MEASURING THE SAFETY
 OF ADS: HOW SAFE IS SAFE ENOUGH?

Eileen Herbers
January 25, 2024

What are ADS?

Automated Driving Systems

What are ADS?

How do we define what is acceptably safe?

What risk do we currently accept on the road?

Do' ADS reduce any: of the current risk?

Do ADS create any additional risk?

HOW SAFE IS SAFE ENOUGH?

SAFER THAN A HUMAN DRIVER

Total Traffic Fatalities on US Roadways by Year

0

| 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

How do we define what is acceptably safe?

What risk do we currently accept on the road?

Do' ADS reduce any of the current risk?

HOW SAFE IS

 SAFE ENOUGH?How is ADS safety and performance
tested?

What metrics and thresholds are used to determine safety?

Who is at fault if ADS are involved in a crash?

How do we define what is acceptably safe?

What risk do we currently accept on the road?

Do' ADS reduce any of the current risk?

Do ADS create any additional risk?

HOW SAFE IS SAFE ENOUGH?

Who defines what is acceptably safe?

How is ADS safety

 and performance tested?What metrics and thresholds are used to determine safety?

Who is at fault if ADS are involved in a crash?

PURPOSE

Use naturalistic driving data to inform scenario selection that will be used to measure how ADS might perform in these scenarios.

Determine and analyze some scenarios in which ADS may not provide the predicted advantage of reducing or mitigating safety-critical events (SCEs).

METHODS

Naturalistic Driving Data

- Operator Factor: Fault of the other driver
- Visual Obstruction: Present

Configuration Category		Number of Events
$\uparrow \uparrow$	Angle, Sideswipe, Merge, Cut-in	1325
$\rightarrow \rightarrow$	Forward Impact	665
\uparrow	Perpendicular	608
$\rightarrow \leftarrow$	Head on (Initial Opposite Direction)	285
-	Backing Up	107
4	Roadside Departure	17

METHODS

Variable	Definition
T0	Conflict Object Identified
T1	Conflict Begin
T2	Subject Reaction Start
T3	Impact or Proximity Frame

Safety Surrogate Measures

- Relative Velocity
- TTC
- Minimum Required Deceleration

Video Review

- Validate that timestamps and values are reasonable
- Identify outlying cases
- Categorize scenarios

847269

DRIVER REACTION
 N

Minimum required deceleration to avoid a crash if the subject vehicle were equipped with ADS.

11.57\%

Percentage of events analyzed that required a minimum required deceleration value greater than 1 g

[^0]How do we define what is acceptably safe?

What risk do we currently accept on the road?

Do' ADS reduce any of the current risk?

HOW SAFE IS

 SAFE ENOUGH?How is ADS safety and performance
tested?

What metrics and thresholds are used to determine safety?

Who is at fault if ADS are involved in a crash?

SAFER THAN A HUMAN DRIVER

CONCLUSION

- Using a small set of naturalistic data has the potential to convey important information to widescale ADS deployment that simulation or closed-track testing cannot.
- Human drivers are generally good at performing evasive maneuvers that require braking and steering, which requires a complex set of decisions for ADS.
- ADS may not perform as expected in:
- High-speed turns
- Blind turns and hills
- Lane-change events with other vehicles
- Scenarios with significant occlusion
- Near-crash and crash-relevant events are crucial to understanding the complex driving context

THANK YOU

Eileen Herbers
eherbers@vtti.vt.edu

SAFETYTHRロUGHDIGRUPTIロN

[10 VirginiaTech.
Transportation Institute

Variables of Safety
Harm
Probability
Uncertainty
Control

Uncertainty

Figure 1. Safety as a function of probability and uncertainty. x, y and z are levels of safety such that $x>y>z$.

HOW SAFETY IS CURRENTLY MEASURED

ADAS (L1 \& L2)	
Crash Statistics	
ADS (L3 \& L4)	
Simulation	Simulation
Closed Test-Track Testing	Closed Test-Track Testing
Field Testing	
Insurance Claims	

HOW SAFETY IS CURRENTLY MEASURED

Crash Rates

\# of crashes of ADS
\# of miles driven by ADS

$<$
\# of miles driven by
human drivers

HOW DO CURRENT ADS MEASURE SAFETY?

Collision Frequency

"Cruise relied upon factors of collision frequency, primary contribution and risk of injury when comparing its AVs to the human ride-hail benchmark."

Cruise's "first million driverless miles resulted in only 36 collisions, of which 94% were caused by the behavior of other parties."

- 21% other parties reversed into a stationary Cruise AV
- 26% other parties rear-ended Cruise AV often at stop signs or red lights
- 3\% other parties drove the wrong way on a one-way road
- 9\% other parties blowing through red lights or stop signs and made contact with a stationary Cruise AV

> Insurance Claims
> Waymo vehicles "reduced the frequency of bodily injury claims by 100 percent, compared to Swiss Re's human baseline of 1.11 claims per million miles."

Population of crashes that could potentially be mitigated by ADAS features

Crashes within the above population that can't actually be mitigated by ADAS or ADS features because information is unknown

Population of crashes that could potentially be mitigated by ADAS features

Crashes within the above population that can't actually be mitigated by ADAS or ADS features because information is unknown

Population of crashes that could potentially be mitigated by ADS
\square Population of crashes that cannot be avoided by ADAS or ADS

Ex: Rear-end crashes (AEB)
Crashes within the above population that can't actually be mitigated by ADAS or ADS features because information is unknown

Ex: Rear-end crashes (AEB) but driver doesn't have enough time to warnings OR car does not have enough time to brake

Population of crashes that could potentially be mitigated by ADS

Ex: Rear-end crash, but vehicle is able to swerve
Population of crashes that cannot be avoided by ADAS or ADS
Ex: Rear-end crash around a tight curve or over the crest of a hill

Population of crashes this research focuses on

HOW TO DETERMINE CONFLICT OBJECT

T	Time point	Host Speed	Range Rate \mathbf{x}
T1	Conflict Begin	x	
T1.2	Closest radar point to conflict begin	x	x
T2	Subject reaction start	x	
T2.2	Closest radar point to subject reaction start	x	x
T3	Impact proximity frame	x	
T3.2	Closest radar point to impact proximity frame	x	x

HOW TO DETERMINE CONFLICT OBJECT

DATA BY CRASH AND NEAR CRASH

	Configuration Category	Crash	Near Crash
$\uparrow \uparrow$	Angle, Sideswipe, Merge, Cut-in	26	1299
$\rightarrow \rightarrow$	Forward Impact	158	507
\rightarrow Perpendicular	43	565	
$\rightarrow \leftarrow$	Head on (Initial Opposite Direction)	18	267
\square	Backing Up	20	87
Roadside Departure		12	5

[^0]: - Baseline Events
 \checkmark ADS Events that required a minimum deceleration greater than 1 g

