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Intersection safety is a 
growing issue

1 https://highways.dot.gov/safety/intersection-safety/about 2 https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/813435

Image credit: https://its.dot.gov/isc/pdf/USDOT_IntersectionSafetyWebinar3.pdf



Technology can help

Sensing Safety metric 
assessment

Countermeasures

• Traditional methods largely depends on police accident report
• We need to move from after-event diagnosis to prognosis
• We need continuous monitoring of intersection



continuous assessment using AI
• Artificial intelligence and machine learning has shown promises in 

recent years
• Sensor processing can be performed real time on edge devices

• Continuous assessment can benefit safety 
• Improved sensing of vulnerable road user
• Improve situational awareness
• Highlight near crash areas
• Determine traffic demand
• Facilitate multimodal transportation 
• Emergency response
• V2I 



Intersection is complex

• It is a special infrastructure
• Variable speed
• Multimodal actors

• Maneuver 
• Lane change
• Unprotected left turn
• Right turn at pedestrian crossing



Project scope and objectives

• Can we leverage intersection cameras?
• How the behavior of all actors 

collectively effects the overall safety of 
the intersection?
• How graph can help?

• Can we study relative safety for each 
participant? 
• Graph-based representation of traffic 

scenes for safety analysis.



Traffic as graph

GNN



Challenges

• Every intersection is different, some of them are 
similar
• How to develop a common algorithm that can be 

generalized for each intersection?

• Crashes can happen within a distance to 
intersections
• How to model different intersection and 

maneuvers? 

https://safety.fhwa.dot.gov/intersection/signal/fhwasa13027.pdf
https://safety.fhwa.dot.gov/intersection/about/index.cfm

https://safety.fhwa.dot.gov/intersection/signal/fhwasa13027.pdf
https://safety.fhwa.dot.gov/intersection/about/index.cfm


The power of graph and GNN

● We can integrate information from all 
vehicles, VRUs, and infrastructure

● Graph theory is a matured field
○ Encodes structural complexity and 

dependancies
● Graph neural network has 

revolutionized how we can process 
graph at scale
○ Information fusion
○ Information propagation
○ Transferability 
Malawade, A. V., Yu, S. Y., Hsu, B., Muthirayan, D., Khargonekar, P. P., & Al Faruque, M. A. (2022). Spatiotemporal scene-graph 
embedding for autonomous vehicle collision prediction. IEEE Internet of Things Journal, 9(12), 9379-9388.



Graph representation of intersection



Workflow and process



Workflow



Traffic participant detection and 
tracking
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[5] Aharon, N., Orfaig, R., & Bobrovsky, B. Z. (2022). BoT-SORT: Robust associations multi-pedestrian tracking. arXiv preprint arXiv:2206.14651.
[6] Wang C. Y., Bochkovskiy, A., & Liao, H. Y. M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. CVPR 2023.
[7] Lin, Tsung-Yi, et al. "Microsoft coco: Common objects in context." ECCV 2014.

● Use object detector that 
automatically detect objects (car, 
truck, pedestrians, bicycle, etc.)

● The multi object tracking helps to 
track objects across frames

● We tested multiple object 
detectors and tracker: BotSORT, 
YOLOv7, GCNNMatch



Pixel to GPS transformation
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Lanelet
● Creating small segments of road that are 

homogeneous in nature
○ Each lanelet is a segment of the road that 

includes left and right boundaries.
○ Green: road & non-road
○ Blue: road & road

● Lanelet creation:
○ JOSM (Java OpenStreetMap Editor) 

software used for creating maps
○ OpenStreetMap (OSM) provides open-

source platform to contribute geospatial 
data.
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Projection to frenet space

Traffic participants described by objects in Cartesian space are projected 
onto the Frenet space



Traffic scene graph
Elementary traffic model
Semantic scene graph



Elementary Traffic Model

● Each participant in the scene is 
represented by a vertex in a graph.

