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Dimensions of cognition

Centralized vs. Embodied (Situated)

Symbol storage and manipulation vs. empirical interactions
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Cognitivist (Traditional)

• The brain and body are separate entities

• The brain is a symbol system

• Cognition is just symbol manipulation
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Connectionist systems

3



Embodied cognition

Tenants of embodied cognition (Wilson)

1. Cognition is situated in the real-world

2. Cognition is time pressured

3. We use the environment to aid our cognitive process

4. The environment is part of the cognitive system

5. The purpose of cognition is action

6. Off-line cognition uses sensory and motor control
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Group exercise 10 min

In your groups, discuss your reflection response about the Hutchins case study.
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Today’s lecture: What do cognitive theories say about decisions

1. Cognitivist decision-making

2. Embodied decision-making

3. Predictive processing (new for today)
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Cognitivist decision making

Recall that cognitivists view cognition as symbol manipulation. The same view applies to

decisions.

Consider our car purchasing example from earlier. We can use expected utility and risk to

formulate this as a math problem (i.e. symbol manipulation) and make a decision.

This works well for off-line cognition!
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Cognitivist decision making

What about online decisions?

Perception Cognition Action

Perception builds a representation of the real world relevant features.

Cognition translates these representations into a plan according to beliefs and preferences,

then activates the Action.

Decision making resides completely in the cognitive node.
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Cognitivist decision making limitations

1. Forcing a separation between perception, cognition, and action and requiring the systems

to communicate in a unified way (e.g., through utility representations) is awkward.

2. This division does not reconcile with neurological data, especially for online decisions.

3. There is no provision for epistemic behavior.
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Embodied decision making

Many theories, but one plausible theory is Cisek’s affordance competition hypothesis.

”Decisions emerge from a distributed, probabilistic competition between multiple

representations of possible actions which overlap with sensorimotor circuits.” (Burr, 2017 p. 4)

”The brain simultaneously is specifying and selecting among representations of multiple “action

opportunities”—affordances—which compete with the sensorimotor system itself.” (Burr,

2017, p. 5)
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Embodied decision making

(a) Cognitivist organization; (b) ACH organization 11



Embodied decision making
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Embodied decision making

The ACH also supports an argument for dynamic decision making

Decisions are continuously analyzed following action initiation through sensory feedback.

This allows for action adjustments that consider evolving biomechanical costs.
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Embodied decision making
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Embodied decision making limitations

1. The account of offline decision making is incomplete

2. There is no notion of the impact of affect on decision making
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Predictive processing

Predictive processing is the proposal that the principle purpose of the brain is to reduce errors

identified by the cognitive system. The cognitive system is a hierarchical generative model that

integrates signals from the perceptual systems of the body with higher level goals and

representations.

The hierarchical generative model is developed over time based on how states and events in

the world and the body generate sensory input. The brain attempts to minimize errors between

predicted sensory input and actual sensory input through perception and action.

Perception is updating the sensory prediction based on sensory input.

Action is behavior that changes the sensory input to match predictions.
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Predictive processing

There are four key elements of predictive processing:

1. Hierarchical generative model

2. Active inference

3. Precision

4. Model tuning
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Hierarchical generative model

We can think of the cognitive system as a hierarchy. The lowest levels represent basic sensory

input signals. Higher levels represent increased abstraction and aggregation.

Friston’s (2015) model.
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Active inference

Active Inference is the process in which humans infer environmental and bodily states from

sensory input.

Sensory input can be derived from one of three sources:

1. exteroceptive - generated by the environment.

2. interoceptive - generated by the internal organs (i.e. emotions).

3. proprioceptive - generated by the states of the muscles and joints.
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Active inference

Hierarchical Generative Model

Exteroception Interoception Proprioception

PredictionsPrediction Errors
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Active inference

Example: Consider that you are driving a vehicle and are approaching an intersection. You

believe that you are in a lane that permits proceeding straight through the intersection or

turning. You decide to go straight. However you are in a turn-only lane. As you enter the

intersection other drivers begin to honk their horns.
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Active inference

As the car enters the intersection:

“I am in the lane going

straight and have the

right of way”

Prediction = Green light Prediction = No honking

“Green light” “No honking”ε ε

Visual input: Green light Auditory input: No honking

Context Level

Sensory Level
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Active inference

As other vehicles begin to honk at the driver:

“I am in the lane going

straight and have the

right of way”

