 - Increase the driver's field of view relative to conventional mirrors
 - Significantly reducing or eliminating blind spots
 - Increasing vehicle detection rates and leading to fewer conflicts
- In control tests, sole reliance on camera-based displays can make it harder for drivers to gauge vehicle distances and closing speeds to support lane change decisions.
- Objectives:
 - Mine an existing set of radar data surrounding real-world lane change events
 - Lane change conflicts and hazard analysis using Time-To-Collision (TTC) values

CAMERA-BASED SYSTEMS NATURALISTIC DRIVING STUDY: ASSESSMENT OF DRIVER PERFORMANCE AND ACCEPTANCE RELATIVE TO CONVENTIONAL MIRROR CONFIGURATIONS

Final Report

Submitted to

Prepared by

Jason Meye

llTech

Blacksburg, VA 24061 Phone: (540) 231-1524 E-mail: ellaneras@vtti.vt.edu

> December 15, 2019 (Revised 4/10/2020)

The Consortium of Manufacturer

irginia Tech Transportation Institut 00 Transportation Research Plaza

Virginia

DATA COLLECTION

- 36 Drivers from Southwest, Virginia
- Participants are Virginia Tech employees
- Age from 25 63 years with 15 females and 21 males
- 1-month participation period
- Prototype camera-based systems
- Three types of light-vehicle fleets
 - Sedan A
 - Truck
 - Sedan B

• 90,880 miles driving data

- 46,730 miles under conventional mirror systems,
- 44,149 miles of travel under the prototype camera-based systems

VEHICLE INSTRUMENTATION

- All vehicles equipped with VTTI proprietary Data Acquisition System (DAS) FlexDAS
 - To capture and record time-sync video and parametric measures from key-on through key-off
- Information from vehicle networks
 - Vehicle speed
 - Lateral and longitudinal acceleration
 - Yaw rate and steering angle
 - Turn signal indicators
 - GPS data
 - Transmission gear state
 - Brake and acceleration pedal inputs
- Lane marking information from VTTI's Road Scout
- Video footage from several cameras
- Following vehicle information from two rear facing corner radar units

6

SHORT RANGE RADAR (SRR320)

Measured variables

- Two Continental Radar PLC units with short range radar (SRR320)
- Operating frequency: 24 Hz
- Range accuracy: ±0.2 m
- Speed accuracy: ± 0.2 km/h
- Field of view: ±75°
- Range: 100 m
- Can track up to 40 targets

Source: continental-automotive.com/

- **Object_ID** index that assigned a unique identifier for a target being tracked, numbered 0 to 39
- Range_x longitudinal distance between the target and the LV, measured in meters
- **Range_y** lateral distance between the target and the LV, measured in meters
- **Rangerate_x** time derivative of Range_x, measured in m/s
- Rangerate_y time derivative of Range_y, measured in m/s
- Age lifetime of the target, measured in milliseconds
- Length target length, measured in meters
- Width target width, measured in meters
- Orientation orientation of the target with respect to the radar's face, measured in rads
- Probability of Existence probability of the target's existence; ranges from 0 to 1, where 1 represents the highest probability of existence
- **RCS** radar cross section of the target, measured in dBsm
- **Stable** echo from the target is stable; denoted by true or false
- Status status of the target tracked by radar: predicted, measured, or invalid

SIGNALIZED LANE CHANGE EVENTS

	Overall	Conventional	Camera-Based			
	(Total)	Mirror	displays			
Number of trips	4,486	2,243	2,243			
Total miles driven	90,880	46,730	44,149			
Average miles per trip	20.26	20.83	19.68			
Total aggregated number of signalized lane changes	25,655	12,960	12,695			
Average number of signaliz	ed lane chang	es per trip				
Overall (All trips)	5.71	5.78	5.66			
Trips over 20 miles	14.14	14.43	13.85			
Signalized lane chang	Signalized lane change rate per 100 miles					
Overall (All trips)	21.69	16.24	16.93			
Trips over 20 miles	31.50	30.97	32.03			
Signalized lane change direction						
Number of left-hand lane changes	12,090	6,092	5,998			
Number of right-hand lane changes	13,565	6,868	6,697			
Number of signalized lane	Number of signalized lane changes by time of day					
Day	20,382	10,633	9,749			
Night	3,845	1,649	2,196			
Twilight	1,428	678	750			
Number of signalized lane changes by fleet						
Sedan A	8,893	4,195	4,698			
Truck	10,018	4,989	5,029			
Sedan B	6,744	3,776	2,968			

Schematic

SAFE D

DURATION OF LANE CHANGE EVENTS: SEDAN A

DURATION OF LANE CHANGE EVENTS: TRUCK

DURATION OF LANE CHANGE EVENTS: SEDAN B

LANE CHANGE DURATION: SUBJECT WISE

4/13/2023

12

SAFE-

LANE CHANGE DURATION: SUBJECT WISE

4/13/2023

SAFE-

LANE CHANGE DURATION: DEPENDENCE ON MILES

Right lane changes (All fleet)

SAFE-

14

LANE CHANGE TRAJECTORIES

Example:

