LEARNING ACTIVE INFERENCE MODELS OF PERCEPTION AND CONTROL: APPLICATION TO CAR FOLLOWING TASK

Alfredo Garcia
Texas A\&M University
Joint work with:
Ran Wei (Verses), A. McDonald (Wisconsin), G. Markkula (Leeds U.), J. Engstrom
(Waymo), M. O’Kelly (Waymo)

A Preview of Results

Figure 1: Visualizations of active inference model.

Outline

(1) Modeling Perception and Control
(2) Learning a Model of Perception and Control
(3) Active Inference
4. Application to Car Following Task
(5) Conclusions

Outline

(1) Modeling Perception and Control

A POMDP Model

- A generative model of observations $\mathbb{T}\left(o_{t} \mid s_{t}\right)$.

A POMDP Model

- A generative model of observations $\mathbb{T}\left(o_{t} \mid s_{t}\right)$.
- A belief distribution about the hidden state $b_{t}(s)=\mathbb{P}\left(s_{t}=s \mid h_{t}\right)$

A POMDP Model

- A generative model of observations $\mathbb{T}\left(o_{t} \mid s_{t}\right)$.
- A belief distribution about the hidden state $b_{t}(s)=\mathbb{P}\left(s_{t}=s \mid h_{t}\right)$
- A representation of state dynamics, i.e. a transition to a new state s_{t+1} takes place with probability $\mathbb{P}\left(s_{t+1} \mid s_{t}, a_{t}\right)$

A POMDP Model

- After $t>0$ time periods, the observable history of observations and actions is denoted by

$$
h_{t}:=\left\{o_{t}, \ldots, o_{0}, a_{t-1}, \ldots, a_{0}\right\} \in H_{t}
$$

A POMDP Model

- After $t>0$ time periods, the observable history of observations and actions is denoted by

$$
h_{t}:=\left\{o_{t}, \ldots, o_{0}, a_{t-1}, \ldots, a_{0}\right\} \in H_{t}
$$

- Denoting control policies (possibly random) by $\pi\left(\cdot \mid h_{t}\right)$, the POMDP model is the solution to:

$$
\max _{\pi} \mathbb{E}\left[\sum_{t \geq 0} \gamma^{t}\left[r\left(s_{t}, a_{t}\right)-c\left(\pi\left(\cdot \mid h_{t}\right)\right)\right]\right]
$$

where $r\left(s_{t}, a_{t}\right)$ is the reward and $c\left(\pi\left(\cdot \mid h_{t}\right)\right)$ information processing cost.

A Bayesian Agent

- A Bayesian agent forms beliefs b_{t} about the state of the environment:

$$
b_{t}(s)=\mathbb{P}\left(s_{t}=s \mid h_{t}\right)
$$

A Bayesian Agent

- A Bayesian agent forms beliefs b_{t} about the state of the environment:

$$
b_{t}(s)=\mathbb{P}\left(s_{t}=s \mid h_{t}\right)
$$

- When implementing action a_{t} under beliefs b_{t}, the agent expects:
- a reward

$$
r\left(b_{t}, a_{t}\right):=\sum_{s} r\left(s, a_{t}\right) b_{t}(s)
$$

- observation o_{t+1} with probability:

$$
\sigma\left(o_{t+1} \mid b_{t}, a_{t}\right):=\sum_{s_{t+1}} \sum_{s_{t}} \mathbb{T}\left(o_{t+1} \mid s_{t+1}\right) \mathbb{P}\left(s_{t+1} \mid s_{t}, a_{t}\right) b_{t}\left(s_{t}\right)
$$

A Bayesian Agent

- With Markovian dynamics and additive reward the model of optimal behavior has recursive structure:

$$
\begin{aligned}
& V^{*}(b)=\max _{\pi(\cdot \mid b)}\left\{\sum_{s} \sum_{a} r(s, a) \pi(a \mid b) b(s)-c(\pi(\cdot \mid b))\right. \\
&\left.+\gamma \sum_{a} \sum_{o^{\prime}} \sigma\left(o^{\prime} \mid b, a\right) \pi(a \mid b) V^{*}\left(b^{\prime}\right)\right\}
\end{aligned}
$$

where b^{\prime} is the resulting belief when observation o^{\prime} is recorded after implementing action a.