Prediction = Green light Prediction = No honking

“Green light” “Honking”ε ε

Visual input: Green light Auditory input: Honking

Context Level

Sensory Level

Prediction

error
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Active inference

As the driver begins to understand their error:

“I am in the turn lane

going straight and that is why

people are honking”

Prediction = Green light Prediction = Honking

“Green light” “Honking”ε ε

Visual input: Green light Auditory input: Honking

Context Level

Sensory Level
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Active inference

A few key additional points:

1. Only unexplained sensory input is passed up the hierarchy

2. This mechanism allows us to explain decision updates (similar to the ACH)

3. When all prediction errors are resolved, the system reaches a stable state.
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Precision

Predictions from the hierarchical generative model are probabilistic. These predictions include

an expected value and an expected precision (i.e. inverse variance). Prediction errors are

precision weighted as they are passed up the hierarchy.

Precision plays a key role in decisions between pragmatic and epistemic actions. Epistemic

actions are used to increase the precision of the current prediction. Pragmatic actions are used

to correct explicit errors in expectation.
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Precision

Predicted sensory input

σ

PEw = PE/σ

P ′
s

Prediction error

Current sensory input

Ps
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Precision: Inaccurate model and probable event

Predicted sensory input

σ

PEw = PE/σ

P ′
s

PE

Current sensory input

Ps

Example: Volleyball vs. the lab compared to a professional.
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Precision: Accurate model but improbable event

Predicted sensory input

σ

PEw = PE/σ

P ′
s

PE

Current sensory input

Ps

Example: “Bad luck” events, such as a hard hit baseball that is blown back into the stadium

with a gust of wind.
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Precision: False certainty

Predicted sensory input

σ

PEw = PE/σ

P ′
s

PE

Current sensory input

Ps

Example: Teenage driver looking away from the road to write a text message with the belief

that the vehicle in front of them will not brake.
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Precision: False uncertainty

Predicted sensory input

σ

PEw = PE/σ

P ′
s

PE

Current sensory input

Ps

Example: Driving in Wisconsin after driving in Texas for 5 years.
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Group Exercise

In your groups (15 min):

1. Develop your own example for 2 of the four cases of precision/prediction errors.

2. For each example explain how active inference would function in the scenario.

3. Document your response in a paragraph.
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Model tuning

Model tuning is the predictive processing framework’s method of explaining learning.

As statistical regularities emerge in the environment the hierarchical generative model is

updated to align. This process is different from Active inference which deals with

moment-to-moment model updates.
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Model tuning

Predictive processing model tuning follows a reinforcement learning pattern. Reinforcement

learning in the predictive processing involves a gradual modification of the generative model

that improves predictions and precision, thus tuning the system to relevant statistical

regularities in the world.

In this context, learning involves both error reduction and model simplification. Learning will

result in minimally complex models that have reasonable accuracy (i.e. Satisficing behavior).
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Making Predictive Processing Quantitative

Two perspectives:

1. Bayesian inference

2. Markov Decision Process (Friston et al. 2012)
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Bayesian predictive processing

Bayes rule:

P(B |E ) = P(E |B)∗P(B)
P(E )

Where B is our belief and E is evidence.

In predictive processing higher levels of the generative model make predictions about our beliefs

(P(B) or our prior). The lower levels of the hierarchy collect data, or Evidence (E) from a

hypothesis space (P(E )). Our brain learns the likelihood of the evidence given the beliefs

(P(E |B)). We can use Bayes rule to update P(B|E ), which is the prediction error.
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POMDPs and predictive processing

Markov Decision Process (MDP)

Definition A Markov decision process is the tuple (S ,A,T , r), where;

S is a finite set of states (s).

A is a finite set of actions (a).

T (s ′|s, a) = Pr({st+1 = s ′|st = s, at = a}) is the transition probability that the state

s ′ ∈ S at time t + 1 follows action a ∈ A in state s ∈ S at time t

r(s) is some reward received at state s ∈ S .

Problem The goal is to find a policy π : S → A that maximizes the cumulative rewards. We

can express this in terms of the sequence of actions that maximizes the value:

V (s) = maxa0:T

{
r(s) +

T∑
i=1

∑
s′

Pr({si = s; |s0 = s, a0, ..., ai})r(s ′)
}

37



POMDPs and predictive processing

MDPs assume that the human knows what state they are in. This is often not reasonable.

POMDP’s relax this assumption to accomodate partially observed states.

Definition A Partially Observable Markov Decision Process is the tuple (S ,A,T , r ,Ω,O),

where;

S ,A,T , r are the same as the MDP formulation.

