

Technology to Ensure Equitable Access to Automated Vehicles for Rural Areas

Stephen Ninan, Sivakumar Rathinam

Automated Road Transportation Symposium 2022 Garden Grove, CA

07/20/2022

Support for this research was provided in part by a grant from the U.S. Department of Transportation, University Transportation Centers Program to the Safety through Disruption University Transportation Center (451453- 19C36)

Ā M

Motivation

- Rural roads play a significant role in America's transportation system, safely moving people and goods to their destinations
- 19% of Americans live in rural areas but 68% of the roads are in rural areas

Urban 1,059 lane miles per 100K residents

Rural 9,635 lane miles per 100K residents

Ă M

Motivation

Usage

Large volumes of freight either originate or are transported through rural areas

46% of Truck VMT* (Vehicle Miles Travelled) occur in rural areas

Objectives

- Prepare high quality annotated datasets for evaluation and testing of algorithms in Rural Scenes
- Explore the use of topological maps such as Open Street Maps in conjunction with onboard sensors for Autonomous Navigation

Ă M

- Develop and implement algorithms to localize the vehicle with respect to boundaries of a road in Small and Rural Communities (SRC's) and navigate the vehicle accordingly
- Test developed algorithms and corroborate their performance in real-time

Urban vs Rural Communities

Variance in Rural Road Scenes

07/20/2022

Urban vs Rural Communities

	Urban	Rural		
Road Surface	Asphalt, Concrete	Asphalt, Concrete, Gravel, Dirt		
Sidewalks/ Curb	Yes	No		
Lane Markings	Yes	Inconsistent		
Edge Markings	Yes	Lacking/ Inconsistent		
Number of Lanes	2-5	2		
Vegetation	Minimal	Yes		
Road Users	Cars, Pedestrians, Cyclists	Cars, Freight Trucks, Tractors, Pedestrians		
	Well Structured	Less Structured Large Variations in road surface, landscape		

Existing Datasets

	CamVid	ΚΙΤΤΙ	CityScapes	NuScenes	Waymo	HSI Road	Ours
Year	2008	2012	2016	2019	2019	2020	2022
Landscape	Urban	Urban	Urban	Urban	Urban	Rural	Rural
LIDAR Channels	-	64	-	32	130+	-	128
Camera	Monocular	Stereo	Monocular	Monocular	Monocular	Monocular (HSI)	Stereo
Radar	No	No	No	Yes	Yes	No	No
GPS+IMU	No	Yes	GPS	Yes	Yes	No	Yes
lmage Labels	Semantic	Semantic	Semantic	3D Boxes	3D Boxes	Semantic (only road)	Semantic
Point Cloud Labels	-	Semantic*	-	Semantic*	3D Boxes	-	Semantic

Zed Stereo Camera

- ~ 2 hours of rural road driving data
- 4 Annotated Classes (Vehicle, Pedestrian, Cyclist, Traffic Sign)
- LiDAR: 128 Channel, ~130K points per point cloud, 75m range
- Available LiDAR channels: Range, Reflectivity, Infrared, Intensity
- Camera: Zed Stereo with range 40m
- Rural Scenes recorded at 5 Hz + semantic scene annotations
- Metadata: GPS, IMU data for each frame, Camera intrinsic and extrinsic parameters
- KITTI style data organization for ease of use

07/20/2022

2800 Images + Point Clouds

TEXAS A&M

ĀМ

Available at Safe-D Dataverse : Autonomous Vehicle Rural Road Dataset (06-004)

Rural Semantic Scenes

4000+ Samples 4 Annotated Classes (Vehicle, Pedestrian, Cyclist, Traffic Sign) Semantic Point Cloud Segmentation, Image Segmentation GPS+IMU TEXAS A&M

Ā M

LIDAR aided Localization using Open Street Maps for Rural Roads

Problem Statement

Given sensor readings (LIDAR/Camera) and odometry measurements, estimate the vehicle's pose on a topological map.

Pose
$$(x) = [e, n, \theta]$$

Where,

e = Easting Coordinate (UTM) n = Northing Coordinate (UTM) θ = Orientation

Ā M

15

Architecture

Road Network Data

Localization Module

Four step operation:

- 1. Initialize particles
- 2. Update particles based on odometry measurements
- 3. Assign particle weights based on distance to query descriptor
- 4. Sample based on particle weights

Road Descriptors

Right Hand Turn

Straight Road

Birds Eye View (BEV) Image

2D Descriptor

Road Surface

Future Work

Ā M

- Release of Semantic Rural Road Dataset
- Object Detection and Tracking
- Motion Planning and Autonomous Navigation using Open Street Maps

Thankyou!

Appendix

Use Cases for Localization Algorithm

Roads with overhead vegetation

Limited visibility of the sky

Frontage Roads

07/20/2022

Urban vs Rural

07/20/2022