ADS SENSOR DEGRADATION TESTING, MODELING, AND DETECTION

Steven Huggins GCAPS/VTTI October 12, 2022

PROJECT SUMMARY

- The project sponsor, Commonwealth Cyber Initiative (CCI)
 - Wanted to explore misinformation that may be sent to the sensors of an Automated Driving Systems (ADS), and our previous work evaluating sensor degradation is a good starting point
 - The project goal was to develop a sensor degradation detection algorithm in simulation
- Virginia Tech Transportation Institute (VTTI)
 - Provided Naturalistic Driving Database (NDD) for us to recreate scenarios for simulation
 - Provided test equipment and facilities to collect sensor data that were used to build sensor models to generate simulation data
- Old Dominion University (ODU)
 - Provided/developed deepPOSE data, to integrate localization data to the algorithm
- Project Outcomes:
 - A virtual framework was developed generate simulation data based on real scenarios and actual sensor responses
 - The process of collecting the sensor data, creating sensor models, and utilizing simulation for an algorithm development toolchain

SIMULATION TASKS

Oct. 12, 2022

GCAPS/VTTI

NDD SELECTION

- 100 Events selected from NDD
- Rural, highway, urban settings
- Event Parameters:
 - Event Severity
 - Crash Severity
 - Incident Type
 - Weather
 - Road Alignment
 - Lane Occupied
 - Traffic Density
- 500,000+ possible factorial combinations

			-
\sum	Value	Count	Percent
RITY	Additional Baseline	12581	30.3%
	Balanced-Sample Baseline	19998	48.1%
EVE	Crash	1855	4.5%
ITS	Crash-Relevant	42	0.1%
VED	Near-Crash	6923	16.7%
ш	Non-Subject Conflict	140	0.3%
≻	I - Most Severe	113	0.3%
RIT	II - Police-reportable Crash	184	0.4%
EVE	III - Minor Crash	777	1.9%
HSI	IV - Low-risk Tire Strike	799	1.9%
RAS	Not a Crash	7087	17.1%
U	N/A	32579	78.4%
	N/A	39182	94.3%
Ы	Pedalcyclist-related	67	0.2%
È	Pedestrian-related	169	0.4%
- N U	Road departure (end)	137	0.3%
INCID	Road departure (left or right)	1259	3.0%
	Turn across path	327	0.8%
	Turn into path (same direction)	398	1.0%

SAFE= 2

6

NDD SELECTION

- 100 Events selected from NDD
- Rural, highway, urban settings
- Event Parameters:
 - Event Severity
 - Crash Severity
 - Incident Type
 - Weather
 - Road Alignment
 - Lane Occupied
 - Traffic Density
- 500,000+ possible factorial combinations

	Value	Count	Percent
WEATHER	Fog	189	0.5%
	Mist/Light Rain	1534	3.7%
	N/A	265	0.6%
	No Adverse Conditions	37516	90.3%
	Rain and Fog	25	0.1%
	Raining	2010	4.8%
NMENT	Curve left	2796	6.7%
	Curve right	3105	7.5%
	Other	2	0.0%
EI G	Straight	35635	85.8%
A	Unknown	1	0.0%
	1	24299	58.5%
	2	9322	22.4%
	3	2576	6.2%
	4	632	1.5%
	5	140	0.3%
ш	6	12	0.0%
ANI	7	3	0.0%
ل	Acceleration lane	308	0.7%
	Center 2-way turn lane	123	0.3%
	Deceleration lane	360	0.9%
	Dedicated left turn lane	1188	2.9%
	Dedicated right turn lane	855	2.1%
	N/A	1721	4.1%
	A1: Free flow, no lead traffic	14702	35.4%
~	A2: Free flow, leading traffic present	11385	27.4%
DENSIT	B: Flow with some restrictions	11539	27.8%
	C: Stable flow, maneuverability and speed are more restricted	2577	6.2%
	D Unstable flow - temporary restrictions substantially slow driver	872	2.1%
	N/A	464	1.1%

SAFE-

SCENARIO RECREATION

- The environment of the event is recreated in RoadRunner using a combination of frontal video and satellite imagery
- The scene is exported as an OpenDrive file to be used in IPG CarMaker simulation software. The OpenDrive file acts as the drivable road surface for the subject vehicle