Ω is the finite set of observations or outcomes.

O(o|s) = Pr({ot = o|st = s}) is the observation probability of o ∈ Ω given the agent is

in state s ∈ S at time t.

POMDPs can be converted to an MDP using beliefs about the current state and Bayes rule:

b′(s ′) = P(s ′|o, a, b) = P(o|s′,a,b)P(s′|a,b)
P(o|a,b) ∝ O(o|s ′, a)

∑
s ∈ ST (s ′|s, a)b(s).

We can now treat the beliefs as states and create a ”Belief Markov Decision Process”
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POMDPs and predictive processing

Definition A Belief Markov Decision Process is the tuple (B,A,T , r), where

B is a finite set of beliefs (b).

A is a finite set of actions (a).

T (b′|b, a) = Pr({bt+1 = b′|bt = b, at = a}) is the probability that the belief state

b′ ∈ B at time t + 1 follows action a ∈ A in belief state b ∈ B at time t

r(b) =
∑

s ∈ Sb(s)r(s) is the reward expected in belief state b ∈ B.
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POMDPs and predictive processing

ot−1 at−1 ot at ot+1

st−1 st st+1

bt−1 bt bt+1

Environment

Agent
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A pause...

A few important points:

1. Classical approaches to MPDs involve the optimization of future rewards to specify a

policy in terms of an action from any given state. The human tries to maximize future

rewards against a world that is governed by laws the agent can infer.

2. POMDPs explicitly model inference through a probabilistic mapping between hidden

states of the world and observations. Thus beliefs can be exploited to optimize behavior.
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POMDPs and predictive procesing

Definition The free-energy formulation refers to the tuple (Ω,S ,A, ν,P,Q,R) comprising:

A finite set of observations Ω.

A finite set of hidden states S.

Real valued parameters ν ∈ Rd .

A sampling probability R(o′|o, a) = Pr({ot+1 = o′|ot = o, at = a}) that observation
o′ ∈ Ω at time t + 1 follows action a ∈ A, given observation o′ ∈ Ω at time t.

A generative probability P(o, s, θ|m) = Pr({o0, ..., ot} = o, {s0, ..., sT} = s, ν = θ) over

observations to time t, states at all times and parameters

A recognition probability Q(s, θ|µ) = Pr({s0, ..., sT} = s, ν = θ) over states at all times

and parameters with sufficient statistics µ ∈ Rd .

In this presentation m is the form of a generative model or probability

Pm(o, s, θ) := P(o, s, θ|m). The sufficient statistics of the recognition probability

Qµ(s, θ) := Q(s, θ|µ) encode a probability distribution over a sequence of hidden states and

the parameters of the model θ ∈ ν. This recognition probability encode hidden states in the

future and past, which themselves can change with time. 42



Distinctions between free-energy and MDP

There are several important distinctions between the free energy formulation and MDP:

1. The transition probability over states (from POMDP) is replaced with a sampling

probability over observations. i.e. the agent does not need to know the actual result of

their action on the world, just the coupling between actions and sensory consequences.

2. The free-energy formulation introduces generative and recognition probabilities used to

infer hidden states, both past and future. i.e. the agent represents a sequence over states

rather than just the current state.

3. There are no reward or cost functions in the free-energy formulation. Optimal behavior

does not maximize rewards, rather it minimizes free-energy.
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Translating active inference principles to decision-making models

1. We assume humans consider the task environment as a set of states, s. (e.g., “a crash is

imminent”, “a crash is not imminent”)

2. Humans have probabilistic preferences, P(s), about being in each state and will take

actions, a, to remain in preferred states.

3. Humans have an internal model of the relationship between states and actions modeled as

a predictive distribution, Q(s|a).
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Translating active inference principles to decision-making models

4. The Kullback-Leibler divergence (i.e., relative entropy) between the preferences, P(s), and

predicted states, Q(s|a), is the Expected Free Energy (EFE or G(a)) of an action.19

G(a) = DKL(Q(s|a)∥P(s)) :=
∑

s∈S Q(s|a) log Q(s|a)
P(s)

5. Humans make decisions/take actions to minimize the EFE. We can model this based on

the relative log-likelihood between actions controlled by the precision, γ, where π(a) is the

probability of action, a.

log
π(a)

π(a′)
∝ −γ(G(a)− G(a′))
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Translating active inference principles to decisions over time

6. We can extend the model to decision making/action in dynamic settings by assuming a

Markovian predictive distribution, Q(st+1|st , at). In this case EFE can be extended to:20

G(a1:T ) = DKL(Q(s1:T |a1:T )∥P(s1:T ))
and action selection can be modeled as:

π(a1:T | s1) ∝ exp(−γG(a1:T ))
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Translating active inference principles to partial observability

7. We can also extend the model to the case where the state is not observable but the human

can collect observations, o, related to the state.20 e.g., in driving a driver can observe

looming but not the state of the forward vehicle (slowing to turn, stopping for a family of

ducks, etc.). These observations can be exteroceptive, interoceptive, or proprioceptive.