Lane reference time: 457920

Lane contact time: 457048

15

Lane crossover time: 459664

SAFE-

TRAJECTORY OF LV RELATIVE TO LANES

SAFE-

16

SAFETY THROUGH DISRUPTION

EXTRACTION OF RADAR TRACES

time, s $\times 10^6$

Cleaned radar traces

time, s $\times 10^6$

SAFE-

4/13/2023

17

time, $s \times 10^6$

time, s $\times 10^6$

TRACES OF RIGHT RADAR OBJECTS

- For an entire trip duration of 40 min
- Data of all 40 radar objects is included
- Radar trace of each object ID shown by color in Figs

Conditions

- Delete all data where Range_x ≤ 0 m and Range_y < 0 m for right radar
- Delete all data where Probability of Existence < 0.99
- Delete all data whose Status is not "measured" or "predicted"
- Select all data where $-0.5 \text{ rad} \leq \text{Orientation} \leq 0.5 \text{ rad}$
- Select all data where -10 m \leq Range_v \leq 10 m
- Select all data where Age \geq 15 s
- Select all data where Stable = 1

18

TRACES OF LEFT RADAR OBJECTS

- For entire trip duration of 40 min
- Data of all 40 radar objects is included
- Radar trace of each object ID shown by color in Figs

Conditions

- Delete all data where Range_x ≤ 0 m and Range_y > 0 m for right radar
- Delete all data where Probability of Existence < 0.99
- Delete all data whose Status is not "measured" or "predicted"
- Select all data where $-0.5 \text{ rad} \leq \text{Orientation} \leq 0.5 \text{ rad}$
- Select all data where $-10 \text{ m} \leq \text{Range}_{v} \leq 10 \text{ m}$
- Select all data where Age \geq 15 s
- Select all data where Stable = 1

IDENTIFICATION OF FOLLOWING VEHICLES (FV)

- 1. Reference time: Lane change time of LV (from road scout data)
- 2. Trimming road scout data of LV
 - Before 20 s form time of LV on the above lane during lane change (from road scout data)
- 3. Trim road scout data further by calculating
 - Accumulative longitudinal distance (calculated from speed) ≥ -200 m
- 4. Finding the LV's longitudinal and lateral position and corresponding time stamps from lane change reference position and the middle line between lanes (from road scout data)
- 5. Select radar for lane change
 - Left lane changes -> Left radar
 - Right lane changes -> Right radar
- Using time stamps of LV's, trim cleaned radar data
- With reference LV's longitudinal and lateral position, locate following vehicles' position and time (from trimmed radar)

REPRESENTATION OF RADAR TRACES

Example: 1

Radar traces of File-ID = 28266 Sonic excel index = 3684; Roadscout excel index = 12497

Car: Sedan A; Direction = Right; Radar = RightSignal on time = 2016100; Signal off time = 2020200 Lane change time = 2019596; Lane contact time = 2018660; Lane crossover time = 2021644

Visually verified

SAFE-

REPRESENTATION OF RADAR TRACES (CONT'D)

Example: 2

Radar traces of File-ID = 123989 Sonic excel index = 16796; Roadscout excel index = 5028

Visually verified

Example: 3

Radar traces of File-ID = 28266 Sonic excel index = 3680; Roadscout excel index = 12493

Car: Sedan A; Direction = Left; Radar = LeftSignal on time = 1503700; Signal off time = 1507800 Lane change time = 1508166; Lane contact time = 1507194; Lane crossover time = 1509906

Visually verified

IDENTIFICATION OF PRINCIPAL OTHER VEHICLE (POV) Steps & Conditions

crossing

from

Backward

- Omit the FVs ahead of LVs
- Select the FVs with
 - (start of FV's time stamp lane change • time of LV) \leq 500 ms 250
 - (Objects 9 and 2 are eliminated in Figure)
- For right lane changes, select
 - $-5m \le FV's$ lat. dist. ≤ 0 (Object 10 selected in Fig)
- For left lane changes, select
 - $0 \leq FV$'s lat. dist. $\leq 5 \text{ m}$
- More than one FV's satisfies
 - POV is FV closest to LV (Object 10 is POV)

Radar traces of File-ID = 123305 Sonic excel index = 16820; Roadscout excel index = 5048 Car = Truck; Direction = Right; Radar = RightSignal on time = 1321200; Signal off time = 1323500 Lane change time = 1323580; Lane contact time = 1322708; Lane crossover time = 1325592

Space representation **Time representation** - Middle line (m) 200 Object: 29 Object: 2 Subject vehicle Object: 29 crossing time (s) 5.2 5.2 5.2 TTC (s): 82.07 Object: 10 Outer line Time (ms): 1323512 Range x (m): -35.53 v, , (m/s): 36.30 v_(m/s): 36.74 Object: Object: 10 TTC (s): -6.46 ר aue ר ו Time (ms): 1323512 Signal on Range x (m): -32.95 from lane v, (m/s): 36.30 Signal on 2 v_, (m/s): 31.20 Object: 9 TS: 1322372 distance f TTC (s): -6.59 Time (ms): 1322908 Range x (m): -35.02 v, (m/s): 36.35 Object: 2 TS: 13229 v_{EV} (m/s): 31.04 Object: 2 Lane contac 50 ane contact TTC (s): -7.77 Object: 9 TS: 1323512 Time (ms): 1322372 S: 1323512 Range x (m): -43.50 v, , (m/s): 36.45 v_{FV} (m/s): 30.85 -8 -6 -2 0 2 -8 -2 0 2 -6 RIGHT SIDE ← Lateral distance RIGHT SIDE ← Lateral distance from middle line (m) \rightarrow LEFT SIDE from middle line (m) \rightarrow LEFT SIDE