● Euclidean distance based edge 
creation.

● Gives an idea of traffic density and 
flow.

● Does not take into account road 
structure.

● We can compute node level and 
edge level features
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What is a semantic scene graph?
● A semantic scene graph represents a scene in terms of its 

semantic meaning. In a semantic scene graph, each node in the 
graph represents an object in the scene, and is labeled with a 
category or class of object (e.g., "car", "person", "bicycle", etc.).

● Semantic scene graph also captures information about the 
functional and semantic relationships between objects. For 
example, it might indicate that a "pedestrian" node is "adjacent" 
to a "car" node, or that a "truck" node is "behind" a "car" node.

● Why semantic scene graph?
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Example intersection
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Example intersection

26



Example intersection: road graph

Road map is described by a directed graph 
Groad defined by (Vroad, Eroad). Method 
proposed for trajectory datasets by Zipfl et al. 
[8]
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[8] Zipfl, Maximilian, and J. Marius Zöllner. "Towards traffic scene description: The semantic scene graph." 2022 IEEE 25th International Conference on Intelligent 
Transportation Systems (ITSC). IEEE, 2022.



Example scenario: projection into 
lanelets
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Vehicles projected onto the centerline of the lanelets to aid in creation of 
the scene graph
Traffic scenario showing three vehicles with their heading and position



Example scenario: semantic scene 
graph

32

[9] Zipfl, Maximilian, and J. Marius Zöllner. "Towards traffic scene description: The semantic scene graph." 2022 
IEEE 25th International Conference on Intelligent Transportation Systems (ITSC). IEEE, 2022.



● Features of nodes and edges in the 1-hop neighborhood of target node are 
considered in every layer of the neural network. This is also called convolution.

● There are several GNN variants, and they all mostly differ in the AGGREGATE and 
UPDATE functions 

Graph Neural Network (GNN)
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Graph neural network 
based safety analysis



Safety



Safety metric: Speed and acceleration

● Overspeeding & driving too 
slow are both dangerous

● Speed thresholded at speed 
limit + 10 mph (i.e. only 
overspeeding participants 
considered)

● Rapid acceleration and 
sudden braking are unsafe

● Acceleration & braking 
thresholded at 0.6g and 
0.5g respectively
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Safety metric

● Several safety metrics are used in research
○ TTC, PET, RSS

● Pairs of participants that exhibit longitudinal, 
or  lateral, or intersecting relationship

● We used TTC threshold of 2 sec
● We used PET threshold as 1.5 secs for 

intersecting traffic

40



Example intersection: Data 
representation

Node feature: u = [isPed, isBicycle, isCar, isTruckBus, isMotorbike, |v|, vx , vy , length, width]

Edge feature: e = [isLon, |dlon|, isLat, |dlat|, isInt, |dint|]
H \ T 1 2 3

1 - - e13

2 e21 - e23

3 e31 e32 -

u3

u1 u2
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Safety Modeling

Class label: cf = min(1, floor(𝛼! nPET + 𝛼"  nTTC + 𝛼# nG + 𝛼$ nS))

● nPET: Number of vehicles with PET <= 1.5 seconds
● nTTC: Number of vehicles with TTC <= 2 seconds
● nG: Number of vehicles with acceleration >= 0.6g,

                                      and deceleration >= 0.5g
● nS: Number of vehicles overspeeding >= 10 mph

42



Safety metric evaluation

● For 10.5% of the frames, there a PET violation by a pair of vehicles in the 
high crash intersection, and around 7.9% of the time in the low crash 
videos.

● For 3.1% of the frames, there was a PET violation by two pairs of vehicles 
for the high crash intersection videos, and around 1.9% of the time for 
the low crash videos.