SAFETY THROUGH DISRUPTION

RANDOMIZED SCENARIO GENERATION

- 100 Events (*Base Events*) expanded to 1000+ by modifying each Base Event's OpenSCENARIO File with at least 9 selected variations
- Variations produced by parameterizing each event and creating events across a parameter range
 - Lane change start and duration
 - Subject vehicle velocity profile
 - Actor position and velocity

Oct. 12, 2022

GCAPS/VTTI

Safety

CARMAKER SIMULATION

- Utilize CM sensors to output object-level info
- Select data channels to output from CarMaker
- Run simulations in mass and save time history and sensor data as ERG files
- Process output ERG files in MATLAB for use in sensor degradation algorithm

SAFE-

SENSOR MODELING TASKS

Oct. 12, 2022

GCAPS/VTTI

SENSOR TESTING SETUP

- Functional Tests were used on the VTTI Smart Roads
 - Matches the operational environment while maintaining constraints on unwanted variables
- Two test vehicles were used, a subject and target vehicle
- Sensors and DGPS were integrated into a data acquisition system

16

FUNCTIONAL TESTS (CIRCLE TRACK)

- Target Vehicle Traveling in circle of various diameters
- Subject vehicle viewing from stationary or moving position
- Measure of accuracy of object detection
- Get viewing angle response
- Measure at multiple distances to linearize

FUNCTIONAL TESTS (CIRCLE TRACK)

SV = *Subject Vehicle*

TV = Target Vehicle

*Baseline in **Bold**

Variable	Iterations (Surface Street)
Turning Radius (Rtv)	30 <i>,</i> 40 <i>,</i> 50 m
Viewing Range (Rsv)	15, 25, 35 , 45 m
Viewing Angle (Θ)	-30, 0 , 30 deg
Target Vehicle Velocity (Vtv)	5, 10, 15 mph

SAFE-D

Oct. 12, 2022

GCAPS/VTTI

RAIN (DEGRADATION) TESTING

Oct. 12, 2022

MANIPULATING GPS DATA

- Noise (exaggerated for plots)
- Offsets in lat and long
 - Heading recalculated, then persistence filtered
- Cutouts
- Point Shifts

MANIPULATING ACCEL DATA

- Noise
- Offsets from bias voltage
- Calibration error
- Not Included:
 - FRF response ignored because sample rate so low and most accels are flat response in this region
 - Shock decay response (capacitive drain) not included

MANIPULATING GYRO DATA

- Noise
- Offsets from bias voltage (accumulated)
- Calibration error
 - Sensitive to derivatives as method of action is torque sensitivity
 - Integrated back to signal

SAFE-

SAFETY THROUGH DISRUPTION

DEGRADED DATA ADDED TO SAMPLE DATA DistX Combined DistX

Oct. 12, 2022

GCAPS/VTTI

SAFE DISRUPTION

MISINFORMATION DETECTION TASKS

Oct. 12, 2022

GCAPS/VTTI

SAFETY THROUGH DISRUPTION

MISINFORMATION DETECTION ALGORITHM

- The trajectory trend gets removed from the fused data
 - Extracts the characteristic response without the unique maneuver information that dominates the signal
- The characteristic response is then converted to a scalogram using the coefficients from a continuous wavelet transform (CWT)

GCAPS/VTTI

MISINFORMATION DETECTION ALGORITHM

- The scalograms from the CWT are stored as images with a classification label to mark state variable levels
- A GoogLeNet convolutional neural network is trained on the scalogram images to classify state variables to the CWT responses

GoogLeNet Architecture

Training the network

SAFE-

MISINFORMATION DETECTION ALGORITHM

- The classification accuracy on the validation dataset was 70.4%
- The data was made to be challenging to the algorithm
 - The classifier was binary, but the degradation was continuous, so light rain was often classified as no rain
 - The event selection was selected to be more challenging safety critical events

GoogLeNet Architecture

Training the network

SAFE-

Oct. 12, 2022

GCAPS/VTTI

FUTURE WORK

- Generation of additional simulation scenarios would help increase the training data for the algorithm, though this is a time and effort intensive process
- Collection of additional degradation and emulated misinformation data could expand the classifying capability of the algorithm
- Improvements can be made to the signal preprocessing; perhaps a deterministic layer before the neural network to handle the first order effects

QUESTIONS?

Oct. 12, 2022

GCAPS/VTTI