POV IDENTIFIED EVENTS

- Identified POV of 7425 signalized events
- 400+ events are visually verified using Hawkeye
 - < 10 misrepresentations because of road curves etc.
- Variables calculated at lane contact and lane crossover times
 - Radar number
 - Range, x and y; Range rate, \dot{x} and \dot{y}
 - Time-to-Collision (TTC = -Range/Range rate)
- Selected TTC with $0 \le TTC \le 100 s$
 - 1,185 lane changes were identified
 - 607 events under conventional mirrors
 - 578 events under camera-based systems

HISTOGRAMS OF TTC AT CONTACT POINT

$0 \le TTC \ge 100 \text{ sec}$

Total number of events = 1185

Fleet: All, Aid = Both

RELATIVE LOCATION OF POV VEHICLES

SAFE DEAFETY THROUGH DIBRUPTION

RELATIVE LOCATION OF POV VEHICLES

HISTOGRAM OF OCCURRENCES

Percentile Range (m) at time of LV on Lane Contact Point

Range, X (m)

All Lane Changes (Left + Right)				
	Sedan A	Truck	Sedan B	
Number	513	380	292	
Mean	44.25	47.14	43.07	
SD	19.90	20.95	21.35	
Median	40.90	43.75	40.67	
Min	2.20	3.95	4.25	
Max	92.80	92.35	92.45	
5 th %-ile	17.38	17.80	7.88	
25 th %-ile	28.14	30.32	27.8	
50 th %-ile	40.90	43.75	40.67	
75 th %-ile	58.71	63.00	58.05	
95 th %-ile	81.35	83.40	81.12	

SAFE-

HISTOGRAM OF OCCURRENCES (CONT'D)

Percentile Relative Speed (m/s) at time of LV on Lane Contact Point

Relative speed (m/s) = $v_{POV} - v_{LV}$

All Lane Changes (Left + Right)				
	Sedan A	Truck	Sedan B	
Number	513	380	292	
Mean	1.99	2.09	1.91	
SD	1.33	1.40	1.35	
Median	1.67	1.68	1.56	
Min	0.11	0.16	0.07	
Max	10.32	8.45	7.73	
5 th %-ile	0.47	0.52	0.33	
25 th %-ile	1.02	1.05	0.94	
50 th %-ile	1.67	1.68	1.56	
75 th %-ile	2.62	2.89	2.60	
95 th %-ile	4.63	4.90	4.45	

HISTOGRAM OF OCCURRENCES (CONT'D)

Percentile TTC (s) at time of LV on Lane Contact Point

TCC(s)

All Lane Changes (Left + Right)				
	Sedan A	Truck	Sedan B	
Number	513	380	292	
Mean	31.90	32.34	32.41	
SD	22.80	22.43	23.17	
Median	24.00	26.45	25.66	
Min	2.39	0.98	3.61	
Max	98.47	96.82	96.68	
5 th %-ile	7.96	7.58	7.51	
25 th %-ile	14.66	15.26	13.89	
50 th %-ile	24.00	26.90	25.66	
75 th %-ile	43.87	42.89	42.66	
95 th %-ile	80.68	84.00	84.44	

SAFE-

MEAN TTC VALUES AT LANE CONTACT POINT

Values	Left Turns, Mirror	Left Turns, Camera	Right Turns, Mirror	Right Turns, Camera	Overall, Mirror	Overall, Camera
Number	471	466	136	112	607	578
Mean	28.72	32.05	41.61	35.70	31.61	32.76
SD	20.38	23.08	25.35	24.07	22.23	23.30
Median	22.49	24.92	37.48	28.71	24.52	26.19
Min	1.65	2.48	4.96	0.98	1.65	0.98
Max	97.26	98.49	97.87	95.77	97.87	98.47

SAFE-D

MEAN TTC VALUES AT LANE CONTACT POINT

Distribution of Time-To-Collision Values at Lane Contact Point By Type of Aid (Camera, Mirror). Collapsed Across Lane Change Direction

SUMMARY

- No significant differences in TTCs were observed between conventional mirror and camera-based system across any of the vehicle fleets (for combined Left/Right lane changes)
- Analyses revealed no critical conflicts or patterns of ill-advised lane changes under camera displays
- Use of camera-based systems did not appear to impact functional performance associated with making and executing lane changes.
- Camera-based systems, when appropriately designed, can help drivers detect potential conflicts because of the wider field of view

Thankyou for Attention!

Any Questions?

Source: thomasnet.com

VIRGINIA TECH TRANSPORTATION INSTITUTE