● When TTC is combined with speed and acceleration, we obtain violation 
in 15.2% of the frames for the high crash videos, and 13.8% for the low 
crash ones. 
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Experiment and results



VT-CAST 2020 dataset
● Traffic cameras throughout Virginia used to collect the dataset [4]

VT-CAST (Virginia Traffic Cameras for Advanced Safety Technologies).
● Videos are usually 320x240 resolution at 15 fps.
● We chose 10 intersections in Virginia chosen- high crash history and low crash 

history
○ Similar traffic volume and number of lanes
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[4] Bareiss, Max G. A Dataset of Vehicle and Pedestrian Trajectories from Normal Driving and Crash Events in One Year of Virginia Traffic Camera Data. Diss. Virginia Tech, 
2023



Node-level features
● Provide information regarding the structure 

and position of nodes in the network. 
● Understand the role and importance of 

individual nodes in the network, as well as 
identify patterns and trends in the network’s 
overall structure and behavior.



LINK-level features

● Provide information about 
individual edges/links, and can 
be used to understand the 
relationships between nodes.
● Patterns and trends of relatio
nships between nodes in the 
network
● Identify influential edges and 
understand their role in the 
network’s overall behavior.



Workflow



Graph convolutional network



Graph attention network

● While convolution aggregates 
information from neighboring 
nodes & edges, 

● but applying specific different 
weights to these nodes & edges 
allows the network to focus on 
important information.



Classification based on PET metric 
violations
Combining all data and training the models for predicting safe/unsafe based 
on the PET metric violations.

Trained model can be used to make 
predictions on new scenarios.
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Pred\GT P N

P 0.804 0.231

N 0.196 0.769

Graph Attention 
[10]

Graph Conv 
[11]

Accuracy 72.9% 79.85%

[10] Yunsheng Shi, Zhengjie Huang, Shikun Feng, Hui Zhong, Wenjin Wang, and Yu Sun. Masked label prediction: Unified message passing model for semi-supervised 
classification. arXiv preprint arXiv:2009.03509, 2020.
[11] Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande, and Jure Leskovec. Strategies for pre-training graph neural networks. arXiv preprint 
arXiv:1905.12265, 2019.



Discussion

● Key takeaways
○ Graph based methods are being increasingly used for traffic analysis and 

safety measurement.
○ Infrastructure cameras can encode key information about the traffic dynamics
○ Graph based methods can encode both road way information and traffic 

information
○ We can perform safety prediction and analysis using GNN
○ Code will be available: https://github.com/VTTI/GNN-based-intersection-safety

https://github.com/VTTI/GNN-based-intersection-safety


Discussions

● Practical limitations
○ The current camera infrastructure, characterized by its low resolution of 

320x240 leads to cameras frequently losing focus in various situations. 
○ Often only one camera is installed at an intersection. This does not provide 

complete information of the traffic dynamics.
○ Adequate annotations for safety events



Dataset



Future scope

● Upgrading the cameras to higher resolutions would greatly improve the 
clarity and level of detail in captured images and videos.

● The current project uses safety measures like TTC, PET, speed behavior. In 
recent years, more advanced safety features including RSS [12, 13] has 
been proposed. Future research can use these measures to create more 
detailed safety score.

● Intersection safety challenge 
● Testing on a large scale data

○ We are currently processing 7 days of data from 10 intersections to record 
temporal analysis of safety

[12] Shalev-Shwartz, S., Shammah, S., & Shashua, A. (2017). On a formal model of safe and
scalable self-driving cars. arXiv preprint arXiv:1708.06374.
[13] Sarkar, A., Krum, A., Hanowski, R., & Hickman, J. (2021, June). Responsibility Sensitive Safety Analysis of Truck Following in US Highway. In International Conference 
on Applied Human Factors and Ergonomics (pp. 119-126). Cham: Springer International Publishing.



Thank you
Contact: asarkar@vtti.vt.edu, asonth@vtti.vt.edu

mailto:asarkar@vtti.vt.edu
mailto:asonth@vtti.vt.edu