47



Translating active inference principles to partial observability

8. In this case, the human interacts with the environment by performing an action, at , at

each time step. The action influences a transition from the current state, st , to the next

state, st+1, with dynamics governed by, P(st+1|st , at). Since the human cannot observe

the state, they infer it based on their observation, ot , generated through the probability

distribution, P(ot |st) (estimated with variational inference).

9. EFE can be modeled as:

G(a1:T ) = DKL(Q(s1:T |a1:T )∥P(s1:T )) + EQ(s1:T |a1:T )[H(P(o1:T |s1:T ))]
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Translating active inference principles to driving

1. We used looming as our observations.

2. We analyzed two states, wait (0) or brake (1).

3. We assume that drivers plan over a fixed time horizon.

4. We assume that the precision in the driver’s beliefs changes with time.21
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Active inference driver decision making model

D s1 B s2 B s3 ...

A A A

o1 o2 o3

a1 a2

πG

C γ β

H
Parameter Meaning Context

A
Looming observation distributions

P(o|s)
The driver’s learned association between

the need to brake and looming.

B
State transition dynamics

P(s ′|s, a)
The driver’s understanding of

the environment dynamics.

C
Expected state distribution

P(s)

The drivers belief about the

state of the environment.

D
Initial state belief

P(s0)

The drivers initial belief about

the state of the environment.

H
Planning horizon

H

The amount of time into the

future that the driver considers.

β Precision rate
The change in the driver’s

precision over time.
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Fitting an active inference model to driving data

• 2x2x2 experimental design

• Within Subjects: Scenario (rear-end collision, obstacle avoidance), Kinematic urgency

(critical/non-critical)

• Between Subjects: Alert Type (Silent failure, Alerted transition)

• Each driver drove 4 drives in a counterbalanced order
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Compare model predictions and experimental results
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Extending the active inference driver model (AIDM)

Automation failure scenario:

“The automation is

driving and I do not

need to intervene”

Prediction = No braking Prediction = Looming = 0

“No braking” “Looming ≫ 0”ε ε

Physical input: No braking Visual input: Looming ≫ 0

Context Level

Sensory Level

Prediction

error
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Extending the active inference driver model (AIDM)

As the driver begins to understand the failure:

“The automation has

failed and I

need to intervene”

Prediction = No braking Prediction = Looming ≫ 0

“No braking” “Looming ≫ 0”ε ε

Physical input: No braking Visual input: Looming ≫ 0

Context Level

Sensory Level
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Extending the active inference driver model (AIDM)

What happens next?

“The automation has

failed and I

need to intervene”

Prediction = Braking needed Prediction = Looming ≫ 0

“No braking” “Looming ≫ 0”ε ε

Physical input: No braking Visual input: Looming ≫ 0

Context Level

Sensory Level

Prediction

error
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Extending the active inference driver model (AIDM)

To capture decision making and actions over time we need to expand the model.

1. Add an action module to map discrete decisions (accelerate, decelerate, wait) to

continuous actions (acceleration).

2. Add additional features to represent the environment (relative speed to a lead vehicle,

road geometry).

3. Add regularization to the optimization process to reduce identifiability issues.
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Extending the active inference driver model (AIDM)

We examined this extension with the INTERACTION dataset:

Compared the AIDM with a traditional rule based models (IDM), and 2 deep neural networks

(behavior cloning (BC) with recurrence and without).

Trained the models on data from one lane and tested them on held out samples from the same

lane and samples from a second lane.
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Extending the active inference driver model (AIDM)
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Extending the active inference driver model (AIDM)
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Future plans with Active Inference models

1. Continue to extend the model to capture continuous car following

2. Investigate the role of trust and situation awareness in more detail

3. Extend the model to continuous control scenarios in healthcare (e.g., care

decision-making, telerobotic surgery)
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