A Bayesian Agent

- With the information processing cost as Kullback-Leibler divergence between the control policy and a default policy π^{0}, i.e.

$$
c(\pi(\cdot \mid b))=\mathcal{D}_{K L}\left(\pi(\cdot \mid b) \| \pi^{0}(\cdot \mid b)\right)
$$

A Bayesian Agent

- With the information processing cost as Kullback-Leibler divergence between the control policy and a default policy π^{0}, i.e.

$$
c(\pi(\cdot \mid b))=\mathcal{D}_{K L}\left(\pi(\cdot \mid b) \| \pi^{0}(\cdot \mid b)\right)
$$

- The model is of the form:

$$
\begin{equation*}
\pi^{*}(a \mid b)=\frac{\pi^{0}(a \mid b) \exp \left(Q^{*}(b, a)\right)}{\sum_{a^{\prime} \in A} \pi^{0}\left(a^{\prime} \mid b\right) \exp \left(Q^{*}\left(b, a^{\prime}\right)\right)} \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
Q^{*}(b, a):=r(b, a)+\gamma \sum_{o^{\prime}} \sigma\left(o^{\prime} \mid b, a\right) V^{*}\left(b^{\prime}\right) \tag{2}
\end{equation*}
$$

Outline

(2) Learning a Model of Perception and Control

Learning a Model of Perception and Action

Based upon data \mathcal{D} (i.e sequences of observations and implemented actions say τ) estimate the primitives of the perception \& control model:

Learning a Model of Perception and Action

Based upon data \mathcal{D} (i.e sequences of observations and implemented actions say τ) estimate the primitives of the perception \& control model:

- Perception The agent's internal representation: $\mathbb{P}_{\theta_{1}}\left(s^{\prime} \mid s, a\right)$ and $\mathbb{T}_{\theta_{1}}\left(o^{\prime} \mid s^{\prime}\right)$ parametrized by $\theta_{1} \in \mathbb{R}_{1}^{p}$.

Learning a Model of Perception and Action

Based upon data \mathcal{D} (i.e sequences of observations and implemented actions say τ) estimate the primitives of the perception \& control model:

- Perception The agent's internal representation: $\mathbb{P}_{\theta_{1}}\left(s^{\prime} \mid s, a\right)$ and $\mathbb{T}_{\theta_{1}}\left(o^{\prime} \mid s^{\prime}\right)$ parametrized by $\theta_{1} \in \mathbb{R}_{1}^{p}$.
- Preferences A reward function $r_{\theta_{2}}(b, a)$ which is parametrized by θ_{2}

Learning a Model of Perception and Action

The log-likelihood of dataset \mathcal{D} can be written as:

$$
\begin{aligned}
\log \mathbb{P}(\mathcal{D} \mid \theta) & =\log \prod_{\tau \in \mathcal{D}} \mathbb{P}(\tau \mid \theta) \\
& =\mathbb{E}_{\tau \sim \mathcal{D}}\left[\sum_{t=0}^{T} \log \left(\pi_{\theta}^{*}\left(a_{t} \mid b_{\theta_{1}, t}\right) \mathbb{P}\left(o_{t+1} \mid h_{t} \cup\left\{a_{t}\right\}\right)\right)\right]|\mathcal{D}| \\
& =\mathbb{E}_{\tau \sim \mathcal{D}}\left[\sum_{t=0}^{T} \log \pi_{\theta}^{*}\left(a_{t} \mid b_{\theta_{1}, t}\right)\right]|\mathcal{D}|+\text { constant }
\end{aligned}
$$

Learning a Model of Perception and Action

Assumption 1: $P(\theta)=P\left(\theta_{1}\right) P\left(\theta_{2}\right)$, where:

$$
P\left(\theta_{1}\right) \propto \exp \left(\lambda \mathbb{E}_{\tau \sim \mathcal{D}}\left[\prod_{t=0}^{T} \sigma_{\theta_{1}}\left(o_{t+1} \mid b_{\theta_{1}, t}, a_{t}\right)\right]|\mathcal{D}|\right)
$$

for some $\lambda>0$.

Learning a Model of Perception and Action

Assuming a uniform prior $P\left(\theta_{2}\right)$ on a compact subset $\Theta_{2} \subset \mathbb{R}_{2}^{p}$, the \log of the posterior distribution can be written as:

$$
\begin{aligned}
& \log P(\theta \mid \mathcal{D})= \log P(\mathcal{D} \mid \theta)+\log P\left(\theta_{1}\right)+\text { constant } \\
&= \\
&=\mathbb{E}_{\mathcal{D}}\left[\log \sum_{t=0}^{T} \pi_{\theta}^{*}\left(a_{t} \mid b_{\theta_{1}, t}\right)+\lambda \sum_{t=0}^{T} \log \sigma_{\theta_{1}}\left(o_{t+1} \mid b_{\theta_{1}, t}, a_{t}\right)\right]|\mathcal{D}| \\
& \quad+\text { constant }
\end{aligned}
$$

Learning a Model of Perception and Action

The estimation problem as the following bi-level optimization problem:

$$
\begin{aligned}
\max _{\left(\theta_{1}, \theta_{2}\right)} & \mathbb{E}_{\mathcal{D}}\left[\log \sum_{t=0}^{T} \pi_{\theta}^{*}\left(a_{t} \mid b_{\theta_{1}, t}\right)+\lambda \sum_{t=0}^{T} \log \sigma_{\theta_{1}}\left(o_{t+1} \mid b_{\theta_{1}, t}, a_{t}\right)\right] \\
\text { s.t. } & \pi_{\theta}^{*}=\arg \max _{\pi \in \Pi^{H}} \mathbb{E}\left[\sum_{h \leq H}\left[r_{\theta}\left(b_{h}, a_{h}\right)-\log \pi\left(\cdot \mid b_{h}\right)\right]\right]
\end{aligned}
$$

Outline

(3) Active Inference

Active Inference and Free Energy

ACTIVE INFERENCE
 The Free Energy Principle in Mind, Brain, and Behavior

THOMAS PARR GIOVANNI PEZZULO

KARL J. FRISTON
"Probably the most lucid and comprehensive treatment of the concept of active inference to date

> Active inference is a novel framework for cognition and behavior according to which the agent jointly perceives and acts upon the world so as to maximize the match between perceived vs preferred states of the world.

Active Inference and Free Energy

A principle of free energy minimization:

Active Inference and Free Energy

A principle of free energy minimization:

- (backward) free energy is minimized when the agent's belief distribution b_{t} corresponds to the Bayes updated belief distribution on the state s_{t}.

Active Inference and Free Energy

A principle of free energy minimization:

- (backward) free energy is minimized when the agent's belief distribution b_{t} corresponds to the Bayes updated belief distribution on the state s_{t}.
- (forward) surprise is measured with respect to a preferred distribution $\tilde{P}\left(s_{t+1}\right)$ over states of the environment.

Active Inference and Free Energy

The immediate "surprise" associated with action a_{t} when current beliefs are b_{t} is quantified by the expected free energy defined as:

$$
\operatorname{EFE}\left(b_{t}, a_{t}\right)=\mathbb{E}\left[D_{K L}\left(b_{t+1} \| \tilde{P}\right)\right]+\mathbb{E}\left[\mathcal{H}\left(\mathbb{T}\left(\cdot \mid s_{t+1}\right)\right)\right]
$$

where

$$
b_{t+1}(s)=\mathbb{P}\left(s_{t+1}=s \mid h_{t} \cup\left\{a_{t}, o_{t+1}\right\}\right)
$$

and $\mathcal{H}\left(\mathbb{T}\left(\cdot \mid s_{t+1}\right)\right)$ is the entropy of the resulting generative model of observations, i.e.:

$$
\mathcal{H}\left(\mathbb{T}\left(\cdot \mid s_{t+1}\right)\right):=-\sum_{o^{\prime}} \mathbb{T}\left(o^{\prime} \mid s_{t+1}\right) \log \left(\mathbb{T}\left(o^{\prime} \mid s_{t+1}\right)\right)
$$

Outline

(4) Application to Car Following Task

Application to Car Following Task, Ran et al. (2023)

- We use the active inference specification (reward equal to negative free energy).
- We use the INTERACTION dataset: a set of time-indexed trajectories of the positions, velocities, and headings of each vehicle in the scene in the map's coordinate system at a sampling frequency of 10 Hz .

Application to Car Following Task

Figure 2: Top down view of the roadway in Dataset

Application to Car Following Task

Figure 3: Offline evaluation MAE-IQM. Each point corresponds to a random seed used to initialize model training and its color corresponds to the testing condition of either same-lane or new-lane.

Application to Car Following Task

Figure 4: Online evaluation ADE-IQM. Each point corresponds to a random seed used to initialize model training and its color corresponds to the testing condition of either same-lane or new-lane.

Application to Car Following Task

Figure 5: Visualizations of a same-lane offline evaluation trajectory

Application to Car Following Task

Figure 6: Visualizations of a same-lane online evaluation trajectory where the AIDA generated a rear-end collision with the lead vehicle.

Outline

(5) Conclusions

Conclusions

- We proposed a novel model of driver behavior using active inference (AIDA).
- Using car following data, we showed that the AIDA significantly outperformed the rule-based IDM on all metrics and performed comparably with the data-driven neural network benchmarks.
- We showed that the structure of the AIDA provides superior interpretability of its input-output mechanics than the neural network models.
- Future work should focus on training with data from more diverse driving environments and examining model extensions that can capture heterogeneity across drivers

